首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
Time‐lapse 3D seismic reflection data, covering the CO2 storage operation at the Snøhvit gas field in the Barents Sea, show clear amplitude and time‐delay differences following injection. The nature and extent of these changes suggest that increased pore fluid pressure contributes to the observed seismic response, in addition to a saturation effect. Spectral decomposition using the smoothed pseudo‐Wigner–Ville distribution has been used to derive discrete‐frequency reflection amplitudes from around the base of the CO2 storage reservoir. These are utilized to determine the lateral variation in peak tuning frequency across the seismic anomaly as this provides a direct proxy for the thickness of the causative feature. Under the assumption that the lateral and vertical extents of the respective saturation and pressure changes following CO2 injection will be significantly different, discrete spectral amplitudes are used to distinguish between the two effects. A clear spatial separation is observed in the distribution of low‐ and high‐frequency tuning. This is used to discriminate between direct fluid substitution of CO2, as a thin layer, and pressure changes that are distributed across a greater thickness of the storage reservoir. The results reveal a striking correlation with findings derived from pressure and saturation discrimination algorithms based on amplitude versus offset analysis.  相似文献   

2.
The injection of CO2 at the Ketzin pilot CO2 storage site started in June 2008 and ended in August 2013. During the 62 months of injection, a total amount of about 67 kt of CO2 was injected into a saline aquifer. A third repeat three‐dimensional seismic survey, serving as the first post‐injection survey, was acquired in 2015, aiming to investigate the recent movement of the injected CO2. Consistent with the previous two time‐lapse surveys, a predominantly west–northwest migration of the gaseous CO2 plume in the up‐dip direction within the reservoir is inferred in this first post‐injection survey. No systematic anomalies are detected through the reservoir overburden. The extent of the CO2 plume west of the injection site is almost identical to that found in the 2012 second repeat survey (after injection of 61 kt); however, there is a significant decrease in its size east of the injection site. Assessment of the CO2 plume distribution suggests that the decrease in the size of the anomaly may be due to multiple factors, such as limited vertical resolution, CO2 dissolution, and CO2 migration into thin layers, in addition to the effects of ambient noise. Four‐dimensional seismic modelling based on dynamic flow simulations indicates that a dynamic balance between the newly injected CO2 after the second repeat survey and the CO2 migrating into thin layers and being dissolved was reached by the time of the first post‐injection survey. In view of the significant uncertainties in CO2 mass estimation, both patchy and non‐patchy saturation models for the Ketzin site were taken into consideration.  相似文献   

3.
The Ketzin project provides an experimental pilot test site for the geological storage of CO2. Seismic monitoring of the Ketzin site comprises 2D and 3D time-lapse experiments with baseline experiments in 2005. The first repeat 2D survey was acquired in 2009 after 22 kt of CO2 had been injected into the Stuttgart Formation at approximately 630 m depth. Main objectives of the 2D seismic surveys were the imaging of geological structures, detection of injected CO2, and comparison with the 3D surveys. Time-lapse processing highlighted the importance of detailed static corrections to account for travel time delays, which are attributed to different near-surface velocities during the survey periods. Compensation for these delays has been performed using both pre-stack static corrections and post-stack static corrections. The pre-stack method decomposes the travel time delays of baseline and repeat datasets in a surface consistent manner, while the latter cross-aligns baseline and repeat stacked sections along a reference horizon.Application of the static corrections improves the S/N ratio of the time-lapse sections significantly. Based on our results, it is recommended to apply a combination of both corrections when time-lapse processing faces considerable near-surface velocity changes. Processing of the datasets demonstrates that the decomposed solution of the pre-stack static corrections can be used for interpretation of changes in near-surface velocities. In particular, the long-wavelength part of the solution indicates an increase in soil moisture or a shallower groundwater table in the repeat survey.Comparison with the processing results of 2D and 3D surveys shows that both image the subsurface, but with local variations which are mainly associated to differences in the acquisition geometry and source types used. Interpretation of baseline and repeat stacks shows that no CO2 related time-lapse signature is observable where the 2D lines allow monitoring of the reservoir. This finding is consistent with the time-lapse results of the 3D surveys, which show an increase in reflection amplitude centered around the injection well. To further investigate any potential CO2 signature, an amplitude versus offset (AVO) analysis was performed. The time-lapse analysis of the AVO does not indicate the presence of CO2, as expected, but shows signs of a pressure response in the repeat data.  相似文献   

