首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In rural areas of New England groundwater from fractured crystalline and sedimentary bedrock is a critical water resource. Increasingly, studies have shown that development occurring in rural areas is resulting in the impairment of water quality in fractured rock aquifers. The objective of this study was to evaluate the spatial and temporal variations in groundwater quality associated with development and evaluate the extent to which common groundwater contaminants associated with rural development may be naturally buffered. The study entailed a compilation and synthesis of over 2500 reports on domestic water quality that spanned a 30 year period. Focus was placed on the spatial distribution and temporal variations in sodium, chloride, iron, manganese, nitrate, and nitrite. Results indicate that despite significant levels of development, the amount of contamination to the bedrock has been minimal. Of the constituents examined, only the chloride concentration exhibits a systematic increase over time, but the level of chloride remained relatively low. The flux of chloride to the bedrock from deicing appears minimal despite the significant amounts of road salt used in the study area. Sodium concentrations in the bedrock remained relatively constant and appear to be buffered by ion exchange with calcium as suggested by the increase in hardness with time. Iron and manganese were present at relatively low levels but did not show any systematic trends over time. Nitrate and nitrite concentrations were very low and found to be inversely correlated with manganese and iron concentrations. This suggests that the presence of iron and manganese contribute to denitrification. This study indicated that both geochemical and biogeochemical processes are active buffering mechanisms that help shield the bedrock from contaminants associated with development.  相似文献   

2.
Abstract

Two topographically similar adjacent catchments near Johannesburg, South Africa, one suburban, the other natural grassland, were monitored over a five year period to detect differences in runoff and hydrological balance. A network of raingauges, boreholes, flow gauges and water meters was installed. Evapotranspiration was modelled using observed weather data. Groundwater was estimated from tracer and other borehole tests. Surface runoff from the undeveloped and suburban catchments was 4% and 15% of rainfall respectively. Evapotranspiration was 63% of rainfall for both catchments. Sewage outflow was 83% of water consumption for the suburban catchment. Little change in water table level occurred in the suburban catchment, and garden watering probably balanced the high evaporation. Piped water supply was 16% of the precipitation on the catchment.  相似文献   

3.
Groundwater catchment boundaries and their associated groundwater catchment areas are typically assumed to be fixed on a seasonal basis. We investigated whether this was true for a highly permeable carbonate aquifer in England, the Berkshire and Marlborough Downs Chalk aquifer, using both borehole hydrograph data and a physics‐based distributed regional groundwater model. Borehole hydrograph data time series were used to construct a monthly interpolated water table surface, from which was then derived a monthly groundwater catchment boundary. Results from field data showed that the mean annual variation in groundwater catchment area was about 20% of the mean groundwater catchment area, but interannual variation can be very large, with the largest estimated catchment size being approximately 80% greater than the smallest. The flow in the river was also dependent on the groundwater catchment area. Model results corroborated those based on field data. These findings have significant implications for issues such as definition of source protection zones, recharge estimates based on water balance calculations and integrated conceptual modelling of surface water and groundwater systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Evapotranspiration (ET) plays a crucial role in catchment water budgets, typically accounting for more than 50% of annual precipitation falling within temperate deciduous forests. Groundwater ET is a portion of total ET that occurs where plant roots extend to the capillary fringe above the phreatic surface or induce upward movement of water from the water table by hydraulic redistribution. Groundwater ET is spatially restricted to riparian zones or other areas where the groundwater is accessible to plants. Due to the difficulty in measuring groundwater ET, it is rarely incorporated explicitly into hydrological models. In this study, we calibrated Topographic Model (TOPMODEL) using a 14‐year hydrograph record and added a groundwater ET pathway to derive a new model, Groundwater Evapotranspiration TOPMODEL (GETTOP). We inspected groundwater elevations and stream flow hydrographs for evidence of groundwater ET, examined the relationship between groundwater ET and topography, and delineated the area where groundwater ET is likely to take place. The total groundwater ET flux was estimated using a hydrological model. Groundwater ET was larger where the topography was flat and the groundwater table was shallow, occurring within about 10% of the area in a headwater catchment and accounting for 6 to 18% of total annual ET. The addition of groundwater ET to GETTOP improved the simulation of stream discharge and more closely balanced the watershed water budget. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The Seine estuary, one of the largest estuaries of the European northwest continental shelf, is subjected to numerous anthropogenic influences. Here we present an assessment of the microbial faecal contamination of the estuary water. The most vulnerable areas were defined on the basis of the fluxes of indicator organisms and the occurrence of Salmonella and Cryptosporidium sp. and Giardia sp. (oo)cysts. The microbial quality of the water changes from upstream to downstream: in the upstream area, contamination by faecal-indicator bacteria and Salmonella occurs during periods of high flow; in the urbanized area, mid-way between the uppermost areas of the estuary and its mouth, discharge from a wastewater treatment plant and a tributary degrade water quality; at the estuary mouth, the accumulation of microorganisms attached to particles in the maximum turbidity zone, particularly Clostridium perfringens spores and oocysts of Cryptosporidium, is accompanied by inputs of ThC and Escherichia coli from tributaries. In some areas, significant strong relations are observed between Salmonella, (oo)cysts of protozoan, and levels of faecal indicators.  相似文献   

