首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For health, economic, and aesthetic reasons, allowable concentrations (as suggested by the United States Environmental Protection Agency) of the secondary contaminants iron (Fe) and manganese (Mn) found present in drinking water are 0.3 and 0.05 mg/L, respectively. Water samples taken from private drinking wells in rural communities within Buncombe County, North Carolina contain concentrations of these metals that exceed secondary water quality criteria. This study predicted the spatial distribution of Fe and Mn in the county, and evaluated the effect of site environmental factors (bedrock geology, ground elevation, saprolite thickness, and drinking water well depth) in controlling the variability of Fe and Mn in groundwater. A statistically significant correlation between Fe and Mn concentrations, attributable to bedrock geology, was identified. Prediction models were created using ordinary kriging and cokriging interpolation techniques to estimate the presence of Fe and Mn in groundwater where direct measurements are not possible. This same procedure can be used to estimate the trend of other contaminants in the groundwater in different areas with similar hydrogeological settings.  相似文献   

2.
Contaminated groundwater in fractured bedrock can expose ecosystems to undesired levels of risk for extended periods due to prolonged back-diffusion from rock matrix to permeable fractures. Therefore, it is key to characterize the diffusive mass loading (intrusion) of contaminants into the rock matrix for successful management of contaminated bedrock sites. Even the most detailed site characterization techniques often fail to delineate contamination in rock matrix. This study presents a set of analytical solutions to estimate diffusive mass intrusion into matrix blocks, it is recovered by pumping and concentration rebound when pumping ceases. The analytical models were validated by comparing the results with (1) numerical model results using the same model parameters and (2) observed chloride mass recovery, rebound concentration, and concentration in pumped groundwater at a highly fractured bedrock site in Alberta, Canada. It is also demonstrated that the analytical solutions can be used to estimate the total mass stored in the fractured bedrock prior to any remediation thereby providing insights into site contamination history. The predictive results of the analytical models clearly show that successful remediation by pumping depends largely on diffusive intrusion period. The results of initial mass from the analytical model was used to successfully calibrate a three-dimensional discrete fracture network numerical model further highlighting the utility of the simple analytical solutions in supplementing the more detailed site numerical modeling. Overall, the study shows the utility of simple analytical methods to support long-term management of a contaminated fractured bedrock site including site investigations and complex numerical modeling.  相似文献   

3.
Understanding near-stream groundwater dynamics and flow directions is important for predicting hillslope-stream connectivity, streamflow generation, and hydrologic controls of streamwater quality. To determine the drivers of groundwater flow in the stream corridor (i.e., the stream channel and the adjacent groundwater in footslopes and riparian areas), we observed the water levels of 36 wells and 7 piezometers along a headwater stream section over a period of 18 months. Groundwater dynamics during events were controlled by the initial position of the groundwater table relative to the subsurface structure. The near-stream groundwater table displayed a fast and pronounced response to precipitation events when lying in fractured bedrock with low storage capacity, and responded less frequently and in a less pronounced way when lying in upper layers with high storage capacity. Precipitation depth, intensity, regolith thickness above the fractured bedrock, and proximity to and elevation above the stream channel also had an effect on the groundwater dynamics, which varied with hydrologic conditions. Our high-frequency and spatially dense measurements highlight the competing influence of groundwater inflow from upslope locations, streamwater level and bedrock properties on the spatiotemporal dynamics of flowpaths in the stream corridor. Near-stream groundwater pointed uniformly towards the stream channel when the stream corridor was hydrologically connected to upslope groundwater. However, local interruptions of the water inflow from upslope locations caused flow reversals towards the footslopes. The direction of near-stream groundwater followed the local fractured bedrock topography during dry hydrologic conditions on a few occasions after events. The outcomes of this research contribute to a better understanding of the drivers controlling spatiotemporal changes in near-stream groundwater dynamics and flow directions in multiple wetness states of the stream corridor.  相似文献   

