首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a fluvial system, depending on sub‐aerial exposure, non‐pedogenic pond calcretes can be modified into pedogenic calcretes. The present study attempts to understand the effect of sub‐aerial exposure and pedogenesis on calcretes using carbon and oxygen isotopic composition. For this purpose, two profiles (profile‐A and profile‐B) from the same stratigraphic level in Rayka from the western part of India were selected. The profiles are separated by a distance of 500 m and showed differences in calcrete characteristics. In profile‐A, the calcretes showed pedogenic features (root traces and void filling spar) whereas calcretes in profile‐B showed non‐pedogenic characteristics (fine laminations). However, some of the calcretes in profile‐A exhibited remnants of fine laminations suggesting that initially the calcretes had a non‐pedogenic origin but were modified due to pedogenesis. In profile‐A, the carbon and oxygen isotope values of pedogenic calcrete (δ13CPC and δ18OPC) showed more variation compared with non‐pedogenic pond calcretes (δ13CSPC and δ18OSPC) in profile‐B. The δ13CPC and δ13CSPC values exhibited a spread of 3·0‰ and 1·3‰, respectively, and δ18OPC and δ18OSPC values showed a spread of 2·3‰ and 1·3‰, respectively. The differences in the isotopic composition between the two profiles suggest that pedogenesis controlled the isotopic inheritance in calcretes. In addition, the carbon isotopic composition of organic matter (δ13COM) and n‐alkanes (δ13Cn‐alk) that forms the basis of palaeovegetational reconstruction have also been measured to understand the effect of pedogenesis on organic matter in both of the profiles. The average δ13COM values in profile‐A and profile‐B are ?23·4‰ and ?21·1‰, respectively. The disparity in δ13COM values is a result of the difference in the sources and preservation of organic matter. However, the δ13Cn‐alk values show a similar trend in profile‐A and profile‐B, indicating that sources of n‐alkanes are the same in both of the profiles and δ13Cn‐alk values are unaffected by the pedogenic modifications.  相似文献   

2.
This paper investigated the sources and behaviors of sulfate in groundwater of the western North China Plain using sulfur and oxygen isotopic ratios. The groundwaters can be categorized into karst groundwater (KGW), coal mine drainage (CMD) and pore water (subsurface saturated water in interstices of unconsolidated sediment). Pore water in alluvial plain sediments could be further classified into unconfined groundwater (UGW) with depth of less than 30 m and confined groundwater (CGW) with depth of more than 60 m. The isotopic compositions of KGW varied from 9.3‰ to 11.3‰ for δ34SSO4 with the median value of 10.3‰ (n = 4) and 7.9‰ to 15.6‰ for δ18OSO4 with the median value of 14.3‰ (n = 4) respectively, indicating gypsum dissolution in karst aquifers. δ34SSO4 and δ18OSO4 values of sulfate in CMD ranged from 10.8‰ to 12.4‰ and 4.8‰ to 8.7‰ respectively. On the basis of groundwater flow path and geomorphological setting, the pore water samples were divided as three groups: (1) alluvial–proluvial fan (II1) group with high sulfate concentration (median values of 2.37 mM and 1.95 mM for UGW and CGW, respectively) and positive δ34SSO4 and δ18OSO4 values (median values of 8.8‰ and 6.9‰ for UGW, 12.0‰ and 8.0‰ for CGW); (2) proluvial slope (II2) group with low sulfate concentration (median values of 1.56 mM and 0.84 mM for UGW and CGW, respectively) and similar δ34SSO4 and δ18OSO4 values (median values of 9.0‰ and 7.4‰ for UGW, 10.2‰ and 7.7‰ for CGW); and (3) low-lying zone (II3) group with moderate sulfate concentration (median values of 2.13 mM and 1.17 mM for UGW and CGW, respectively) and more positive δ34SSO4 and δ18OSO4 values (median values of 10.7‰ and 7.7‰ for UGW, 20.1‰ and 8.8‰ for CGW). In the present study, three major sources of sulfate could be differentiated as following: sulfate dissolved from Ordovician to Permian rocks (δ34SSO4 = 10–35‰ and δ18OSO4 = 7–20‰), soil sulfate (δ34SSO4 = 5.9‰ and δ18OSO4 = 5.8‰) and sewage water (δ34SSO4 = 10.0‰ and δ18OSO4 = 7.6‰). Kinetic fractionations of sulfur and oxygen isotopes as a result of bacterial sulfate reduction (BSR) were found to be evident in the confined aquifer in stagnant zone (II3), and enrichment factors of sulfate–sulfur and sulfate–oxygen isotopes calculated by Rayleigh equation were −12.1‰ and −4.7‰ respectively along the flow direction of groundwater at depths of 60–100 m. The results obtained in this study confirm that detailed hydrogeological settings and identification of anthropogenic sources are critical for elucidating evolution of δ34SSO4 and δ18OSO4 values along with groundwater flow path, and this work also provides a useful framework for understanding sulfur cycling in alluvial plain aquifers.  相似文献   

