首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Singrauli region is known for fluoride contamination and its effect on human population. In this work the possible sources of fluoride contamination in Rihand reservoir water is constrained. They include slurry water, fly ash and coal samples of various thermal power plants, coal seams and granites of the region. Petrographic study depicted the presence of fluoride bearing minerals - flour apatite in pink granite. Preliminary scanning electron microscope studies revealed presence of fluorine peak in coal samples. The chemical analysis confirmed the presence of fluoride in fly ash (12.6 mg/kg), drain water (5.34 mg/l), soil (6.1 mg/kg), coal (3.1 mg/kg). They confirmed the source of fluoride from coal of thermal power plant which utilized coal from Singrauli coal seam (1.6 mg/kg). Further the Rihand reservoir water is also enriched by fluoride contaminant (upto 4.7 mg/l). This contaminates groundwater of the area as well. The contaminated water used for drinking and agriculture affects health of inhabitants in the area. It is concluded that the main source of fluoride contamination in the study area is due to coal burnt in thermal power plant and pink granite formation of the area, both anthropogenic and geogenic sources are implied.  相似文献   

2.
. Coal-burning power plants in Turkey produce large quantities of coal-related wastes, which are collected through the use of various systems. Coal ash is presently accumulating in Turkey at a rate in excess of 10 million tons (t) annually. Roughly 1% of this is being used in a variety of products such as concrete, aggregate in stabilizing roadways, etc. When coal is burned, loss of material results in an increased concentration of most radionuclides found in the waste material. The object of this study is to analyze radiochemical element concentration of coal, bottom ash, and fly ash, and to evaluate the gross radium isotope activities in groundwaters around Yatagan Thermal Power Plant. The results show that the waste disposal site near the thermal power plant contains a major enhancement of radioactivity.  相似文献   

3.
Combustion of coals in thermal power plants is one of the major sources of environmental pollution due to generation of huge amounts of ashes, which are disposed off in large ponds in the vicinity of the thermal power plants. This problem is of particular significance in India, which utilizes coals of very high ash content (∼55 wt%). Since the thermal power plants and the ash ponds are located in densely populated areas, there is potential chance for contamination of soil and groundwater of the surrounding areas from the toxic trace elements in the ash. An attempt has been made to study the extent of soil contamination around one of the largest thermal power plants of India located at Kolaghat, West Bengal India. Chemical analysis of the top soils and the soils collected from the different depth profiles surrounding the ash ponds, show that the top soils are enriched in the trace elements Mo, As, Cr, Mn, Cu, Ni, Co, Pb, Be, V, Zn, which show maximum enrichment (2–5) in the top soils collected from all the soil profiles. These elements are also enriched in the pond ash. Since there are no other sources of industrial effluents, it can be said that the enrichment of the trace elements (Mn, Co, Mo, Cr, Cu, Pb, Zn, As, Ni, Be, V) is attributed to their input from ash from the disposal pond. The study has been further strengthened by log-normal distribution pattern of the elements.  相似文献   

4.
The natural radiological characteristics and their respective annual effective dose (AED) rates, produced by 226Ra, 232Th and 40K in coal, fly ash and bottom ash from two large coal-fired power plants (CFPPs) of Xi’an were determined by means of γ-ray spectrometry. The average activity concentrations of 226Ra, 232Th and 40K in all ash samples (fly ash and bottom ash samples) from the two CFPPs were 67.6, 74.3 and 225.3 Bq kg−1, respectively. The results are compared with data from other locations. To evaluate the radiological hazards of the natural radioactivity, the radium equivalent activity (Raeq), air absorbed dose rate (D), AED and external hazard index (H ex) are compared with internationally accepted values. Raeq and H ex of all samples except three fly ash samples were less than the limits of 370 Bq kg−1 and unity, respectively. The average D and AED for ash samples were 86.8 nGy h−1 and 0.11 mSv y−1, respectively, which exceed the world average and Xi’an average values.  相似文献   