4.
The role of bedrock groundwater in rainfall–runoff processes is poorly understood. Hydrometric, tracer and subsurface water potential observations were conducted to study the role of bedrock groundwater and subsurface flow in the rainfall–runoff process in a small headwater catchment in Shiranui, Kumamoto prefecture, south‐west Japan. The catchment bedrock consists of a strongly weathered, fractured andesite layer and a relatively fresh continuous layer. Major chemical constituents and stable isotopic ratios of δ18O and δD were analysed for spring water, rainwater, soil water and bedrock groundwater. Temporal and spatial variation in SiO2 showed that stream flow under the base flow condition was maintained by bedrock groundwater. Time series of three components of the rainstorm hydrograph (rainwater, soil water and bedrock groundwater) separated by end member mixing analysis showed that each component fluctuated during rainstorm, and their patterns and magnitudes differed between events. During a typical mid‐magnitude storm event, a delayed secondary runoff peak with 1·0 l s−1 was caused by increase in the bedrock groundwater component, whereas during a large rainstorm event the bedrock groundwater component increased to ≈ 2·5 l s−1. This research shows that the contribution of bedrock groundwater and soil water depends strongly on the location of the groundwater table, i.e. whether or not it rises above the soil–bedrock interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   

6.
This study presents an approach for delineating groundwater basins and estimating rates of recharge to fractured crystalline bedrock. It entailed the use of completion report data (boring logs) from 2500 domestic wells in bedrock from the Coventry Quadrangle, which is located in northeastern Connecticut and characterized by metamorphic gneiss and schist. Completion report data were digitized and imported into ArcGIS® for data analysis. The data were processed to delineate groundwater drainage basins for the fractured rock based on flow conditions and to estimate groundwater recharge to the bedrock. Results indicate that drainage basins derived from surface topography, in general, may not correspond with bedrock drainage basins due to scale. Estimates of recharge to the bedrock for the study area indicate that only a small fraction of the precipitation or the amount of water that enters the overburden recharges the rock. The approach presented here can be a useful method for water resource‐related assessments that involve fractured rock aquifers.  相似文献   

7.
This study focuses on assessing groundwater potability in a highly complex and heterogeneous fractured bedrock aquifer having variable overburden cover. Eight monitoring wells were installed in a privately serviced lakeside village, and groundwater was routinely sampled over a 2‐year timeframe for concentration analysis of nitrate, fecal indicator bacteria, stable isotopes, and a total of 41 pharmaceutical compounds. While pollutant concentrations remained low throughout the study, the presence of fecal indicator bacteria and pharmaceuticals was noted at least once (but not always consistently) in most sampling intervals. An interpretation based on the integration of chemical, bacterial, and site characterization datasets suggests that: (1) the fracture network is complex and heterogeneous with limited vertical connectivity; (2) existing pathways are sufficient for the quick and widespread migration of surface contaminants to depth; (3) anthropogenic contaminants from both septic systems and agriculture are likely sourced in the surrounding uplands where overburden is thin; and (4) fecal contamination, as observed over the long term, is ubiquitous at the village scale. Groundwater quality is continually changing in this hydrogeologic environment and the determination of potability on the larger scale is not likely to be adequately captured with infrequent domestic well sampling (i.e., voluntary annual sampling by homeowners).  相似文献   

8.
An environmental concern with hydraulic fracturing for shale gas is the risk of groundwater and surface water contamination. Assessing this risk partly involves the identification and understanding of groundwater–surface water interactions because potentially contaminating fluids could move from one water body to the other along hydraulic pathways. In this study, we use water quality data from a prospective shale gas basin to determine: if surface water sampling could identify groundwater compartmentalisation by low-permeability faults; and if surface waters interact with groundwater in underlying bedrock formations, thereby indicating hydraulic pathways. Variance analysis showed that bedrock geology was a significant factor influencing surface water quality, indicating regional-scale groundwater–surface water interactions despite the presence of an overlying region-wide layer of superficial deposits averaging 30–40 m thickness. We propose that surface waters interact with a weathered bedrock layer through the complex distribution of glaciofluvial sands and gravels. Principal component analysis showed that surface water compositions were constrained within groundwater end-member compositions. Surface water quality data showed no relationship with groundwater compartmentalisation known to be caused by a major basin fault. Therefore, there was no chemical evidence to suggest that deeper groundwater in this particular area of the prospective basin was reaching the surface in response to compartmentalisation. Consequently, in this case compartmentalisation does not appear to increase the risk of fracking-related contaminants reaching surface waters, although this may differ under different hydrogeological scenarios.  相似文献   