6.
ABSTRACT

Hydrogeochemical data of groundwater samples from 35 boreholes drilled in the Okposi-Uburu salt lake area are analysed. The data reveal that concentrations of dissolved geochemical constituents such as calcium (Ca2+), manganese (Mn2+), magnesium (Mg2+), chloride (C1?), and sulphate (SO2+ 4) ions show significant areal variations. Dissolved solids, chloride and manganese ions have concentrations up to and above the objectionable limits for drinking water in the salt lake area. Concentrations of dissolved solids in this zone are about 1200 mg 1?1. Concentrations of chloride and manganese ions are 350 mg 1?1 and 1.0 mg 1?1 respectively. These geochemical constituents and groundwater flow patterns show that transport of contaminants away from the source zone has been greatly influenced by advection, while in areas of high velocity dispersion is the controlling factor. Temperatures for the Okposi and Uburu salt springs are 34.4 and 37.5°C respectively. Bomb tritium indicated water of pre-1953 age. Deuterium and oxygen-18 showed high isotopic enrichment. The high concentrations of dissolved salts resulted from the combined effects of migration of dissolved salts through fractures at the lake floor and evaporation from the lake surface. These findings are related to the tectonic history of the Okposi-Uburu area.  相似文献   

7.
我国城市水源中约40%为湖泊或水库,且大部分为水库,因此水源水库的水质状况对我国城市安全极其关键。本文综述了我国水源水库水质问题研究进展,分析了22个代表性水源水库的周年水质状况。结果发现,当前我国城市水源水库水质风险类型主要是异味问题、藻类水华、铁锰超标、有机质偏高、营养盐超标等。引发水源水库水质问题的主要原因包括流域开发强度过大、库底淤积及内源释放、生态系统结构失衡、气候与水文异常变化等。针对上述主要问题,提出了构建在线水质监测预警体系、控制流域土地开发强度、构建面源拦截及流域净化系统、疏浚底泥、优化生态系统结构、实施应急曝气与控藻工程、完善流域生态保护法律法规等多种水源水库水质安全保障技术措施。鉴于水源水库水质及水生态对暴雨、高温热浪等极端气象响应敏感而复杂,在当前极端天气事件频发、强度不断增加的气候背景下,还应加强水库生态学基础研究,以深入理解水源水库水质对气候变化的响应机制,提高水库水安全保障科技支撑能力,满足我国城市高质量发展的水资源需求。  相似文献   