5.
The use of coal fly ash and domestic sewage sludge in agriculture is being considered as one of the methods for recycling of these wastes in an environmental beneficial manner. Mixtures with soil were prepared at different proportions of fly ash and sludge, either alone or in combination at a maximum application rate of 52 t ha-1. The changes in the selected properties and heavy metal contents of three soil types in India were studied after incubating the respective mixtures for 90 days at near field capacity moisture level. Sewage sludge, due to its acidic and saline nature, high organic matter and heavy metals content, had more impact on soil properties than the fly ash. Sludge application produced several changes including an increase in available nitrogen, organic carbon, salinity and water-holding capacity of the soils. The concentrations of major cations and heavy metals also increased because of the sludge application and the pH was decreased. However, the levels of individual metal concentrations in all the mixture types were below the allowable limits prescribed by several environmental agencies. Using fly ash either alone or in equal quantity with sewage sludge had little influence on soil properties and heavy metal content. The relative availability (RA) of heavy metals in three soils amended with 52 t ha-1 of sewage sludge was observed to be highest in oxisol, followed by alfisol and vertisol.  相似文献   

6.
Fly ash generated by coal-fired power plants is in part collected by filters in the emission stacks while a small portion is vented into the atmosphere. Since many of the coalfired power plants in the western United States are located in the desnrt, the ability to monitor fly ash emissions requires a chemical tracer that utilizes desert soil and plant interactions with the fly ash deposited in the desert environment. This investigation presents the results of a controlled greenhouse experiment in which a native desert plant, the brittlebush (Encelia farinosa), was grown on admixtures of desert soils and fly ash. The fly ash is strongly enriched in Sr and the brittlebush is a Sr accumulator. The data demonstrate that (1) the brittlebush isotopically equilibrates with desert soils whose fly ash components are as low as 0.25% by weight, (2) the fly ash Sr is apparently more available to the plant, than Sr derived from the soils, and (3) the difference between the87Sr/86Sr ratio of the fly ash (0.70807) and soils (0.71097 to 0.71117) warrants further investigations in the natural environment to determine the practicality of this method as a natural tracer of fly ash in the environment.  相似文献   

7.
One hundred and twenty one samples from every major plutonic body (mainly granitic) of Greece have been analyzed by γ-ray spectrometry to determine the specific activities of 238U, 232Th and 40K (Bq/kg). The range of the activity concentrations of these radionuclides was 2.3–266.4, 1.8–375.5 and 55.0–1632.0 Bq/kg and their average values were 79.2, 85.3 and 881.4 Bq/kg respectively. Any possible connection between the specific activities of 238U, 232Th and 40K and some characteristics of the studied samples (age, rock-type, colour, grain-size, occurrence and chemical composition) is investigated. Samples of particular colour, rock-type, occurrence and chemical composition have been identified for their distinctive levels of natural radioactivity, while age and grain-size do not affect the concentrations of 238U, 232Th and 40K. The range of the Th/U ratio was 0.7–12.69. This great variation in the Th/U ratios, especially when it is found among the samples of the same pluton, is also discussed and explained by alteration and tectonic–metamorphic processes.  相似文献   

8.
The aim of this study was to investigate the geochemical characteristics of arsenic in the solid material samples of the Mae Moh Mine and also the Mae Moh power plants fly ash samples were systematically studied. Arsenic concentration in overburden, coal lignite and fly ash are variable (depending on source of solid samples). The results show that the strata of overburden, J seam of coal and fly ash are rich in arsenic and also relatively soluble from fly ash; it occurs as a surface precipitate on the ash particle. The experimental study on speciation in the strata also indicates that the arsenic speciation of Mae Moh solid samples are mainly arsenate, As (V), which are approaching exceed 80%. Arsenic content in the main of overburden is in the range of 14.3–888.8 mg/kg, which is larger than the arsenic background soil values. Solid materials polluted wastewater; the arsenic speciation was present predominantly as arsenate in the surface water of a series of Mae Moh solid materials basins.  相似文献   

9.
Water samples, representing seawater, river water, reservoir water, drinking water, and underground water were studied through gamma-ray spectral analysis. Only gamma emitters in the238U and232Th series and40K were detected. No fission product was detected with specific activity above 0.1 Bq/kg. The present data could be the baseline for future monitoring of the radioactivity released from a nuclear plant being built at a 50-km distance from Hong Kong. The variation of detected specific activities may be due to geological differences and the effect of plants.  相似文献   