9.
Water levels and water quality of open borehole wells in fractured bedrock are flow-weighted averages that are a function of the hydraulic heads and transmissivities of water contributing fractures, properties that are rarely known. Without such knowledge using water levels and water quality data from fractured bedrock wells to assess groundwater flow and contaminant conditions can be highly misleading. This study demonstrates a cost-effective single packer method to determine the hydraulic heads and transmissivities of water contributing fracture zones in crystalline bedrock wells. The method entails inflating a pipe plug to isolate sections of an open borehole at different depths and monitoring changes in the water level with time. At each depth, the change in water level with time was used to determine the sum of fracture transmissivities above the packer and then to solve for individual fracture transmissivity. Steady-state wellbore heads along with the transmissivities were used to determine individual fracture heads using the weighted average head equation. The method was tested in five wells in crystalline bedrock located at the University of Connecticut in Storrs. The single packer head and transmissivity results were found to agree closely with those determined using conventional logging methods and the dissolved oxygen alteration method. The method appears to be a simple and cost-effective alternative in obtaining important information on flow conditions in fractured crystalline bedrock wells.  相似文献   

10.
Groundwater from boreholes and shallow wells is a major source of drinking water in most rural areas of Zimbabwe. The quality of groundwater has been taken for granted and the status and the potential threats to groundwater quality have not been investigated on a large scale in Zimbabwe. A borehole and shallow well water quality survey was undertaken between January, 2009 and February, 2010 to determine the chemical and microbial aspects of drinking water in three catchment areas. Groundwater quality physico-chemical indicators used in this study were nitrates, chloride, water hardness, conductivity, alkalinity, total dissolved solids, iron, magnesium, manganese, potassium, calcium, fluoride, sulphates, sodium and pH. The microbiological indicators were total coliforms, faecal coliforms and heterotrophs. Principal component analysis (PCA) showed that most of the variation in ground water quality in all catchment areas is accounted for by Total Dissolved Solids (TDS), electrical conductivity (EC), sodium, bicarbonate and magnesium. The principal dissolved constituents in ground water are in the form of electrically charged ions. Nitrate is a significant problem as the World Health Organization recommended levels were exceeded in 36%, 37% and 22% of the boreholes in the Manyame, Mazowe and Gwayi catchment areas respectively. The nitrate levels were particularly high in commercial farming areas. Iron and manganese also exceeded the recommended levels. The probable source of high iron levels is the underlying geology of the area which is dominated by dolerites. Dolerites weather to give soils rich in iron and other mafic minerals. The high level of manganese is probably due to the lithology of the rock as well as mining activity in some areas. Water hardness is a problem in all catchment areas, particularly in the Gwayi catchment area where a value of 2550 mg/l was recorded in one borehole. The problems with hard water use are discussed. Chloride levels exceeded the recommended levels in a few areas under irrigation. Most of the chloride is probably from agricultural activity particularly the application of potassium chloride. Fluoride levels were particularly elevated in the Gwayi catchment area and this is because of the geology of the area. There was no evidence of microbial contamination in all the boreholes sampled as the total coliform, faecal coliforms, heterotrophs count was nil. However, severe microbial contamination was found in the wells especially those in clay areas.  相似文献   

11.
Methods for predicting aquifer sensitivity to contamination typically ignore geochemical factors that affect the occurrence of contaminants such as nitrate. Use of geochemical information offers a simple and accurate method for estimating aquifer sensitivity to nitrate contamination. We developed a classification method in which nitrate-sensitive aquifers have dissolved oxygen concentrations > 1.0 mg/L, Eh values >250 mV, and either reduced iron concentrations < 0.1 mg/L or total iron concentrations < 0.7 mg/L. We tested the method in four Minnesota aquifer systems having different geochemical and hydrologic conditions. A surficial sand aquifer in central Minnesota exhibited geochemical zonation, with a rapid shift from aerobic to anaerobic conditions 5 m below the water table. A fractured bedrock aquifer in east-central Minnesota remained aerobic to depths of 50 m, except in areas where anaerobic ground water discharged upward from an underlying aquifer. A bedrock aquifer in southeast Minnesota exhibited aerobic conditions when overlain by surficial deposits lacking shale, whereas anaerobic conditions occurred under deposits that contained shale. Surficial sand aquifers in northwest Minnesota contained high concentrations of sulfate and were anaerobic throughout their extent. Nitrate-nitrogen was detected at concentrations exceeding 1 mg/L in 135 of 149 samples classified as sensitive. Nitrate was not detected in any of the 109 samples classified as not sensitive. We observed differences between our estimates of sensitivity and existing sensitivity maps, which are based on methods that do not consider aquifer geochemistry. Because dissolved oxygen, reduced iron, and Eh are readily measured in the field, use of geochemistry provides a quick and accurate way of assessing aquifer sensitivity to nitrate contamination.  相似文献   