4.
Common shot ray tracing and finite difference seismic modelling experiments were undertaken to evaluate variations in the seismic response of the Devonian Redwater reef in the Alberta Basin, Canada after replacement of native pore waters in the upper rim of the reef with CO2. This part of the reef is being evaluated for a CO2 storage project. The input geological model was based on well data and the interpretation of depth‐converted, reprocessed 2D seismic data in the area. Pre‐stack depth migration of the ray traced and finite difference synthetic data demonstrate similar seismic attributes for the Mannville, Nisku, Ireton, Cooking Lake, and Beaverhill Lake formations and clear terminations of the Upper Leduc and Middle Leduc events at the reef margin. Higher amplitudes at the base of Upper‐Leduc member are evident near the reef margin due to the higher porosity of the foreslope facies in the reef rim compared to the tidal flat lagoonal facies within the central region of the reef. Time‐lapse seismic analysis exhibits an amplitude difference of about 14% for Leduc reflections before and after CO2 saturation and a travel‐time delay through the reservoir of 1.6 ms. Both the ray tracing and finite difference approaches yielded similar results but, for this particular model, the latter provided more precise imaging of the reef margin. From the numerical study we conclude that time‐lapse surface seismic surveys should be effective in monitoring the location of the CO2 plume in the Upper Leduc Formation of the Redwater reef, although the differences in the results between the two modelling approaches are of similar order to the effects of the CO2 fluid replacement itself.  相似文献   

5.
More than 50 000 tons of CO2 have been injected at Ketzin into the Stuttgart Formation, a saline aquifer, at approximately 620 m depth, as of summer 2011. We present here results from the 1st repeat 3D seismic survey that was performed at the site in autumn 2009, after about 22 000 tons of CO2 had been injected. We show here that rather complex time‐lapse signatures of this CO2 can be clearly observed within a radius of about 300 m from the injection well. The highly irregular amplitude response within this radius is attributed to the heterogeneity of the injection reservoir. Time delays to a reflection below the injection level are also observed. Petrophysical measurements on core samples and geophysical logging of CO2 saturation levels allow an estimate of the total amount of CO2 visible in the seismic data to be made. These estimates are somewhat lower than the actual amount of CO2 injected at the time of the survey and they are dependent upon the choice of a number of parameters. In spite of some uncertainty, the close agreement between the amount injected and the amount observed is encouraging for quantitative monitoring of a CO2 storage site using seismic methods.  相似文献   

6.
CO2 saturations are estimated at Sleipner using a two-step imaging workflow. The workflow combines seismic tomography (full-waveform inversion) and rock physics inversion and is applied to a two-dimensional seismic line located near the injection point at Sleipner. We use baseline data (1994 vintage, before CO2 injection) and monitor data that was acquired after 12 years of CO2 injection (2008 vintage). P-wave velocity models are generated using the Full waveform inversion technology and then, we invert selected rock physics parameters using an rock physics inversion methodology. Full waveform inversion provides high-resolution P-wave velocity models both for baseline and monitor data. The physical relations between rock physics properties and acoustic wave velocities in the Utsira unconsolidated sandstone (reservoir formation) are defined using a dynamic rock physics model based on well-known Biot–Gassmann theories. For data prior to injection, rock frame properties (porosity, bulk and shear dry moduli) are estimated using rock physics inversion that allows deriving physically consistent properties with related uncertainty. We show that the uncertainty related to limited input data (only P-wave velocity) is not an issue because the mean values of parameters are correct. These rock frame properties are then used as a priori constraint in the monitor case. For monitor data, the Full waveform inversion results show nicely resolved thin layers of CO2–brine saturated sandstones under intra-reservoir shale layers. The CO2 saturation estimation is carried out by plugging an effective fluid phase in the rock physics model. Calculating the effective fluid bulk modulus of the brine–CO2 mixture (using Brie equation in our study) is shown to be the key factor to link P-wave velocity to CO2 saturation. The inversion tests are done with several values of Brie/patchiness exponent and show that the CO2 saturation estimates are varying between 0.30 and 0.90 depending on the rock physics model and the location in the reservoir. The uncertainty in CO2 saturation estimation is usually lower than 0.20. When the patchiness exponent is considered as unknown, the inversion is less constrained and we end up with values of exponent varying between 5 and 20 and up to 33 in specific reservoir areas. These estimations tend to show that the CO2–brine mixing is between uniform and patchy mixing and variable throughout the reservoir.  相似文献   