8.
The main purpose of this study was to examine the hydrogeochemical factors leading to nitrate contamination of shallow groundwater in an agricultural area. Another purpose was to identify relationships between variations in organic matter levels (as estimated by the BOD and COD parameters) of groundwater that transports effluent from small‐scale livestock holdings. Major cations, anions, BOD and COD of organic matter and total coliforms were analysed. It was found that groundwaters beneath cultivated areas and areas carrying livestock had higher concentrations of calcium, nitrate and chloride than did freshwater. Above all, the nitrification process increased concentrations of nitrate. Nitrate levels were depressed in some places where the groundwater was low in dissolved oxygen. Groundwaters affected by livestock activities showed high concentrations of organic matter (BOD, COD) and high microbial concentrations (as indicated by total coliforms). The COD/BOD ratio increased in the downward direction. It was inferred that this was due to the faster loss of easily biodegradable organic matter compared with non‐biodegradable organic matter proceeding away from a discharge. Accordingly, it is possible to trace effluent in a small area back to a point source by monitoring the COD/BOD ratio of groundwater. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Seasonal dynamics of the mineralization, ionic composition, and the concentrations of specific pollutants in subsoil water are studied in populated localities in the southern Rostov oblast. Four major water types are identified: hydrocarbonate–sulfate (sulfate–hydrocarbonate), sulfate, chloride–sulfate (sulfate–chloride), and mixed type of subsoil water. The quality of subsoil water was found to fail to meet the sanitarytoxicological standards in terms of many characteristics. The values of MAC are exceeded for calcium, magnesium, sodium, chloride and sulfate ions, oil products, cadmium, total iron, silicon, and nitrate and ammonium nitrogen. Relationships were found to exist between the concentrations in water of cadmium, potassium, and phosphorus ions; oil products; pH values; water mineralization and total hardness; and seasonal variations of subsoil water levels. The identified relationships were substantiated.  相似文献   

10.
This survey was part of a Binational Program (Mexico-United States) in microbiological water quality, with a goal to assess the shoreline bacteriological water quality from Tijuana to Ensenada, Mexico. Samples were collected at 29 sites (19 beaches and 10 outfalls), from the United States border to Punta Banda, Baja California, during summer (1998) and winter (1999). Total coliforms, fecal coliforms and enterococci were used as bacterial indicators. Standard methods were used for total and fecal coliforms, while the Enterolert quick method (IDEXX) was used for the enterococci. Compared with outfalls, the beaches exceeded water quality standards by a small percent, 25.3% in summer and 17% in winter. For outfalls, the percentage of shoreline that exceeded bacterial indicator thresholds had a minor value in summer (32.7%) than in winter (50%). Sites near wastewater discharges had the lowest quality and did not meet the microbiological water quality criteria for recreational use.  相似文献   

11.
The water quality of urban drainage ditches in lowlands in the Rhine‐Meuse delta was analysed with principal component analysis (PCA) during a dry period and a rain storm, and related to the seepage of polluted river water and effective impervious area (EIA). This was done in order to test the hypothesis that seepage of river water and storm water runoff from impervious areas strongly determine the water quality of urban drainage systems along large lowland rivers. Our analysis revealed that upward seepage of groundwater originating from rivers Rhine and Meuse was positively correlated with nitrate, potassium, sodium and chloride and negatively correlated with alkalinity, calcium, magnesium and iron. EIA was correlated with very few environmental variables (i.e. phosphate, pH and iron in the dry period and iron during the rain storm). Nickel and zinc concentrations generally exceeded the maximum allowable concentrations (MAC), while lead and phosphorus concentrations were just above the nutrient standards and MAC in a few locations during the rain storm. To optimize water quality in urban water systems, attention should be paid to all sources of pollution and not only to EIA. The impact of local groundwater seepage originating from large rivers in lowlands on the chemistry of urban water systems is often underestimated and should be taken into account when assessing water quality and improving water quality status. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The transport and potential toxicity of pesticides in Queensland (QLD) catchments from agricultural areas is a key concern for the Great Barrier Reef (GBR). In 2009, a pesticide monitoring program was established as part of the Australian and QLD Governments' Reef Plan (2009). Samples were collected at eight End of System sites (above the tidal zone) and three sub-catchment sites. At least two pesticides were detected at every site including insecticides, fungicides, herbicides, and the Reef Plan's (2009) five priority photosystem II (PSII) herbicides (diuron, atrazine, hexazinone, tebuthiuron and ametryn). Diuron, atrazine and metolachlor exceeded Australian and New Zealand water quality guideline trigger values (TVs) at eight sites. Accounting for PSII herbicide mixtures increased the estimated toxicity and led to larger exceedances of the TVs at more sites. This study demonstrates the widespread contamination of pesticides, particularly PSII herbicides, across the GBR catchment area which discharges to the GBR.  相似文献   

