首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The EPR-study showed that natural purple diamonds from kimberlites of Eastern Siberia (Russia) contain well known P1, P2 (in some samples), W7, and N2 centers. The EPR spectra of these centers were typical of plastically deformed diamond single crystals. Besides, several intense additional spectra of di-nitrogen centers were observed in purple diamonds. The angular dependence analysis of these spectra showed that they can be attributed to known M2 centers. Comparison of principal axis directions observed for sites of the M2 center in purple diamond crystals with theoretically predicted directions in the twin crystal revealed that these centers are allocated exclusively to the twinned lamellae. Unusual phenomenon of the ordered distribution of paramagnetic centers in natural purple diamonds confirmed that the plastic deformation in natural diamonds can be induced not only by the slip of dislocations but also by the mechanical twinning.  相似文献   

2.
Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned lamellae. Numerous data on models of deformation centers in natural diamonds, including the M2 and M3 centers, which were observed in the studied collection for the first time, are discussed.  相似文献   

3.
辽宁复县金刚石的阴极发光特征及其意义   总被引:6,自引:0,他引:6  
阴极发光图像揭示了辽宁复县金刚石的内部结构具有3种类型;(1)简单的生长环带结构;(2)多期生长的复杂环带结构;(3)稀少的似玛瑙状结构,这些内部结构特征反映金刚石的不均一性及生长具多期、多阶段特点、该特点与金刚石所处的流体-熔体的不同阶段相对应。玛瑙状结构除多生长中心聚集形成复杂种晶形态所致外,局部不均匀熔蚀、混合的生长机制的变化的结晶条件三者综合作用亦是原因之一,阴有发光图像还反映了金刚石晶体  相似文献   

4.
已知金刚石中能产生颜色的点缺陷(即色心)主要有氮、硼、空穴、填隙子以及各种形式的氮与空穴的复合体。随着各种现代微束与谱学分析技术以及量子化学计算的应用,对金刚石晶格中氮、硼以外的杂质—氢与过渡金属离子的赋存状态的研究,我们发现了新的致色点缺陷:成键氢,镍、钴离子,及其与氮的复合体,从而形成了氢致色与过渡金属离子致色的金刚石呈色机制的新观点。  相似文献   

5.
最近NGTC实验室检测出多批次CVD合成钻石,这些CVD合成钻石均具有明显的鉴定特征,使用钻石观测仪(DiamondViewTM)观察可见蓝色、橙红色荧光和蓝色磷光以及细密层状生长纹理,光致发光光谱中可见737 nm处的特征发光线.这些特征均与其生长结构及生长过程中进入钻石晶体中的杂质有关.笔者以最近检测过程中发现的一颗CVD合成钻石为例,使用高倍率显微技术对其层状结构的微细特征及其在钻石观测仪下的荧光特征的关系进行了详细观察和对比.结果显示,此样品与之前检测到的CVD合成钻石略有差异.此次检测到的样品在钻石观测仪(DiamondViewTM)下观察具有较宽的层状生长分区,层与层之间的分界线十分明显且在高倍显微镜下也可见到细微的生长特征.通过对样品特征的分析,了解了晶体生长过程中多阶段生长条件的变化,更直观的展现了CVD合成钻石的生长过程.  相似文献   

6.
利用自制的5kW微波等离子体化学气相沉积(MPCVD)装置对在不同衬底材料上外延生长的CVD金刚石进行了研究。利用HPHT金刚石、CVD异质形核生长的金刚石及Ia型天然金刚石样品作为籽晶,分析了不同CH4浓度与基片温度对外延CVD金刚石的影响以及通过扫描电子显微镜表征了CVD金刚石外延面的表面形貌。结果发现,HPHT金刚石为籽晶,由于其自身缺陷导致外延效果不佳;CVD异质形核生长的衬底因形核阶段的晶面生长难以控制而使其外延面较粗糙;经打磨的Ia型天然金刚石才是理想的籽晶。当CH4浓度约为10%、基片温度为1020℃时,CVD金刚石的外延生长速率可达到70.0μm/h。  相似文献   