7.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   

8.
Time‐lapse seismics is the methodology of choice for remotely monitoring changes in oil/gas reservoir depletion, reservoir stimulation or CO2 sequestration, due to good sensitivity and resolving power at depths up to several kilometres. This method is now routinely applied offshore, however, the use of time‐lapse methodology onshore is relatively rare. The main reason for this is the relatively high cost of commercial seismic acquisition on land. A widespread belief of a relatively poor repeatability of land seismic data prevents rapid growth in the number of land time‐lapse surveys. Considering that CO2 sequestration on land is becoming a necessity, there is a great need to evaluate the feasibility of time‐lapse seismics for monitoring. Therefore, an understanding of the factors influencing repeatability of land seismics and evaluating limitations of the method is crucially important for its application in many CO2 sequestration projects. We analyse several repeated 2D and 3D surveys acquired within the Otway CO2 sequestration pilot project (operated by the Cooperative Research Centre for Greenhouse Technologies, CO2CRC) in Australia, in order to determine the principal limitations of land time‐lapse seismic repeatability and investigate the influence of the main factors affecting it. Our findings are that the intrinsic signal‐to‐noise ratio (S/N, signal to coherent and background noise levels) and the normalized‐root‐mean‐square (NRMS) difference are controlled by the source strength and source type. However, the post‐stack S/N ratio and corresponding NRMS residuals are controlled mainly by the data fold. For very high‐fold data, the source strength and source type are less critical.  相似文献   

9.
CO2 has been injected into the saline aquifer Utsira Fm at the Sleipner field since 1996. In order to monitor the movement of the CO2 in the sub‐surface, the seventh seismic monitor survey was acquired in 2010, with dual sensor streamers which enabled optimal towing depths compared to previous surveys. We here report both on the time‐lapse observations and on the improved resolution compared to the conventional streamer surveys. This study shows that the CO2 is still contained in the subsurface, with no indications of leakage. The time‐lapse repeatability of the dual sensor streamer data versus conventional data is sufficient for interpreting the time‐lapse effects of the CO2 at Sleipner, and the higher resolution of the 2010 survey has enabled a refinement of the interpretation of nine CO2 saturated layers with improved thickness estimates of the layers. In particular we have estimated the thickness of the uppermost CO2 layer based on an analysis of amplitude strength together with time‐separation of top and base of this layer and found the maximum thickness to be 11 m. This refined interpretation gives a good base line for future time‐lapse surveys at the Sleipner CO2 injection site.  相似文献   

10.
Carbon capture and storage is a viable greenhouse gas mitigation technology and the Sleipner CO2 sequestration site in the North Sea is an excellent example. Storage of CO2 at the Sleipner site requires monitoring over large areas, which can successfully be accomplished with time lapse seismic imaging. One of the main goals of CO2 storage monitoring is to be able to estimate the volume of the stored CO2 in the reservoir. This requires a parametrization of the subsurface as exact as possible. Here we use elastic 2D time‐domain full waveform inversion in a time lapse manner to obtain a P‐wave velocity constrain directly in the depth domain for a base line survey in 1994 and two post‐injection surveys in 1999 and 2006. By relating velocity change to free CO2 saturation, using a rock physics model, we find that at the considered location the aquifer may have been fully saturated in some places in 1999 and 2006.  相似文献   

11.
The sequestration of CO2 in subsurface reservoirs constitutes an immediate counter‐measure to reduce anthropogenic emissions of CO2, now recognized by international scientific panels to be the single most critical factor driving the observed global climatic warming. To ensure and verify the safe geological containment of CO2 underground, monitoring of the CO2 site is critical. In the high Arctic, environmental considerations are paramount and human impact through, for instance, active seismic surveys, has to be minimized. Efficient seismic modelling is a powerful tool to test the detectability and imaging capability prior to acquisition and thus improve the characterization of CO2 storage sites, taking both geological setting and seismic acquisition set‐up into account. The unique method presented here avoids the costly generation of large synthetic data sets by employing point spread functions to directly generate pre‐stack depth‐migrated seismic images. We test both a local‐target approach using an analytical filter assuming an average velocity and a full‐field approach accounting for the spatial variability of point spread functions. We assume a hypothetical CO2 plume emplaced in a sloping aquifer inspired by the conditions found at the University of Svalbard CO2 lab close to Longyearbyen, Svalbard, Norway, constituting an unconventional reservoir–cap rock system. Using the local‐target approach, we find that even the low‐to‐moderate values of porosity (5%–18%) measured in the reservoir should be sufficient to induce significant change in seismic response when CO2 is injected. The sensitivity of the seismic response to changes in CO2 saturation, however, is limited once a relatively low saturation threshold of 5% is exceeded. Depending on the illumination angle provided by the seismic survey, the quality of the images of five hypothetical CO2 plumes of varying volume differs depending on the steepness of their flanks. When comparing the resolution of two orthogonal 2D surveys to a 3D survey, we discover that the images of the 2D surveys contain significant artefacts, the CO2‐brine contact is misplaced and an additional reflector is introduced due to the projection of the point spread function of the unresolvable plane onto the imaging plane. All of these could easily lead to a misinterpretation of the behaviour of the injected CO2. Our workflow allows for testing the influence of geological heterogeneities in the target aquifer (igneous intrusions, faults, pervasive fracture networks) by utilizing increasingly complex and more realistic geological models as input as more information on the subsurface becomes available.  相似文献   