13.
The impact assessment of molasses‐based distillery‐effluent irrigation on groundwater quality around village Gajraula in the district of Jyotiba Phule Nagar, Uttar Pradesh, India was studied by sampling groundwater on monthly intervals consecutively for summer, winter and monsoon seasons during 2006–2007 and water quality parameters, viz. pH, electrical conductivity (EC), chloride (Cl?), sulphate (SO), nitrate (NO), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), iron (Fe3+), and total coliforms (TC) were monitored. Results depicted that the values of all parameters decreased with increasing depth of water table. Sulphate, nitrate and potassium contents were maximal in agricultural site during monsoon while EC, Cl?, TS, TDS, Na+, Ca2+, Mg2+, Zn, and Fe were maximal in industrial sites during summer. Groundwater samples of residential site harboured maximum coliforms especially during monsoon, highlighting threat to groundwater. Significant positive correlation matrix between coliforms with nitrate, sulphate and potassium ions explained their survival on these nutrients. To overcome this, important measures emphasizing improvement in effluent treatment technology matching site‐specific characteristics are recommended for eco‐friendly ferti‐irrigation.  相似文献   

14.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   

15.
In Malawi, shallow wells constitute the most important water sources for domestic purposes. However, increasing human population coupled with poor sanitation and infrastructure is undermining the quality of shallow well water. An assessment of microbial and geochemical quality of shallow well water in high-density areas of Zolozolo, Ching’ambo and Chiputula in Mzuzu City, Northern Malawi, has been carried out. The study aimed at characterising domestic water sources, identifying possible sources of water contamination and determining levels of microbial and chemical contamination. Arc-view GIS was used to map the water sources. A questionnaire survey was carried out to elicit information on characteristics of drinking water sources. Water samples were collected from quasi-randomly selected shallow wells and analysed for microbial and chemical parameters using standard methods. HCA, performed using R-programme, was used to group sampled sites according to their bio-physicochemical characteristics. Compliance of the water with MBS/WHO water quality guidelines was determined. The WQI was computed to turn multifaceted data obtained from laboratory analyses into simple information that is comprehensible and useable by the public to assess overall quality of water at a specific water points. The GW-chart was used to show hydrogeochemical water types from each sampled site. Microbial analysis revealed that water from 96.3% of shallow wells recorded faecal coliforms ranging from 129 to 920 cfu per 100 ml which were significantly higher than the Malawi Standards and WHO thresholds. In general, shallow well water is of low mineralisation (EC range 80–500 μS cm−1), with hydrogeochemical facies dominated by Ca–HCO3, which evolves to Ca–Cl water type. The shallow well water registered a WQI range of 50.16–66.04%, with a medium WQ rating. This suggested that the water obtained from the shallow wells is unsuitable for direct human consumption. It was observed that 100% of the shallow wells were at risk of pollution from onsite sanitation because of their proximity to sanitary facilities. It was strongly recommended that onsite treatment interventions have to be mobilised and initiated to protect the households from further possible consequences of using the water.  相似文献   

16.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   

17.
Water yields increased after logging by 150–250 mm per year in small catchments of moist old-growth eucalypt at Karuah in central New South Wales. The magnitude of this initial increase was directly related to the percentage of the catchment logged (29–79%). Where substantial vegetation removal took place in less than 20% of one catchment no increased water yield was observed. Water yields began to decline in all catchments 2–3 years after logging as regrowth eucalypts became established, and the rate of this decline was related to the mean stocking rate of eucalypt regeneration during the next 4 years. This water yield decline exceeded 250 mm in the sixth year after logging in the catchment with the highest stocking of regeneration and the highest regrowth basal area. Water yields in this catchment had declined to levels significantly below pre-logging levels by this time, supporting the notion that regrowth evapotranspiration had begun to exceed that of the old-growth forest. Patterns of declining water yield in the other catchments suggest that yields in some may also decline below pre-logging levels as regrowth evapotranspiration increases in line with increases in the basal area of the regrowth forest. Further study is required to determine the magnitude and duration of water yield reductions in these regrowth catchments, and to quantify the eucalypt growth rates and stand conditions responsible for the reductions. Nevertheless, these early results are consistent with water yield changes observed in mountain ash forest in Victoria, and support the concept of greater water use by a rapidly regenerating forest.  相似文献   