3.
Rapid weathering and erosion rates in mountainous tropical watersheds lead to highly variable soil and saprolite thicknesses which in turn impact nutrient fluxes and biological populations. In the Luquillo Mountains of Puerto Rico, a 5-m thick saprolite contains high microorganism densities at the surface and at depth overlying bedrock. We test the hypotheses that the organisms at depth are limited by the availability of two nutrients, P and Fe. Many tropical soils are P-limited, rather than N-limited, and dissolution of apatite is the dominant source of P. We document patterns of apatite weathering and of bioavailable Fe derived from the weathering of primary minerals hornblende and biotite in cores augered to 7.5 m on a ridgetop as compared to spheroidally weathering bedrock sampled in a nearby roadcut.Iron isotopic compositions of 0.5 N HCl extracts of soil and saprolite range from about δ56Fe = 0 to ? 0.1‰ throughout the saprolite except at the surface and at 5 m depth where δ56Fe = ? 0.26 to ? 0.64‰. The enrichment of light isotopes in HCl-extractable Fe in the soil and at the saprolite–bedrock interface is consistent with active Fe cycling and consistent with the locations of high cell densities and Fe(II)-oxidizing bacteria, identified previously. To evaluate the potential P-limitation of Fe-cycling bacteria in the profile, solid-state concentrations of P were measured as a function of depth in the soil, saprolite, and weathering bedrock. Weathering apatite crystals were examined in thin sections and an apatite dissolution rate of 6.8 × 10? 14 mol m? 2 s? 1 was calculated. While surface communities depend on recycled nutrients and atmospheric inputs, deep communities survive primarily on nutrients released by the weathering bedrock and thus are tightly coupled to processes related to saprolite formation including mineral weathering. While low available P may limit microbial activity within the middle saprolite, fluxes of P from apatite weathering should be sufficient to support robust growth of microorganisms in the deep saprolite.  相似文献   

4.
We investigate the growth of the northern Tibetan Plateau and associated climate change by applying oxygen and carbon isotopic compositions in Cenozoic strata in the southwestern Qaidam basin. The X-ray diffraction and isotopic studies reveal that the carbonate minerals are mainly authigenic and they do not preserve any evidence for detrital carbonate and diagenesis. The isotope data show large fluctuations in the δ18O and δ13C values in the middle–late Eocene, indicating relatively warm and seasonal dry climate. The positive correlation of the δ18O and δ13C values in the Oligocene and the positive shift of the δ13C values from the Eocene to Oligocene suggest that the climate changed to arid in the Oligocene. However, the δ18O values show negative shift, which is closely related to the global cooling event. During the Miocene, the δ13C values vary between –2‰ and –4‰, whereas the δ18O values show continuous negative shift. The mean δ18O values decrease from –8.5‰ in the early Miocene to –10.0‰ in the late Miocene. The stable isotope-based paleoaltimetry results suggest that the elevation of the southwestern Qaidam basin was approximately 1500 m in the middle–late Eocene and Oligocene. Subsequently, during Miocene the crustal uplift process started and the elevation reached approximately 2000 m in the early Miocene and 2500 m in the late Miocene, which suggests large-scale growth of the northern Tibet Plateau during the Miocene.  相似文献   