7.
阴极发光(CL)技术可揭示金刚石生长结构、阶段和过程.利用该技术首次发现蒙阴金刚石中罕见的"似玛瑙状"生长结构,并分析了该典型结构的特征和生长机制.该样品定向切片的傅立叶变换红外光谱(FTIR)微区分析表明,氮、氢杂质分布不均一,从生长中心至边缘,总氮含量和B中心百分数逐渐降低,但变化幅度较小;氢浓度呈不规则振荡,边缘区最高.该生长结构和杂质不均一特点揭示了金刚石生长过程中熔/流体的参与作用和生长条件、环境的复杂性.  相似文献   

8.
The zonal distribution of impurities in six diamonds (2 clear. 1 green-skinned, 2 green-bodied and 1 coated) was studied by neutron activation followed by dissolution of the diamond into a number of fractions. High surface concentrations of impurities found here and by other workers were attributed to both laboratory and natural contaminants. No unusual element distributions were found in the outer layer of the green-skinned diamond, the green skin probably being caused by natural radiation damage. The green-bodied diamonds had very different compositions from each other and from the other diamonds and it is suggested that such stones owe their colour to a high general level of impurities. All the diamonds, including the clear core of the coated diamond, contained impurities thought to be submicroscopic inclusions, either silicates, carbonates or immiscible sulphides derived from the parental magma. Variations in the composition of these inclusions in one diamond suggest changes in the host magma composition during growth. Sulphides apparently occurred in very small amounts throughout all the diamonds. Variations in the concentration of impurities are probably related to changes in growth rate or environment during diamond formation, and could explain some of the zonal variations in the physical properties of diamonds.  相似文献   

9.
Experimental studies of diamond formation in the alkaline silicate-carbon system Na2O–K2O–MgO–CaO–Al2O3–SiO2–C were carried out at 8.5 GPa. In accordance with the diamond nucleation criterion, a high diamond generation efficiency (spontaneous mass diamond crystallization) has been confirmed for the melts of the system Na2SiO3–carbon and has been first established for the melts of the systems CaSiO3–carbon and (NaAlSi3O8)80(Na2SiO3)20–carbon. It is shown that in completely miscible carbonate-silicate melts oversaturated with dissolved diamond-related carbon, a concentration barrier of diamond nucleation (CBDN) arises at a particular ratio of carbonate and silicate components. Study of different systems (eclogite–K-Na-Mg-Ca-Fe-carbonatite–carbon, albite–K2CO3–carbon, etc.) has revealed a dependence of the barrier position on the chemical composition of the system and the inhibiting effect of silicate components on the nucleation density and rate of diamond crystal growth. In multicomponent eclogite-carbonatite solvent, the CBDN is within the range of carbonatite compositions (<50 wt.% silicates). Based on the experimental criterion for the syngenesis of diamond and growth inclusions in them, we studied the syngenesis diagram for the system melanocratic carbonatite–diamond and determined a set of the composition fields and physical parameters of the system that are responsible for the cogeneration of diamond and various mineral and melt parageneses. The experimental results were applied to substantiate a new physicochemical concept of carbonate-silicate (carbonatite) growth media for most of natural diamonds and to elaborate a genetic classification of growth mineral, melt, and fluid inclusions in natural diamonds of mantle genesis.  相似文献   