10.
Levels of naturally occurring radioactivity in sediment samples of Beni Haroun dam have been investigated. The activity concentrations of 238U and 232Th decay chains and 40K primordial radionuclide have been measured using high-resolution HPGe detector. Activity concentrations of 226Ra, 232Th, and 40K radionuclides were found in the ranges 9–66, 14–37, and 177–288 Bq/kg with the mean values 24.67, 25.98, and 208.10 Bq/kg, respectively. Radiological hazard parameters were estimated based on the activity concentrations for 226Ra, 232Th, and 40K to find out any radiation hazard associated with the sediments. Correlation studies between pairs of radionuclides were performed and discussed, and the obtained results are compared with international recommended values.  相似文献   

11.
The isotopic compositions of S (δ34S) and C (δ13C) were determined for the coal utilized by a power plant and for the fly ash produced as a by-product of the coal combustion in a 220-MW utility boiler. The coal samples analyzed represent different lithologies within a single mine, the coal supplied to the power plant, the pulverized feed coal, and the coal rejected by the pulverizer. The ash was collected at various stages of the ash-collection system in the plant. There is a notable enrichment in 34S from the base to the top of the coal seam in the mine, with much of the variation due to an upwards enrichment in the δ34S values of the pyrite. Variations in δ34S and in the amount of pyritic S in the coal delivered to the plant show that there was a change of source of coal supplied to the plant, between week one and week two of monitoring, supporting a previous study based on metal and sulfide geochemistry for the same plant. The fly ash has a more enriched δ34S than the pulverized coal and, in general, the δ34S is more enriched in fly ashes collected at cooler points in the ash-collection system. This pattern of δ34S suggests an increased isotopic fractionation due to temperature, with the fly ash becoming progressively depleted in 34S and the flue gas S-containing components becoming progressively enriched in 34S with increasing temperatures. Substantially less variation is seen in the C isotopes compared to S isotopes. There is little vertical variation in δ13C in the coal bed, with δ13C becoming slightly heavier towards the top of the coal seam. An 83–93% loss of solid phase C occurs during coal combustion in the transition from coal to ash owing to loss of CO2. Despite the significant difference in total C content only a small enrichment of 0.44–0.67‰ in 13C in the ash relative to the coal is observed, demonstrating that redistribution of C isotopes in the boiler and convective passes prior to the arrival of the fly ash in the ash-collections system is minor.  相似文献   

12.
It is important to know the distribution and transfer of radionuclides such as uranium, thorium, and potassium, which exist naturally in the environment we live in. For this reason, measurements of these natural radionuclides have been carried out for 15 gravel samples collected from Konyaalt? Beach, Antalya. In order to measure the natural activity concentrations of potassium-40, uranium-238, and thorium-232 radionuclides, we performed the measurements by applying a gamma spectrometry method with a “3?×?3” NaI(Tl) detector, which is a multichannel analytical detector in the Suleyman Demirel University gamma spectrometry laboratory. The minimum, maximum, and mean values for the 226Ra activity concentration were measured as 19.74 Bq/kg, 37.03 Bq/kg, and 31.64 Bq/kg, respectively. The minimum, maximum, and mean values for the 232Th activity concentration were measured as 12.76 Bq/kg, 34.32 Bq/kg, and 26.67 Bq/kg, respectively. The minimum, maximum, and mean values for the 40K activity concentration were measured as 196.37 Bq/kg, 421.13 Bq/kg, and 350.42 Bq/kg, respectively. Dose parameters and radiation damage indices were calculated using experimentally measured activity results and the resulting dose and hazard index values were compared with the determined limit values. It can be concluded that no risk may threat in terms of the hazard index values. In addition, all results obtained in terms of calculated dose values except for annual gonadal dose are below the recommended limit values.  相似文献   