5.
Oxygen isotopic compositions of quartz from silty sediments buried to 5400 m depth from two wells in the Gulf of Mexico each showed δ518O variations of less than 1.7%. Clay diagenesis has been reported within this depth. The observed variations in the quartz do not appear to be primarly diagenetic effects, but rather are mainly depositional features reflecting variations in the sources of the sediments. Sources may be influenced by the variation of distance from the shore at different depths in a given sampling location and by sediment production by continental glaciations. Stability of the oxygen isotopic composition of quartz in the 10–20 μm size range under long-time humid, temperate weathering conditions was studied by analysis of saprolites formed from Pennsylvanian to Precambrian crystalline rocks. In four of the five cases, the 10–20 μm fraction was found to have only 0.1–0.5%. greater δ18O than the corresponding 20–50 μm fraction. This increase may be attributable either to a slight oxygen isotopic exchange with ambient ground waters or original differences within the rock since the saprolites were sufficiently coherent to make an influx of extraneous detrital silt unlikely. The amount of oxygen isotopic exchange in silt size quartz over periods of many million years of shallow burial or weathering appears to be small enough to permit the use of the oxygen isotopic ratio of quartz in tracing the origin of eolian and fluvial additions of minerals to continental soils and pelagic sediments.  相似文献   

6.
The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants (algae and higher vascular forms) and animals (tunicates) collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined.The δ18Ovalues of cellulose from all the plants and animals were 27 ±3% more positive than the δ18O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The relationship between the δ18O values of cellulose and the water used in its synthesis is probably established by the isotopic fractionation that occurs during the hydration of carbonyl groups of the intermediates involved in cellulose synthesis.The δD values of the non-exchangeable hydrogen of cellulose (determined by analyzing cellulose nitrate) from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200‰ for different species of algae collected at a single site: the corresponding difference for different species of tunicates and vascular plants was 60 and 20‰ respectively. The δD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60‰ The relationship between the δD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. The δD values of cellulose nitrate prepared from different parts of one of the plants grown under constant conditions differed by 40‰ Hydrogen isotopic fractionation during cellulose synthesis appears to be more variable among different species and displays a larger temperature dependence than was suggested by previous studies.  相似文献   

7.
《Applied Geochemistry》2006,21(4):643-655
The groundwater B concentration in the alluvial aquifer of the upper Cecina River basin in Tuscany, Italy, often exceeds the limit of 1 mg L−1 set by the European Union for drinking water. On the basis of hydrogeological and geochemical observations, the main source of the B contamination of groundwater has been attributed to past releases into streams of exhausted, B-rich geothermal waters and/or mud derived from boric acid manufacturing in Larderello. The releases were discontinued 25–30 years ago.This study confirms that the B dissolved in groundwater is anthropogenic. In fact, the δ11B values of groundwater B match the range −12.2‰ to −13.3‰ of the Turkish B mineral (colemanite) processed in boric acid manufacturing, in the course of which no significant isotopic effects have been observed. This isotopic tracing of the Cecina alluvial aquifer occurs just below the confluence of the Possera Creek, which carries the B releases from Larderello. Strontium isotope ratios support this conclusion.At about 18 km from the Possera Creek confluence, the groundwater δ11B drops to much more negative values (−22‰ to −27‰), which are believed to be produced by adsorption–desorption interactions between dissolved B and the aquifer matrix. The δ11B of B fixed in well bottom sediments shows a similar variation. At present, desorption is prevailing over adsorption because the releases of B-rich water have ceased. A theoretical model is suggested to explain the isotopic trends observed.Thus, B isotopes appear to be a powerful tool for identifying the origin of B contamination in natural waters, although isotopic effects associated with adsorption–desorption processes may complicate the picture, to some extent.  相似文献   