10.
A diagram of the syngenesis of diamond, silicate, carbonate, and sulfide minerals and melts is compiled based on experimental data on phase relations in the heterogeneous eclogite-carbonate-sulfidediamond system at P = 7 GPa. Evidence is provided that silicate and carbonate minerals are paragenetic, whereas sulfides are xenogenic with respect to diamond. Diamond and paragenetic phases are formed in completely miscible carbonate-silicate growth melts with dissolved elemental carbon. Coherent data of physicochemical experiment and mineralogy of primary inclusions in natural diamonds allows us to prove the mantle-carbonatite theory of diamond origin. The genetic classification of primary inclusions in natural diamonds is based on this theory. The phase diagrams of syngenesis are applicable to interpretation of diamond and syngenetic minerals formation in natural magma sources. They ascertain physicochemical mechanism of natural diamond formation and conditions of entrapment of paragenetic and xenogenic mineral phases by growing diamonds.  相似文献   

11.
A unique xenolith of eclogite, 23×17×11 cm in size and 8 kg in weight, was found in the Udachnaya kimberlite pipe. One hundred twenty-four diamond crystals recovered from it were analyzed by a number of methods. The diamonds differ in morphology, internal structure, color, size, and composition of defects and impurities. The xenolith contains diamonds of octahedral and cubooctahedral habits. In cathodoluminescence, the octahedral crystals have a brightly glowing core with octahedral zones of growth and a weakly glowing rim. In the cores of these crystals the N impurity is mostly present in the B1 form (30 to 60%). At the same time, N in the rim is chiefly in the A form. The cubooctahedral crystals show a weak luminescence. The content of nitrogen and degree of its aggregation are close to those in the rim of octahedral crystals. The diversity of morphology and impurity composition of diamonds from the xenolith can be explained by their formation in two stages. At the first stage, the diamonds formed which became the cores of octahedra. After a long-time interruption, at the second stage of diamond formation crystals of cubooctahedral habit appeared and the octahedral crystals were overgrown. Wide variations in nitrogen contents in the xenolith crystals allowed their use to estimate the kinetics of aggregated nitrogen. The data obtained show that the aggregation of A centers into B1 centers in the diamonds is described by a kinetic reaction of an order of 1.5.  相似文献   

12.
Fifty diamond crystals of different morphological types (octahedra, dodecahedroids, cubes and single tetrahexahedroid) with differing internal structures were examined using methods of cathodoluminescence (CL), anomalous birefringence and local infrared (IR) analysis. The main objective of the study was to examine the regularities of nitrogen impurity distribution in diamond with differing internal structures. Almost all the analyzed octahedra, as well as dodecahedroids with zonal structures and the blocky dodecahedroids, are characterized either by nearly isothermic growth conditions or by a decrease in formation temperature during the crystallization process. In contrast to zoned octahedra and dodecahedroids, dodecahedroids with zonal–sectorial and sectorial internal structures show a notably different distribution of nitrogen defects, with Ntot generally decreasing from crystal cores to marginal areas, and degree of nitrogen aggregation increasing in the same direction. From this, it would follow that in these crystals, the temperature of diamond formation of the outer crystal zones is approximately 40–50 °C higher than that of the inner zones. The same result (15 to 80 °C) was obtained for diamond crystals with cubic habit, which generally show a fibrous internal structure, reflecting normal mechanisms of growth. The anomalous distribution of nitrogen centres in diamond crystals that grew through the normal mechanism, with a high rate of growth and in an oversaturated medium, might point to non-equilibrium relationships between the concentrations of different nitrogen centres. It is likely that in crystals of this type, the rate of growth is higher than the rate of structural nitrogen aggregation. Thus, it appears that in these peculiar crystals of diamond we deal with non-equilibrium concentrations of nitrogen B centres and, consequently, with anomalous, non-actual diamond formation temperatures.  相似文献   

13.
采用微波等离子体化学气相沉淀法合成了单晶金刚石膜,探索了化学气相沉淀法(CVD)单晶金刚石膜的生长机理。实验仪器采用石英管式微波等离子体化学气相沉积装置,种晶为3颗IaAB型天然金刚石原石,生长面近平行于(111)和(110)方向,生长温度为800℃,压力约为6kPa,时间约为8h。使用宝石显微镜和环境扫描电子显微镜观察分析了CVD单晶金刚石膜的生长表面形貌。结果表明,在生长面上可见明显的生长层,生长晶体无色透明,CVD单晶金刚石膜在生长面上横向外延生长,并形成定向的台阶状表面——“阶梯流”。在相同的条件下,(111)方向上生长的CVD单晶金刚石膜比(110)方向上的更有序。H2浓度的大小对CVD单晶金刚石膜的质量有影响。  相似文献   