12.
To investigate the vertical and horizontal impact of reservoir scale on the amplitude‐versus‐offset characteristics, we conduct seismic numerical simulations on models containing spatially confined lithologic units with different scales. We find that the reservoir scale has a nonlinear effect on the amplitude‐versus‐offset intercepts and gradients. As the reservoir width increases, amplitude‐versus‐offset intercept and gradient both first increase, then decrease, and finally remain stable. The amplitude‐versus‐offset intercept is maximum when the reservoir width is 80% larger than the Fresnel zone radius, whereas the amplitude‐versus‐offset gradient peaks at 1.5 times the Fresnel zone radius. Both amplitude‐versus‐offset intercept and gradient are approximately proportional to the reservoir width prior to reaching their maxima. When the lateral extent of the reservoir is more than three times the Fresnel zone radius, the amplitude‐versus‐offset attributes are constant. Modelling the reservoir thickness shows that intercept and gradient behave in a manner similar to that of tuning of thin beds. Both the amplitude‐versus‐offset intercept and gradient first increase and then decrease with the thickness, peaking at the tuning thickness. The thickness contribution to amplitude‐versus‐offset variations is negligible when the thickness is larger than 1.6 times of the tuning thickness. Considering the magnitude of the changes in amplitude‐versus‐offset intercept and gradient caused by reservoir scale, the width causes a maximum 433% intercept increase and a 344% gradient increase, whereas the thickness causes a maximum 100% intercept increase and a 73% gradient increase. Cross‐plotting the amplitude‐versus‐offset intercept and gradient shows the reservoir scale change gives rise to an anti‐clockwise spiraling effect. In conclusion, the lateral and vertical extents of the reservoir both play an important role in amplitude variation with offset. Our analysis shows that the lateral reservoir extent has a larger impact on the amplitude variation with offset than the vertical tuning effect.  相似文献   

13.
Seismic monitoring of sequestered carbon dioxide (CO2) in underground deposits is a matter of growing importance. The subsurface monitoring of this greenhouse gas is possible due to the marked contrast between the physical properties of natural reservoir fluids and those of carbon dioxide after the injection. This technique makes necessary the investigation of appropriate seismic indicators to link seismic attributes to petrophysical properties, composition and state of the rock as well as pore-fluid type and in-situ physical conditions. With this motivation in mind, we use a Biot–Gassmann formulation to model the theoretical P-wave amplitude reflection coefficients vs. angle of incidence in the seismic range when a planar P-wave strikes the interface between a caprock and a porous sandstone which has its pore space saturated by a mixture of CO2 with brine or oil at different states (supercritical, liquid and gas). The effects of dissolution of CO2 in oil and the existence of a saturation threshold, above which a free CO2 phase develops, are included in the computations. Attention is particularly focused on the sensitivity of the classic best-fit amplitude variations with angle coefficients, to different degrees of CO2 saturation. We conclude from this analysis that the changes in seismic AVA attributes between 30 and 40 degrees can be useful to infer bounds on the CO2 saturation degree, to detect the presence of immiscible CO2 phase and, in some cases, to infer the physical state of the accumulations.  相似文献   