8.
Stable isotope composition of precipitation from Pamba River basin, Kerala, India, is evaluated to understand the role of spatial and temporal variations on rainwater isotope characteristics. Physiographically different locations in the basin showed strong spatial and temporal variations. δ 18O varied from ?7.63 to ?1.75 ‰ in the lowlands; from ?9.32 to ?1.94 ‰ in the midlands and from ?11.6 to ?4.00 ‰ in the highlands. Local Meteoric Water Lines (LMWL) for the three regions were determined separately and an overall LMWL for the whole of the basin was found to be δ 2H = 6.6 (±0.4) δ 18 O+10.4 (±2.0). Altitude effect was evident for the basin (0.1 ‰ for δ 18O and 0.8 ‰ for δ 2H per 100 m elevation), while the amount effect was weak. The precipitation formed from the marine moisture supplied at a steady rate, without much isotopic evolution in this period may have masked the possible depletion of heavier isotopes with increasing rainfall. Consistently high d-excess values showed the influence of recycled vapour, despite the prevailing high relative humidity. The oceanic and continental vapour source origins for the south-west and north-east monsoons were clearly noted in the precipitation in the basin. Rayleigh distillation model showed about 30% rainout of the monsoon vapour mass in the basin.  相似文献   

9.
Stable isotope data of precipitation (δ18Op and deuterium excess), drip water (δ18Od), and modern calcite precipitates (δ18Oc and δ13Cc) from Yongxing Cave, central China, are presented, with monthly sampling intervals from June 2013 to September 2016. Moderate correlations between the monthly variation of δ18Op values (from ??11.5 to ??0.7‰) and precipitation amount (r = ??0.59, n?=?34, p?<?0.01) and deuterium excess (r?=?0.39, n?=?31, p?<?0.01) imply a combined effect of changes in precipitation amount and atmospheric circulation. At five drip sites, the δ18Od values have a much smaller variability (from ??9.1 to ??7.5‰), without seasonal signals, probably a consequence of the mixing in the karst reservoir with a deep aquifer. The mean δ18Od value (??8.4‰) for all drip waters is significantly more negative than the mean δ18Op value (??6.9‰) weighted by precipitation amount, but close to the wet season (May to September) mean value (??8.3‰), suggesting that a threshold of precipitation amount must be exceeded to provide recharge. Calculation based on the equilibrium fractionation factor indicates that the δ18Oc values are not in isotopic equilibrium with their corresponding drip waters, with a range of disequilibrium effects from 0.4 to 1.4‰. The δ18Oc and δ13Cc values generally increase progressively away from the locus of precipitation on glass plates. The disequilibrium effects in the cave are likely caused by progressive calcite precipitation and CO2 degassing related to a high gradient of CO2 concentration between drip waters and cave air. Our study provides an important reference to interpret δ18Oc records from the monsoon region of China.  相似文献   

10.
A calcic skarn deposit occurs along the contact zone between Oligo-Miocene Çatalda? Granitoid and Mesozoic limestones in Susurluk, northwestern Turkey. The skarn zone with little or no retrograde stage is represented by fluid inclusions with high homogenization temperatures (up to >600 °C) and a wide range of salinity (12 to >70 wt.% NaCl). Pluton-derived fluids facilitated occurrence of continuous prograde reactions in the country rocks (particularly in the proximal zone) and oxygen isotopic depletion in calc-silicate and calcite minerals. δ18O of anhydrous minerals within proximal and distal zones indicate that skarn-forming fluids had a magmatic origin. The δ18O values are 5.93–9.08‰ (mean 6.8‰) for garnet, 4.08–9.94‰ (mean 6.4‰) for pyroxene, 4.89–7.92‰ (mean 6.4‰) for wollastonite and 6.65–8.28‰ (mean 7.5‰) for vesuvianite. Temperatures estimated by isotopic compositions of mineral pairs are significantly lower than those measured from the fluid inclusions, indicating that isotopic equilibrium is not preserved between the skarn minerals. δ18O and δ13C values are systematically depleted from marbles to skarn carbonates. Calc-silicate forming reactions and permeability increase triggered by volatilization and consequent strong infiltration of H2O-rich siliceous fluids into the system promoted fluid–rock interaction causing isotopic resetting and isotopic depletion of silicates (e.g. pyroxene and wollastonite) and skarn calcites.  相似文献   