14.
金刚石中的氢及其在金刚石高温高压合成中的意义   总被引:1,自引:0,他引:1  
氢在金刚石中往往以一定的化学态形式存在,不同类型的金刚石中氢会以不同的电荷状态进行迁移与扩散,也可以与其他杂质元素N、B、P等作用,形成(N,H)、(B,H)、(P,H)对;为高温高压合成金刚石的物质体系中引入氢,有利于提高高温高压合成金刚石的产量、粒度及品级,也将为模拟天然金刚石的形成与探讨地球深部的动力学过程提供科学线索。  相似文献   

15.
This study demonstrates that a hydrous, halide bearing silicate melt is a viable medium for diamond growth. Experiments were conducted in the MgO–SiO2–H2O–C ± KCl ± NaCl system, which was used as a model for harzburgitic mantle. In no case did we observe crystals that could be interpreted as spontaneously nucleated, but growth of diamond on seed crystals at 1,400–1,600°C and 7 GPa in experiments of 4 h duration was observed. The addition of KCl to the system produced crystallization of diamond at temperatures as low as 1,400°C. At higher temperatures, larger growth features were produced than those that seen in the KCl-free system at the same conditions. The NaCl-bearing system is different; in these experiments, the diamond seed crystals show evidence of possible dissolution and layer growth, albeit more subdued growth than in the KCl system. Therefore, NaCl may be an inhibitor of diamond growth in a hydrous silicate melt. Based on these results, hydrous silicate melts could play a role in formation of diamond in either deep subduction zones, or above slabs imbricated against a lithospheric ‘root’ in the sub-continental lithospheric mantle. The water and halide necessary for their formation could be transported into the mantle in hydrous phases such as serpentine in subducting lithospheric slabs. Dehydration of serpentine at >200 km depth would release hydrous, halide-bearing fluids into the overlying mantle wedge or lithospheric root, triggering melting at conditions similar to those of the formation of natural diamond.  相似文献   

16.
Phase relations of diamond and syngenetic minerals were experimentally investigated in the multicomponent system natural carbonatite-diamond at a pressure of 8.5 GPa and temperatures of 1300–1800°C (within the thermodynamic stability field of diamond). Under such conditions, the natural carbonatite of the Chagatai complex (Uzbekistan) acquires the mineralogy of Ca-rich eclogites (grospydites). The melting phase diagram of this system (syngenesis diagram) was constructed; an important element of this diagram is the diamond solubility curve in completely miscible carbonate-silicate melts (solubility values are 15–18 wt % C). The diamond solubility curve divides the phase diagram into two fields corresponding to (1) phase relations involving diamond-undersaturated melts-solutions of carbon with garnet as a liquidus phase (region of diamond dissolution) and (2) phase relations with diamond-saturated melts-solutions with diamond as a liquidus phase (region of diamond crystallization). During a temperature decrease in the region of diamond crystallization from carbonate-silicate melts, the crystallization of diamond is accompanied by the sequential formation of the following phase assemblages: diamond + garnet + melt, diamond + garnet + clinopyroxene + melt, and diamond + garnet + clinopyroxene + carbonate + melt, and the subsolidus assemblage diamond + garnet + clinopyroxene + carbonate is eventually formed. This is indicative of the paragenetic nature of silicate and carbonate minerals co-crystallizing with diamond and corresponding primary inclusions trapped by the growing diamond. A physicochemical mechanism was proposed for the formation of diamond in carbonate-silicate melts. The obtained results were used to analyze the physicochemical behavior of a natural diamond-forming magma chamber.  相似文献   