12.
The Picillo Farm, EPA Superfund Site, in western Rhode Island was an unauthorized disposal site of hazardous organic chemicals. Predominantly organic contaminants have entered an aquifer comprised of layered glacial deposits and fractured bedrock and spread past the site boundaries with groundwater flow. Hydraulic conductivities in the glacial deposits range over two orders of magnitude and fractures and faults in the granitic bedrock further complicate the spreading of contaminants. Monitoring wells delineate two plumes that extend towards a fault-controlled valley with lakes and wetlands; one to the northwest and the other to the southwest. In this investigation we studied the electrical characteristics of both plumes.One dimensional Schlumberger depth soundings were conducted along several profile lines over the plumes and compared to those over non-contaminated sections of the site. With regard to the southwestern plume, high formation factors (ratio of bulk layer to pore water resistivity) between 12 and 45 were observed compared to values between 2.5 and 7.7 measured over the non-contaminated sections. Also, high values (> 5) of vertical electrical anisotropy (ratio of geoelectrically determined depth to high resistivity bedrock to drilled depth to bedrock) were measured over the contaminated part of the site. These values are extremely high compared to other non-contaminated sites (range: 2 to 3) in glacial stream channels of southern Rhode Island. Geoelectric measurements were affected by lateral effects. However, the consistency of high formation factors (11 to 35) and high vertical anisotropies (3 to 5) over the southwestern plume in comparison to low formation factors (3 to 8) and vertical anisotropies (1 to 1.5) over non-contaminated sites represents a marked difference between both sites. Overall, the Schlumberger depth soundings are less susceptible to near-surface lateral inhomogeneities than expected from other geoelectrical methods. Also, the disadvantage of a 1D interpretation was compensated by estimating resistivity and thickness ranges within the concept of non-uniqueness using the Dar Zarrouk parameters (Maillet, R., 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4): 529–556.).The results over the northwestern plume, i.e. an area with higher contaminant concentration than the southwestern plume, were mixed and showed no consistent trends. Predominantly reducing conditions, as indicated by the presence of soluble ferric (FeII) iron hydroxides in ground water samples, increased the electrical conductivity. This is believed to have compensated the effect of high formation factors on the bulk saturated layer resistivity within the affected area.  相似文献   

13.
In situ chemical oxidation (ISCO) with activated persulfate is commonly used for the remediation of petroleum impacted soil and groundwater because of its proven efficiency and the perception that reaction end products are completely innocuous. While the reaction products are less hazardous compared to the contaminants being treated, they may inadvertently prolong site closure in areas that have adopted the U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Levels (SMCLs) as enforceable standards. This study examines the occurrence and persistence of iron, manganese, sulfate, sodium, and total dissolved solids (TDS) in groundwater following persulfate ISCO. The concentrations of these chemicals were observed remaining above their respective regulatory criteria almost 3 years following the chemical application. Background concentrations and mobilization due to the petroleum contamination and ISCO application are also evaluated. Baseline sampling revealed substantially higher iron and manganese concentrations inside the plume area compared to the upgradient and downgradient wells suggesting mobilization due to redox reactions occurring inside of the plume. Iron was not a component in the applied chemical formula, yet the iron concentration spiked by 366% in the key monitoring well during the first post-remediation monitoring event. Ionic interactions between the ISCO amendment and native soils are believed to be responsible for displacing significant quantities of iron from the soil. Sulfate, sodium, and TDS exceedances are primarily associated with decomposition products of the ISCO amendments. The iron, manganese, sulfate, sodium, and TDS concentrations are trending downward over time, but still exceed regulatory criteria or pre-ISCO concentrations.  相似文献   