18.
Community Structures of Different Groundwater Habitats Investigated Using Methods of Molecular Biology The degradation of pollutants in groundwater and aquifers depends on microbiological and hydrogeochemical processes. To understand the transport and fate of anthropogenic compounds during bank filtration and artificial recharge of groundwater it is necessary to gain more information about the structure of microbial populations in these systems. The population structure of aerobic, anaerobic groundwater habitats and of water samples during artificial groundwater recharge was examined by 16S rDNA based analysis. Water and sediment samples were collected from a groundwater catchment area with artificial groundwater recharge near the river Ruhr in NW-Germany. 16S rRNA genes of mixed bacterial DNA from different samples were amplified by PCR (polymerase chain reaction) with eubacterial primer sequences. To reveal eubacterial population structure amplified PCR-products were separated by DGGE (denaturing gradient gel electrophoresis) on the basis of melting domain structure and nucleotide composition. DGGE patterns of groundwater enrichment cultures and groundwater samples were compared to demonstrate differences between the use of cultivation dependent and molecularbiological approaches. The DGGE pattern of groundwater is very complex and differs significantly from DGGE patterns of groundwater enrichment cultures characterized by a small number of distinct bands. This shows the small quantity of culturable microorganisms in groundwater eco-systems. Aerobic and anaerobic groundwater and sediment samples differ markedly in their DGGE profiles. Different hydrogeochemical zones of this groundwater catchment area are mirrowed by distinct DGGE patterns indicating changes in microbial community structure.Analysis of bacterial population structure in the course of artificial groundwater recharge shows identical DGGE patterns comparing surface water samples to samples taken be-fore gravel prefiltration and before sand filtration. In contrast the DGGE pattern of artificial recharged groundwater differs markedly, indicating significant changes in microbial population during underground passage.  相似文献   

19.
The article evaluates the water quality in rural areas in the Czech part of Labe River catchment using the example of Slapanka River catchment. This river drains a typical landscape of Ceskomoravska Highland. Water quality in rural areas is still very low and the attention is paid to organic substances and nutrients. Increased amount of them in streams is caused mainly by agriculture and production of municipal wastewater resulting in increased eutrophication. A significant part of the article consists in the evaluation of point and non-point sources of water pollution. Identifying the type of the pollution source is helped by regression analysis using data from the public monitoring network. Eleven sampling sites were selected for evaluating the water quality. Physical and chemical analyses were made 12 times during the field monitoring in the years 2001–2003.In long-term development water quality has improved in all monitored parameters during the last 15 years. Least significant improvement has been found with the concentration of nitrate nitrogen. The water quality within the whole catchment area still remains low.To reduce the influence of pollution sources, we recommend the sanitation of diffuse sources of pollution from small settlements with less than 2000 inhabitants, and a successive change from agricultural management and intensive mass production to extensive ways, especially in mountain and sub-mountain areas.  相似文献   

20.
Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha) at the Hubbard Brook Experimental Forest, NH, USA. We sampled every 50 m along an ephemeral to perennial stream network as well as groundwater from seeps and 35 shallow wells across varying flow conditions. Groundwater influences on surface water in this region have not been considered to be important in past studies as relatively coarse soils were assumed to be well drained in steep catchments with flashy runoff response. However, seeps displayed perennial discharge, upslope accumulated areas (UAA) smaller than those for channel initiation sites and higher pH, Ca and Si concentrations than streams, suggesting relatively long groundwater residence time or long subsurface flow paths not bound by topographic divides. Coupled with a large range in groundwater chemistry seen in wells, these results suggest stream chemistry variation reflects the range of connectivity with, and quality of, groundwater controlled by hillslope hydropedological processes. The magnitude of variations of solute concentrations seen in the first order catchment was as broad as that seen at the fifth order Hubbard Brook Valley (3519 ha). Reduction in variation in solute concentrations with increasing UAA suggested a representative elementary area (REA) value of less than 3 ha in the first order catchment, compared with 100 ha for the fifth order basin. Thus, the REA is not necessarily an elementary catchment property. Rather, the partitioning of variation between highly variable upstream sources and relatively homogenous downstream characteristics may have different physical significance depending on the scale and complexity of the catchment under examination. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号