17.
人造金刚石于70年代开始在我国地质钻探中推广应用。除人造金刚石单晶外,还采用了聚晶,复合片以及其它烧本或镶嵌体。所有这些大大地推动了我国钻探工程的技术进步。  相似文献   

18.
Diamond crystallization from carbon solutions in compositionally variable melts of model eclogite with dolomite [CaMg(CO3)2], potassium carbonate (K2CO3), and multicomponent K-Na-Ca-Mg-Fe carbonates was studied at 7.0–8.5 GPa. Concentration barriers for the nucleation of the diamond were determined at a standard pressure of 8.5 GPa for variable proportions of silicate and carbonate components in the growth solutions. They correspond to 35, 65, and 40 wt % of silicate components for systems with dolomite, K2CO3, and carbonatites, respectively. At higher contents of silicates in silicate-carbonate melts, the nucleation of diamond phase ceases, but diamond crystallization on seed crystals continues and is accompanied by the spontaneous crystallization of thermodynamically unstable graphite. In melts of the albite (NaAlSi3O8)-K2CO3-C compositions, the concentration barrier of diamond nucleation at 8.5 GPa is up to 90–92 wt % of the albite component, and diamond growth on seeds was observed in albite-carbon melts. Using mineralogical and experimental data, we developed a model of mantle carbonate-silicate (carbonatite) melts as the main parental media for natural diamonds; it was shown that the composition of the silicate constituent of such parental melts is variable and corresponds to the mantle ultrabasic-basic series. With respect to concentration contributions and dominant role in the genesis of diamond in the Earth’s mantle, major (carbonate and silicate) and minor or admixture components were distinguished. The latter include both soluble in carbonate-silicate melts (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble components (sulfides, metals, and carbides). Both major and minor components may affect the position of the concentration barriers of diamond nucleation in natural parent media.  相似文献   

19.
金刚石的微区显微红外光谱分析及其意义   总被引:7,自引:3,他引:7  
金刚石的微区显微红外光谱分析表明:金刚石的形成是一个结晶物化条件变异,原始物质变换的复杂而又漫长的过程;杂质N、H等在其中的分布不均匀;同一晶体的中心部位其氮聚合态的转变时间与边缘相差约602Ma;金刚石中的成键氢以对应-CH3的C-H键形式存在要比对应于>C=CH2的C-H键形式存在更为广泛。利用红外光谱研究晶化固态物质必须强调定向及微区研究的意义。  相似文献   

20.
In a diamond from New South Wales (Australia), cubic and octahedral growth sectors, as identified by cathodoluminescence (CL), show slight differences in N-contents of 29 and 42 ppm respectively but no significant differences in either δ13C, δ15N and nitrogen aggregation state with values at +1.96‰, +19.4‰, and 25% Type IaAB aggregation, respectively.Two gem cubes from the Orapa kimberlite (Botswana) were studied by CL revealing a nonfaceted cubic growth. Accordingly, nine other gem cubes were combusted and yielded δ13C-values from -5.33‰ to -6.63‰, δ15N from -1.0‰ to -5.5‰, and nitrogen contents from 914 to 1168 ppm, with nitrogen aggregation state being only Type IaA (zero % B). The gem cubes show striking similarities to fibrous/coated diamonds, not only in both δ13C ranges (less than 3‰ from -5 to -8‰), but also in the high levels of nitrogen (≈ 1000 ppm), suggesting that the two diamond types are related. Additionally, no δ15N variation was detected between the cube and octahedral growth sectors of the Australian diamond, in the cube sectors of the nine gem cubes from Botswana, nor in fibrous/coated diamonds previously studied. These analyses contrast with an earlier study on a synthetic diamond, which reported a strong kinetic fractionation of N-isotopes of about 40‰ between cube and octahedral growth. The present evidence, therefore, suggests that kinetic fractionation of N-isotopes does not operate during natural diamond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号