13.
Coal, a fossil fuel, is the largest source of energy for the generation of electricity in India. In order to study the potential environmental hazards by coal based power plants, particulate matters were collected using Stack Monitoring Kit and gaseous pollutants by Automatic Flue Gas Analyzer. The morphological and chemical properties, mineralogical composition and particle size distributions have been determined by SEM–EDX, XRD and CILAS. The data revealed the presence of particulate matters, SO2, NOx in the range of 236–315, 162–238, 173–222 mg/Nm3 respectively. The emission of CO2 was in the range of 43,004–60,115 Nm3/h with an average of 52,830 Nm3/h. Among the elements, Fe > Mn > Al > Zn > B > Ni > Cr > Cu were present in substantially higher proportion than Pb > Mo > Cd > Se > As > Hg. It was found that most of the elements were concentrated on fly ash surface rather than coal, bottom ash and pond ash. This variation may be attributed to the fineness of fly ash particles with large surface ratio to mass. Mineralogical studies of coal and fly ash by X-ray diffraction revealed the presence of mullite, quartz, cristobalite and maghemite. Presence of mullite and quartz found in fly ash indicate the conversion of complex minerals to mullite and quartz at high temperature. Transfer Coefficient was calculated to determine the ratio of the enrichment of trace elements in fly or bottom ash with respect to coal and pond ash.  相似文献   

14.
Radiometric measurements were carried out for the beach sands from East Rosetta estuary to determine the activity concentrations of 238 U, 226 Ra, 232 Th, and 40 K, using a Hyper Pure Germanium spectrometer, to estimate the dose rates and radiation hazard indices. The average specific activities are 778.20 Bq/kg for 238 U; 646.89 Bq/kg for 226 Ra; 621.92 and 627.85 Bq/kg for the 222 Rn daughters 214 Pb and 214 Bi respectively. The average specific activity of 232 Th is 1510.25 Bq/kg, while the calculated specific activity for 40 K has an average of 8.41 Bq/kg. The average specific activity of 235 U is 38.61 Bq/kg. The average absorbed dose rate is 1211.36 nGy/h, 20 times higher than the estimated average global primordial radiation of 60 nGy/h and 6 times higher than that of the world range (10-200 nGy/h). The radium equivalent (Ra eq ) values are from 6 to 9 times the recommended value. The internal and external hazard indices (H int , H ex ) indicate that their values are from 6 to 11 times the permissible values of these indices. These higher values may be due to the presence of economic heavy minerals containing radionuclides as zircon and monazite as well as some trace minerals, thorite and uranothorite. The mineralogical study indicates the beach sands contain heavy minerals, zircon, monazite, rutile, ilmenite, leucoxene, magnetite and garnet. The average abundance of zircon is 0.175 wt% ranging from 0.125 wt% to 0.239 wt%, while it is 0.004wt% ranging from 0.001 wt% to 0.007 wt% for monazite. The average abundance is 0.087 wt% for rutile; 2.029 wt% for ilmenite; 1.084 wt% for magnetite; 0.384 wt% for leucoxene and 0.295 wt% for garnet.  相似文献   

15.
Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.  相似文献   

16.
Feed coals and fly ashes from a coal-fired power station burning Alberta subbituminous coal were examined for a period of thirty-eight weeks to determine the variation in emitted mercury. Feed coal samples were analyzed for proximate, calorific value and Hg content, while fly ash samples were examined for C and Hg contents. The maceral content of the feed coal was also determined. The emitted mercury was calculated and compared to mercury emitted from the stack according to a mass-balance calculation from a previous study for the same station.Mercury contents ranged from 0.029 to 0.066 mg/kg for feed coal, and from 0.069 to 0.112 mg/kg for fly ash. The carbon/char in fly ash was separated into reactive (vitrinitic/bimacerate) and less reactive (inertinitic) chars using ZnBr2 at specific gravities of 1.7, 2.0, and 2.25 to 2.4. The result shows that there is a positive correlation between the carbon and mercury content of the fly ash. The reactive char particles in the fly ash may be responsible for the capture mercury in fly ash. The percentage of estimated captured mercury by fly ash increases with increasing carbon content (%) in fly ash. The percentage of emitted mercury for the period of 38 weeks is estimated to be within the range of 49% to 76% of the total input of mercury.  相似文献   