14.
The quantitative evaluation of the effects of bedrock groundwater discharge on spatial variability of stream dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) concentrations has still been insufficient. We examined the relationships between stream DOC, DIN and DIP concentrations and bedrock groundwater contribution to stream water in forest headwater catchments in warm-humid climate zones. We sampled stream water and bedrock springs at multiple points in September and December 2013 in a 5 km2 forest headwater catchment in Japan and sampled groundwater in soil layer in small hillslopes. We assumed that stream water consisted of four end members, groundwater in soil layer and three types of bedrock groundwater, and calculated the contributions of each end member to stream water from mineral-derived solute concentrations. DOC, DIN and DIP concentrations in stream water were compared with the calculated bedrock groundwater contribution. The bedrock groundwater contribution had significant negative linear correlation with stream DOC concentration, no significant correlation with stream DIN concentration, and significant positive linear correlation with stream DIP concentration. These results highlighted the importance of bedrock groundwater discharge in establishing stream DOC and DIP concentrations. In addition, stream DOC and DIP concentrations were higher and lower, respectively, than those expected from end member mixing of groundwater in soil layer and bedrock springs. Spatial heterogeneity of DOC and DIP concentrations in groundwater and/or in-stream DOC production and DIP uptake were the probable reasons for these discrepancies. Our results indicate that the relationships between spatial variability of stream DOC, DIN and DIP concentrations and bedrock groundwater contribution are useful for comparing the processes that affect stream DOC, DIN and DIP concentrations among catchments beyond the spatial heterogeneity of hydrological and biogeochemical processes within a catchment.  相似文献   

15.
ABSTRACT

Hydrogeochemical data of groundwater samples from 35 boreholes drilled in the Okposi-Uburu salt lake area are analysed. The data reveal that concentrations of dissolved geochemical constituents such as calcium (Ca2+), manganese (Mn2+), magnesium (Mg2+), chloride (C1?), and sulphate (SO2+ 4) ions show significant areal variations. Dissolved solids, chloride and manganese ions have concentrations up to and above the objectionable limits for drinking water in the salt lake area. Concentrations of dissolved solids in this zone are about 1200 mg 1?1. Concentrations of chloride and manganese ions are 350 mg 1?1 and 1.0 mg 1?1 respectively. These geochemical constituents and groundwater flow patterns show that transport of contaminants away from the source zone has been greatly influenced by advection, while in areas of high velocity dispersion is the controlling factor. Temperatures for the Okposi and Uburu salt springs are 34.4 and 37.5°C respectively. Bomb tritium indicated water of pre-1953 age. Deuterium and oxygen-18 showed high isotopic enrichment. The high concentrations of dissolved salts resulted from the combined effects of migration of dissolved salts through fractures at the lake floor and evaporation from the lake surface. These findings are related to the tectonic history of the Okposi-Uburu area.  相似文献   

16.
The water quality of urban drainage ditches in lowlands in the Rhine‐Meuse delta was analysed with principal component analysis (PCA) during a dry period and a rain storm, and related to the seepage of polluted river water and effective impervious area (EIA). This was done in order to test the hypothesis that seepage of river water and storm water runoff from impervious areas strongly determine the water quality of urban drainage systems along large lowland rivers. Our analysis revealed that upward seepage of groundwater originating from rivers Rhine and Meuse was positively correlated with nitrate, potassium, sodium and chloride and negatively correlated with alkalinity, calcium, magnesium and iron. EIA was correlated with very few environmental variables (i.e. phosphate, pH and iron in the dry period and iron during the rain storm). Nickel and zinc concentrations generally exceeded the maximum allowable concentrations (MAC), while lead and phosphorus concentrations were just above the nutrient standards and MAC in a few locations during the rain storm. To optimize water quality in urban water systems, attention should be paid to all sources of pollution and not only to EIA. The impact of local groundwater seepage originating from large rivers in lowlands on the chemistry of urban water systems is often underestimated and should be taken into account when assessing water quality and improving water quality status. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Semianalytical transient solutions have been developed to evaluate what level of fractured porous media (e.g., bedrock or clay) matrix cleanup must be achieved in order to achieve compliance of fracture pore water concentrations within a specified time at specified locations of interest. The developed mathematical solutions account for forward and backward diffusion in a fractured porous medium where the initial condition comprises a spatially uniform, nonzero matrix concentration throughout the domain. Illustrative simulations incorporating the properties of mudstone fractured bedrock demonstrate that the time required to reach a desired fracture pore water concentration is a function of the distance between the point of compliance and the upgradient face of the domain where clean groundwater is inflowing. Shorter distances correspond to reduced times required to reach compliance, implying that shorter treatment zones will respond more favorably to remediation than longer treatment zones in which back‐diffusion dominates the fracture pore water response. For a specified matrix cleanup goal, compliance of fracture pore water concentrations will be reached sooner for decreased fracture spacing, increased fracture aperture, higher matrix fraction organic carbon, lower matrix porosity, shorter aqueous phase decay half‐life, and a higher hydraulic gradient. The parameters dominating the response of the system can be measured using standard field and laboratory techniques.  相似文献   