11.
《Applied Geochemistry》1995,10(5):531-546
The petrography, fluid inclusion thermometry and isotope geochemistry of diagenetic cements are used to reconstruct the pore-fluid history of the Middle Jurassic Brent Group reservoir sandstones in the Alwyn South area of the U.K. North Sea. The study focuses on a relatively limited area of three adjacent reservoir compartments at successively higher structural levels. The cement assemblage of kaolinite, quartz and illite has resulted in severe deterioration of otherwise good reservoir quality. Early precipitation of vermiform and late blocky kaolinite was succeeded by a period of relatively intense illite precipitation. Temperature estimates for kaolinite precipitation of 80°C andδ18O of ≈ + 15‰ (±3‰) suggest co-existing fluids ofδ18O ≈ −3‰. Quartz cementation overlapped both kaolinite and illite formation. Fluid inclusion data indicate that quartz cementation took place at temperatures of 109±7°C. Pore fluid salinities were ≈4 wt% NaCl with a H2OO isotopic composition of ≈ -1 %o ± 0.5‰ SMOW. The fluids which precipitated coexisting illite were compositionally homogeneous with equilibriumδ18O water compositions of +0.5‰ SMOW. Illite SD values range from −33 to −50‰ SMOW. These fluid inclusion and isotopic data suggest that both quartz and illite were precipitated from pore waters with a uniform, marine signature. This is consistent with the predominantly marine to paralic depositional context of the Brent Group in Alywn South. Illite precipitation was followed by hydrocarbon emplacement between the Middle Eocene and Lower Oligocene.  相似文献   

12.
The oxygen isotope compositions of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel, have been used to identify porewater types during diagenesis. Changes in porewater composition can be related to major geological events within southern Israel. In particular, saline brines played an important role in late (Pliocene-Pleistocene) dolomitization of these rocks. Diagenetic carbonates included early siderite (δ18OSMOW=+24.4 to +26.5‰δ13CPDB=?1.1 to +0.8‰), late dolomite, ferroan dolomite and ankerite (δ18OSMOW=+18.4 to +25.8‰; δ13CPDB=?2.1 to +0.2‰), and calcite (δ18OSMOW=+21.3 to +32.6‰; δ13CPDB=?4.2 to + 3.2‰). The petrographic and isotopic results suggest that siderite formed early in the diagenetic history at shallow depths. The dolomitic phases formed at greater depths late in diagenesis. Crystallization of secondary calcite spans early to late diagenesis, consistent with its large range in isotopic values. A strong negative correlation exists between burial depth (temperature) and the oxygen isotopic compositions of the dolomitic cements. In addition, the δ18O values of the dolomitic phases in the northern Negev and Judea Mountains are in isotopic equilibrium with present formation waters. This behaviour suggests that formation of secondary dolomite post-dates the tectonic activity responsible for the present relief of southern Israel (Upper Miocene to Pliocene) and that the dolomite crystallized from present formation waters. Such is not the case in the Central Negev. In that locality, present formation waters have much lower salinities and δ18O values, indicating invasion of freshwater, and are out of isotopic equilibrium with secondary dolomite. Recharge of the Inmar Formation by meteoric water in the Central Negev occurred in the Pleistocene, and halted formation of dolomite.  相似文献   

13.
The study area is located in the border of the high and low folded zone having a semi-arid climate area. This study initiated in 2009–2010, deals essentially with the investigation of the stable isotope (18O and deuterium 2H) as well as radioactive isotope represented by tritium 3H in rain, carbonate springs, intergranular aquifer, and surface water in order to investigate the source and relative ages of the groundwater and to show the influence of the altitude variations of the isotope composition. In this study and for the first time in the area, a local meteoric water line have been drawn with an empirical formula δ 2H?=?7.7δ 18O?+?14.4. The δ 18O–altitude effect was determined using isotopic data for several samples taken from groundwater and surface water; it was approximated at ?0.79?‰/100 m for the entire area of the study. The output of the tritium concentrations in the springs and water well samples revealed to the conclusion that the values closely resembles to the present time tritium concentration in precipitation.  相似文献   

14.
Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (~ 0.7–0.8‰·°C?1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C?1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m?2.yr?1 may record a seasonal cycle at shallow depths.  相似文献   