17.
Rhyolite pumices and co-erupted granophyric (granite) xenolithsyield evidence for rapid magma generation and crystallizationprior to their eruption at 15·2 ± 2·9 kaat the Alid volcanic center in the Danikil Depression, Eritrea.Whole-rock U and Th isotopic analyses show 230Th excesses upto 50% in basalts <10 000 years old from the surroundingOss lava fields. The 15 ka rhyolites also have 30–40%230Th excesses. Similarity in U–Th disequilibrium, andin Sr, Nd, and Pb isotopic values, implies that the rhyolitesare mostly differentiated from the local basaltic magma. Giventhe (230Th/232Th) ratio of the young basalts, and presumablythe underlying mantle, the (230Th/232Th) ratio of the rhyolitesupon eruption could be generated by in situ decay in about 50000 years. Limited (5%) assimilation of old crust would hastenthe lowering of (230Th/232Th) and allow the process to takeplace in as little as 30 000 years. Final crystallization ofthe Alid granophyre occurred rapidly and at shallow depths at20–25 ka, as confirmed by analyses of mineral separatesand ion microprobe data on individual zircons. Evidently, 30000–50 000 years were required for extraction of basaltfrom its mantle source region, subsequent crystallization andmelt extraction to form silicic magmas, and final crystallizationof the shallow intrusion. The granophyre was then ejected duringeruption of the comagmatic rhyolites. KEY WORDS: U-series; zircon; ion microprobe; volcano; geochronology  相似文献   

18.
Anthropogenic arsenic menace in Delhi Yamuna Flood Plains   总被引:2,自引:1,他引:1  
Arsenic, one of the most poisonous chemical elements, was analyzed in the waters of the host of the 2010 Commonwealth Games, i.e., New Delhi. The study revealed shocking outcomes with arsenic concentrations well beyond the safe limits set by WHO, and a maximum concentration up to 180 ppb was found in the groundwater. Analysis of around 120 water samples collected extensively along the Yamuna Flood Plain showed that more than 55% had arsenic contamination beyond the WHO limit of 10 ppb. The maximum value of arsenic in coal and fly ash from Rajghat coal-based thermal power plant contained 200 and 3,200 ppb, respectively. Moreover, the ore petrography of coal samples shows the presence of arsenopyrite mineral. Maximum concentration of arsenic contamination is found within a 5-km radius from power plants. In the perspective of Delhi, arsenic contamination is purely anthropogenic due to coal-based thermal power plants, which had already shown toxic arsenic, fluorine and China-type coal effects. The presence of such power plants in coal field locations, e.g., West Bengal and Bangladesh, could release the arsenic due to combustion in superthermal power plants, thus accentuating the arsenic concentration besides the natural arsenic coming from the foreland basins of the Himalaya in Indian sub-continent.  相似文献   

19.
粉煤灰土壤及所产蔬菜的有害元素含量变化和环境意义   总被引:1,自引:0,他引:1  
利用南京第二热电厂湿排的粉煤灰,进行了改良蔬菜土壤的试验,并对试验用的粉煤灰、不同施灰量的土壤及所产蔬菜共38 个样品的有害元素和放射性元素含量进行了系统的测定。结果表明:这些元素在土壤中的含量与粉煤灰施用量无明显相关性;在本次试验范围内施用粉煤灰没有造成土壤的污染;其所产蔬菜的这些元素含量也均低于国家卫生标准限值,食用是安全的。  相似文献   

20.
Hydro-mechanical evaluation of stabilized mine tailings   总被引:3,自引:0,他引:3  
. In this study, mine tailings waste was stabilized using a combination of lime, fly ash type "C", and aluminum. Treated samples were subjected to mineral identification for evaluating the formation of ettringite and gypsum. Also, unconfined compression, hydraulic conductivity, and cyclic freeze and thaw tests were performed to evaluate the hydro-mechanical properties of the stabilized samples. Experimental results have shown that the application of lime and fly ash type "C" to high sulfate content tailings has improved its plasticity, workability, and volume stability. Moreover, upon addition of aluminum to lime and fly ash in a sulfate-rich environment, ettringite and calcium sulfo-aluminate hydrate are formed in these samples. Application of 5% lime, 10% fly ash type "C", in combination with 110 ppm aluminum, resulted in the formation of a solid monolith capable of producing more than 1,000 kPa of unconfined compressive strength, and reduced tailings permeability to 1.96᎒–6 cm s–1, which is less than the recommended permeability of 10–5 cm s–1 by most environmental protection agencies for reusability of solidified/stabilized samples. The permeability of the treated tailings samples remained below the recommended permeability, even after exposing the treated samples to 12 freeze and thaw cycles. Therefore, based on the experimental results, it is concluded that treatment of high sulfate-content tailings with lime and fly ash, combined with the availability of aluminum for reactions, is a successful method of solidifying highly reactive mine tailings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号