18.
Nitrate concentrations in streamwater of agricultural catchments often exhibit interannual variations, which are supposed to result from land‐use changes, as well as seasonal variations mainly explained by the effect of hydrological and biogeochemical cycles. In catchments on impervious bedrock, seasonal variations of nitrate concentrations in streamwater are usually characterized by higher nitrate concentrations in winter than in summer. However, intermediate or inverse cycles with higher concentrations in summer are sometimes observed. An experimental study was carried out to assess the mechanisms that determine the seasonal cycles of streamwater nitrate concentrations in intensive agricultural catchments. Temporal and spatial patterns of groundwater concentrations were investigated in two adjacent catchments located in south‐western Brittany (France), characterized by different seasonal variations of streamwater nitrate concentrations. Wells were drilled across the hillslope at depths ranging from 1·5 to 20 m. Dynamics of the water table were monitored and the groundwater nitrate and chloride concentrations were measured weekly over 2 years. Results highlighted that groundwater was partitioned into downslope domains, where denitrification induced lower nitrate concentrations than into mid‐slope and upslope domains. For one catchment, high subsurface flow with high nitrate concentrations during high water periods and active denitrification during low water periods explained the higher streamwater nitrate concentrations in winter than in summer. For the other catchment, the high contribution of groundwater with high nitrate concentrations smoothed or inverted this trend. Increasing bromide/chloride ratio and nitrate concentrations with depth argued for an effect of past agricultural pressure on this catchment. The relative contribution of flows in time and correlatively the spatial origin of waters, function of the depth and the location on the hillslope, and their chemical characteristics control seasonal cycles of streamwater nitrate concentrations and can influence their interannual trends. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
One of the greatest challenges in critical zone studies is to document the moisture dynamics, water flux,and solute chemistry of the unsaturated, fractured and weathered bedrock that lies between the soil and groundwater table. The central impediment to quantifying this component of the subsurface is the difficulty associated with direct observations. Here, we report solute chemistry as a function of depth collected over a full year across the shale-derived vadose zone of the Eel River Critical Zone Observatory using a set of novel sub-horizontal wellbores,referred to as the vadose zone monitoring system. The results of this first geochemical glimpse into the deep vadose zone indicate a dynamic temporal and depth-resolved structure. Major cation concentrations reflect seasonal changes in precipitation and water saturation, and normalized ratios span the full range of values reported for the world's largest rivers.  相似文献   

20.
Optical sensors are promising for collecting high resolution in‐well groundwater nitrate monitoring data. Traditional well purging methods are labor intensive, can disturb ambient conditions and yield an unknown blend of groundwater in the samples collected, and obtain samples at a limited temporal resolution (i.e., monthly or seasonally). This study evaluated the Submersible Ultraviolet Nitrate Analyzer (SUNA) for in‐well nitrate monitoring through new applications in shallow overburden and fractured bedrock environments. Results indicated that SUNA nitrate‐N concentration measurements during flow cell testing were strongly correlated (R 2 = 0.99) to purged sample concentrations. Vertical profiling of the water column identified distinct zones having different nitrate‐N concentrations in conventional long‐screened overburden wells and open bedrock boreholes. Real‐time remote monitoring revealed dynamic responses in nitrate‐N concentrations following recharge events. The monitoring platform significantly reduced labor requirements for the large amount of data produced. Practitioners should consider using optical sensors for real‐time monitoring if nitrate concentrations are expected to change rapidly, or if a site's physical constraints make traditional sampling programs challenging. This study demonstrates the feasibility of applying the SUNA in shallow overburden and fractured bedrock environments to obtain reliable data, identifies operational challenges encountered, and discusses the range of insights available to groundwater professionals so they will seek to gather high resolution in‐well monitoring data wherever possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号