14.
Downhole monitoring with fibre-optic Distributed Acoustic Sensing (DAS) systems offers unprecedented spatial resolution. At the same time, costs are reduced since repeated wireline surveys can be replaced by the permanent installation of comparatively cheap fibre cables. However, the single component nature of fibre data requires novel approaches when designing a monitoring project such as cross-well seismics. At the example of the shallow CO2 injection test site in Svelvik, Norway, we model the evolution of velocity changes during CO2 injection based on rock physics theory. Different cross-well seismic design scenarios are then considered to evaluate the best design and the limits of this method to detect containment breach. We present a series of evaluation tools to compare the effect of different well spacings for cross-well seismic tomography. In addition to travel-times, we also consider characteristic amplitude changes along the fibre unique to DAS strain measurements, which might add a constraint to the inversion. We also compare the effect of using helical fibres instead of classical straight fibres. We thus present a toolbox to evaluate and compare different monitoring design options for fibre optic downhole installations for cross-well monitoring.  相似文献   

15.
CO2 geosequestration is an efficient way to reduce greenhouse gas emissions into the atmosphere. Carbonate rock formations are one of the possible targets for CO2 sequestration due to their relative abundance and ability to serve as a natural trapping reservoir. The injected supercritical CO2 can change properties of the reservoir rocks such as porosity, permeability, tortuosity, and specific surface area due to dissolution and precipitation processes. This, in turn, affects the reservoir characteristics, i.e., their elastic properties, storage capacity, stability, etc. The tremendous progresses made recently in both microcomputed X‐ray tomography and high‐performance computing make numerical simulation of physical processes on actual rock microstructures feasible. However, carbonate rocks with their extremely complex microstructure and the presence of microporosity that is below the resolution of microcomputed X‐ray tomography scanners require novel, quite specific image processing and numerical simulation approaches. In the current work, we studied the effects of supercritical CO2 injection on microstructure and elastic properties of a Savonnières limestone. We used microtomographic images of two Savonnières samples, i.e., one in its natural state and one after injection and residence of supercritical CO2. A statistical analysis of the microtomographic images showed that the injection of supercritical CO2 led to an increase in porosity and changes of the microstructure, i.e., increase of the average volume of individual pores and decrease in the total number of pores. The CO2 injection/residence also led to an increase in the mean radii of pore throats, an increase in the length of pore network segments, and made the orientation distribution of mesopores more isotropic. Numerical simulations showed that elastic moduli for the sample subjected to supercritical CO2 injection/residence are lower than those for the intact sample.  相似文献   

16.
Conventional seismic data are band limited and therefore, provide limited geological information. Every method that can push the limits is desirable for seismic data analysis. Recently, time‐frequency decomposition methods are being used to quickly extract geological information from seismic data and, especially, for revealing frequency‐dependent amplitude anomalies. Higher frequency resolution at lower frequencies and higher temporal resolution at higher frequencies are the objectives for different time‐frequency decomposition methods. Continuous wavelet transform techniques, which are the same as narrow‐band spectral analysis methods, provide frequency spectra with high temporal resolution without the windowing process associated with other techniques. Therefore, this technique can be used for analysing geological information associated with low and high frequencies that normally cannot be observed in conventional seismic data. In particular, the continuous wavelet transform is being used to detect thin sand bodies and also as a direct hydrocarbon indicator. This paper presents an application of the continuous wavelet transform method for the mapping of potential channel deposits, as well as remnant natural gas detection by mapping low‐frequency anomalies associated with the gas. The study was carried out at the experimental CO2 storage site at Ketzin, Germany (CO2SINK). Given that reservoir heterogeneity and faulting will have significant impact on the movement and storage of the injected CO2, our results are encouraging for monitoring the migration of CO2 at the site. Our study confirms the efficiency of the continuous wavelet transform decomposition method for the detection of frequency‐dependent anomalies that may be due to gas migration during and after the injection phase and in this way, it can be used for real‐time monitoring of the injected CO2 from both surface and borehole seismics.  相似文献   

17.
Between the years 2008 and 2013, approximately 67 kilotons of CO2 have been injected at the Ketzin site, Germany. As part of the geophysical monitoring programme, time‐lapse electrical resistivity tomography has been applied using crosshole and surface‐downhole measurements of electrical resistivity tomography. The data collection of electrical resistivity tomography is partly based on electrodes that are permanently installed in three wells at the site (one injection well and two observation wells). Both types of ERT measurements consistently show the build‐up of a CO2‐related resistivity signature near the injection point. Based on the imaged resistivity changes and a petrophysical model, CO2 saturation levels are estimated. These CO2 saturations are interpreted in conjunction with CO2 saturations inferred from neutron‐gamma loggings. Apart from the CO2–brine substitution response in the observed resistivity changes, significant imprints from the dynamic behaviour of the CO2 in the reservoir are observed.  相似文献   