15.
Chemical, mineralogical, and petrographic data from the Los Pijiguaos bauxite deposit, together with the water chemistry of the streams draining the area, were used to study the problem of lateritic bauxite formation at this location. The Los Pijiguaos bauxite, located at the northwestern edge of the Guayana Shield in Venezuela, is a lateritic bauxite developed on a Precambrian Rapakivi Granite Batholith, the Parguaza Granite. This deposit is situated on a planation surface at elevations between 600 and 700 m; it is believed to have originated during an erosional event that took place during Late Cretaceous-early Tertiary times.The weathering profile is composed of an upper bauxite zone, followed by a saprolite, and merging gradually to the fresh granite. The upper bauxitic zone contains gibbsite, quartz, hematite, and goethite. The saprolite contains kaolinite, quartz, and goethite and is characterized by a relict granitic texture that indicates little bulk volume change associated with the weathering process. The upper bauxitic zone has lost any textural resemblance with the parent granite, consistent with extensive volume loss.Bauxite and saprolite are separated by a transition zone where gibbsite and kaolinite coexist. Textures indicating the replacement of kaolinite by gibbsite point to the dynamic nature of the weathering profile, characterized by advancing reaction fronts.The chemical composition of the deposit defines trends that can be traced back to the composition of the parent granite and shows enrichment of Al2O3, Fe2O3, and TiO2, and depletion of SiO2, relative to the parent granite. The uppermost part of the profile is characterized by a further enrichment of Fe2O3 with respect to the other components of the bauxite. Important volume and mass losses in the bauxite have also been calculated, based on chemical composition and density measurements. The calculated losses are consistent with the textural observations in the bauxite.The chemical composition of the waters of streams draining the area shows strong seasonal patterns, consistent with the seasonal nature of the local climate (one dry and one rainy season per year, both about six months long). The balance between dissolved and suspended loads in these streams indicates that the magnitudes of chemical and physical denudation are similar, leading to approximately constant thicknesses of the weathering profiles. These observations are consistent with model calculations based on current climatic conditions and suggest that the bauxitization process is still active.  相似文献   

16.
In order to understand spatial variations of stable isotope geochemistry in the Quruqtagh basin (northwestern China) in the aftermath of an Ediacaran glaciation, we analyzed carbonate carbon isotopes (δ13Ccarb), carbonate oxygen isotopes (δ18Ocarb), carbonate associated sulfate sulfur (δ34SCAS) and oxygen isotopes (δ18OCAS), and pyrite sulfur isotopes (δ34Spy) of a cap dolostone atop the Ediacaran Hankalchough glacial diamictite at four sections. The four studied sections (YKG, MK, H and ZBS) represent an onshore-offshore transect in the Quruqtagh basin. Our data show a strong paleobathymetry-dependent isotopic gradient. From the onshore to offshore sections, δ13Ccarb values decrease from −2‰ to −16‰ (VPDB), whereas δ18Ocarb values increase from −4‰ to −1‰ (VPDB). Both δ34SCAS and δ34Spy show stratigraphic variations in the two onshore sections (MK and YKG), but are more stable in the two offshore sections (H and ZBS). δ18OCAS values of onshore samples are consistent with terrestrial oxidative weathering of pyrite. We propose that following the Hankalchough glaciation seawater in the Quruqtagh basin was characterized by a strong isotopic gradient. The isotopic data may be interpreted using a three-component mixing model that involves three reservoirs: deep-basin water, surface water, and terrestrial weathering input. In this model, the negative δ13Ccarb values in the offshore sections are related to the upwelling of deep-basin water (where anaerobic oxidation of dissolved organic carbon resulted in 13C-depleted DIC), whereas sulfur isotope variations are strongly controlled by surface water sulfate and terrestrial weathering input derived from oxidative weathering of pyrite. The new data provide evidence for the oceanic oxidation following the Hankalchough glaciation.  相似文献   

17.
18.
Sulphur isotopic data for sulphides and barite from several carbonatites (Mountain Pass, Oka, Magnet Cove, Bearpaw Mountains, Phalabora) show that individual carbonatites have different mean sulphide or barite isotopic compositions which deviate from the meteoritic mean δ34S(0‰).Classification of carbonatites in terms of T,?O2 and pH during formation of the sulphur-bearing assemblages indicates that with decreasing T and increasing relative ?O2 the mean δ34S sulphide becomes increasing negative relative to the mean magma δ34S. Only barite-free high temperature carbonatites (Phalabora) in which the mean δ34S sulphide approaches the mean magmaδ34S as a consequence of the paucity of oxidized anionic sulphur species in the magma can be used to directly estimate the mean isotopic composition of the source material.Barites from the Mountain Pass carbonatite show an increase in δ34S with sequence of intrusion of the carbonatite units; dolomitic carbonatite (mean δ34S, + 5.4‰), calcitic carbonatite (+ 4.8%.), silicified carbonatite (+ 6.9‰), tabular carbonatite dikes (+ 8.7‰), mineralized shear zones (+ 9.5‰). Within each of these units a spread of 6.8%. is evident. Isotopic trends in this low temperature (300°C) carbonatite are evaluated by treating the system as a hydrothermal fluid. The observed isotopic variations can be explained by removal of large amounts of sulphur from a fluid whose mean δ34S is 0 to + 1‰  相似文献   

19.
Conventional hydrogeochemical data and environmental stable isotopes are used to identify the recharge sources and the water–rock interactions in the groundwater-flowing direction within the multilayer groundwater system of the Sulin coal-mining district in the north Anhui province in China. δD and δ 18O of groundwater in the mining district decrease along the groundwater-flowing direction in the recharge areas, yet in the runoff or discharge areas, they rise and fall along average δ values (δ 18O = ?8.68 ‰, δD = ?67.4 ‰), which are lower than average δ values of local atmospheric precipitation (δ 18O = ?7.80 ‰, δD = ?52.4 ‰). Principal component analysis is used to analyze the conventional hydrogeochemical data (K+ + Na+, Mg2+, Ca2+, Cl?, SO4 2?, HCO3 ?, CO3 2?) in the groundwater. The first and second principal components have large variance contributions, and represent “pyrite oxidation or groundwater hardening” and “desulfurization or cation exchange and adsorption,” respectively. From conventional hydrogeochemical data and environmental stable isotopes, it is demonstrated that groundwater of the Sulin coal-mining district is characterized by a mixing type, which is confirmed by three recharge end-members: fresh groundwater, leaching groundwater, and retained groundwater. By means of a sample dot-encompassed triangle in the scatter diagram of load scores for Component 1–Component 2, whose vertexes stand for the three end-members, a model for calculating groundwater mixing ratio is established and applied successfully to the evaluation and management of groundwater hazards in the coal-mining districts.  相似文献   

20.
Water samples from cold and geothermal boreholes, hot springs, lakes and rivers were analyzed for δD, δ18O and 87Sr/86Sr compositions in order to investigate lake water–groundwater mixing processes, water–rock interactions, and to evaluate groundwater flow paths in the central Main Ethiopian Rift (MER) of the Ziway–Shala basin. Different ranges of isotopic values were recorded for different water types: hot springs show δ18O −3.36 to +3.69 and δD −15.85 to +24.23, deep Aluto-Langano geothermal wells show δ18O −4.65 to −1.24 and δD −12.39 to −9.31, groundwater wells show δ18O −3.99 to +5.14 and δD −19.69 to +32.27, whereas the lakes show δ18O and δD in the range +3.98 to +7.92 and +26.19 to +45.71, respectively. The intersection of the Local Meteoric Water Line (LMWL: δD = 7 δ18O + 11.2, R2 = 0.94, n = 42) and the Local Evaporation Line (LEL: δD = 5.63δ18O + 8, n = 14, R2 = 0.82) was used to estimate the average isotopic composition of recharge water into the basin (δD = −5.15 and δ18O = −2.34). These values are depleted if compared with the modern-day average precipitation, presumably indicating paleo-groundwater components recharged during previous humid climatic phases. The measured stable isotope values indicate that the geothermal wells, some of the hot springs and groundwater wells mainly consist of meteoric water. The Sr isotopic signatures in all waters are within the range of the Sr isotopic composition of the rift basalts and rhyolites. The variability of Sr isotopic data also pinpoints complex water–rock interaction and mixing processes in groundwater and surface water. The 87Sr/86Sr ratio ranges from 0.70445 to 0.70756 in the hot springs, from 0.70426 to 0.70537 in two deep geothermal wells, and from 0.70673 to 0.70721 in the rift lakes Ziway, Langano, Shala and Awasa. The radiogenic composition recorded by the lakes indicates that the input water was predominantly affected by progressive interaction with rhyolitic volcanics and lacustrine sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号