18.
Seismic amplitudes contain important information that can be related to fluid saturation. The amplitude‐versus‐offset analysis of seismic data based on Gassmann's theory and the approximation of the Zoeppritz equations has played a central role in reservoir characterization. However, this standard technique faces a long‐standing problem: its inability to distinguish between partial gas and “fizz‐water” with little gas saturation. In this paper, we studied seismic dispersion and attenuation in partially saturated poroelastic media by using frequency‐dependent rock physics model, through which the frequency‐dependent amplitude‐versus‐offset response is calculated as a function of porosity and water saturation. We propose a cross‐plotting of two attributes derived from the frequency‐dependent amplitude‐versus‐offset response to differentiate partial gas saturation and “fizz‐water” saturation. One of the attributes is a measure of “low frequency”, or Gassmann, of reflectivity, whereas the other is a measure of the “frequency dependence” of reflectivity. This is in contrast to standard amplitude‐versus‐offset attributes, where there is typically no such separation. A pragmatic frequency‐dependent amplitude‐versus‐offset inversion for rock and fluid properties is also established based on Bayesian theorem. A synthetic study is performed to explore the potential of the method to estimate gas saturation and porosity variations. An advantage of our work is that the method is in principle predictive, opening the way to further testing and calibration with field data. We believe that such work should guide and augment more theoretical studies of frequency‐dependent amplitude‐versus‐offset analysis.  相似文献   

19.
The cross‐calibration of different vintage data is an important prerequisite in attempting to determine the time‐lapse seismic effects induced by hydrocarbon production in a reservoir. This paper reports the preprocessing and cross‐calibration procedures adopted to modify the data of four seismic vintages (1982, 1989, 1992 and 1999) from the Oseberg field in the North Sea, for optimal conditions for a time‐lapse seismic amplitude analysis. The final results, in terms of time‐lapse variations, of acoustic impedance and of amplitude‐versus‐offset, are illustrated for selected data sets. The application of preprocessing to each individual vintage data set reduces the effects of the different acquisition and noise conditions, and leads to consistency in the amplitude response of the four vintages. This consistency facilitates the final amplitude cross‐calibration that is carried out using, as reference, the Cretaceous horizon reflections above the Brent reservoir. Such cross‐calibration can be considered as vintage‐consistent residual amplitude correction. Acoustic impedance sections, intercept and gradient amplitude‐versus‐offset attributes and coherent amplitude‐versus‐offset estimates are computed on the final cross‐calibrated data. The results, shown for three spatially coincident 2D lines selected from the 1982, 1989 and 1999 data sets, clearly indicate gas‐cap expansion resulting from oil production. Such expansion is manifested as a decrease in acoustic impedance and a modification of the amplitude‐versus‐offset trends in the apical part of the reservoir.  相似文献   

20.
In the Norwegian North Sea, the Sleipner field produces gas with a high CO2 content. For environmental reasons, since 1996, more than 11 Mt of this carbon dioxide (CO2) have been injected in the Utsira Sand saline aquifer located above the hydrocarbon reservoir. A series of seven 3D seismic surveys were recorded to monitor the CO2 plume evolution. With this case study, time‐lapse seismics have been shown to be successful in mapping the spread of CO2 over the past decade and to ensure the integrity of the overburden. Stratigraphic inversion of seismic data is currently used in the petroleum industry for quantitative reservoir characterization and enhanced oil recovery. Now it may also be used to evaluate the expansion of a CO2 plume in an underground reservoir. The aim of this study is to estimate the P‐wave impedances via a Bayesian model‐based stratigraphic inversion. We have focused our study on the 1994 vintage before CO2 injection and the 2006 vintage carried out after a CO2 injection of 8.4 Mt. In spite of some difficulties due to the lack of time‐lapse well log data on the interest area, the full application of our inversion workflow allowed us to obtain, for the first time to our knowledge, 3D impedance cubes including the Utsira Sand. These results can be used to better characterize the spreading of CO2 in a reservoir. With the post‐stack inversion workflow applied to CO2 storage, we point out the importance of the a priori model and the issue to obtain coherent results between sequential inversions of different seismic vintages. The stacking velocity workflow that yields the migration model and the a priori model, specific to each vintage, can induce a slight inconsistency in the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号