首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
辽宁后仙峪硼矿床氩-氩定年及其地质意义   总被引:1,自引:1,他引:0  
汤好书  陈衍景  武广 《岩石学报》2009,25(11):2752-2762
辽吉硼矿带是世界级非金属成矿省,但其成矿时代研究薄弱,成因类型和构造环境认识分歧.本文报道新获得的后仙峪超大型硼镁矿床金云母~(40)Ar-~(39)Ar年龄,并厘定成矿时代.主矿体金云母氩-氩坪年龄为884.4±8.9Ma(MSWD=0.47),正、反等时线年龄分别为885.0±7.5 Ma(MSWD=0.55)和885.8±7.3 Ma(MSWD=0.79),表明主成矿事件发生在885Ma左右,可能与Rodinia超大陆汇聚事件有关.矿体与闪长岩脉接触带蚀变岩的金云母氩-氩坪年龄为386.5±3.9Ma(MSWD=1.4),正、反等时线年龄分别为386.7±5.3 Ma(MSWD=2.6)和387.1±7.2 Ma(MSWD=3.9),代表成矿后局部改造事件的年龄,后期改造与早泥盆世岩浆作用有关.  相似文献   

2.
大兴安岭地区德尔布干断裂带北段构造年代学研究   总被引:16,自引:4,他引:12  
德尔布干断裂带是大兴安岭隆起西侧NE向的重要断裂带,处在海拉尔-拉布达林-根河盆地西缘,是著名德尔布干成矿区东南边界断裂带.为了确定德尔布干断裂带运动性质、活动时间,深入探讨该断裂带与中生代海拉尔-拉布达林-根河盆地及大兴安岭盆山格局、认识德尔布干断裂带多金属矿床成因等问题,本文应用锆石SHRIMP和云母40Ar/39Ar定年技术,分别对断裂带内的细粒黑云母花岗岩侵入体、韧性变形的花岗闪长质片麻岩、白云母石英片岩,进行了同位素年代学研究.其中花岗闪长质片麻岩岩浆型锆石SHRIMP谐和年龄300.6±9.3Ma,为花岗闪长质片麻岩海西期的侵位年龄;而花岗闪长质片麻岩中黑云母40Ar/39Ar坪年龄是130.9±1.4Ma,白云母石英片岩的白云母40Ar/39Ar坪年龄是115.6±1.6Ma,代表早白垩世伸展构造变形年龄;细粒黑云母花岗岩侵入体岩浆型锆石SHRIMP谐和年龄130.1±1.4Ma,为同伸展构造变形侵位的岩浆事件.上述地质年代说明德尔布干断裂带是早白垩世(110~130Ma)该区最年轻的重大伸展构造变形产物.控制NE向大兴安岭隆起和中生代海拉尔-拉布达林-根河等火山沉积盆地的发育格局、以及中生代以来的地壳演化与成矿类型.  相似文献   

3.
The relation of shock to the drop in the 401Ar/391Ar ratio seen at high release temperatures in some neutron-irradiated lunar samples is investigated through measurements of the 401Ar/391Ar ratio in gas samples released by stepwise heating of rock samples previously subjected to shock, either in the laboratory or in nature.Explosives were used to shock solid pieces and powder of a basalt from a diabase dike in Liberia to calculated pressures of 65, 150 and 270 kbar. These, an unshocked sample of the powder, two naturally shocked samples from the Brent impact crater in Canada, one unshocked sample from near the crater, and appropriate monitors were irradiated. Ar from stepwise heating was analyzed.The unshocked basalt shows a good 401Ar/391Ar plateau at age 198 ± 9 m.y. in agreement with a previous result of 186 ± 2 m.y. The shocked samples contain varying amounts of implanted atmospheric Ar, the isotopes of which have experienced mass fractionation. This effect is small enough in four samples so that the linearity of their graphs of 391Ar/40Ar vs 36Ar/40Ar is evidence of a plateau. The ages of these samples are then 201 ± 10, 205 ± 11, 205 ± 12 and 201 ± 9 m.y. It appears that the shock has had little effect on the 40Ar-39Ar age spectrum, although the release patterns of the 391Ar are shifted downward by the order of 200°C. Shock implantation of Ar was at lower shock pressure, in the presence of less Ar, and into a less porous material than previously demonstrated.The Brent Crater samples do not all show good plateaus, but do indicate an age of ~420 m.y. for the crater event and 795 ± 24 m.y. for the rock formation, in agreement with previous results.None of the 401Ar/391Ar profiles shows a drop at high temperature, but a possible role of shock implantation of Ar is indicated in the production of this effect. Further experiments are suggested.  相似文献   

4.
《China Geology》2021,4(1):67-76
The Pamir Plateau comprises a series of crustal fragments that successively accreted to the Eurasian margin preceded the India-Asia collision, is an ideal place to study the Mesozoic tectonics. The authors investigate the southern Tashkorgan area, northeastern Pamir Plateau, where Mesozoic metamorphic and igneous rocks are exposed. New structural and biotite 40Ar-39Ar age data are presented. Two stages of intense deformation in the metamorphic rocks are identified, which are unconformably covered by the Early Cretaceous sediment. Two high-grade metamorphic rocks yielding 128.4 ± 0.8 Ma and 144.5 ± 0.9 Ma 40Ar-39Ar ages indicate that the samples experienced an Early Cretaceous cooling event. Combined with previous studies, it is proposed that the Early Cretaceous tectonic records in the southern Tashkorgan region are associated with Andean-style orogenesis. They are the results of the flat/low-angle subduction of the Neotethyan oceanic lithosphere.©2021 China Geology Editorial Office.  相似文献   

5.
《Quaternary Science Reviews》2007,26(13-14):1861-1870
Pyroclastic fall deposits of the paired Rotoiti and Earthquake Flat eruptions from the Taupo Volcanic Zone (New Zealand) combine to form a widespread isochronous horizon over much of northern New Zealand and the southwest Pacific. This horizon is important for correlating climatic and environmental changes during the Last Glacial period, but has been the subject of numerous disparate age estimates between 35.1±2.8 and 71±6 ka (all errors are 1 s.d.), obtained by a variety of techniques. A potassium–argon (K–Ar) age of 64±4 ka was previously determined on bracketing lavas at Mayor Island volcano, offshore from the Taupo Volcanic Zone. We present a new, more-precise 40Ar/39Ar age determination on a lava flow on Mayor Island, that shortly post-dates the Rotoiti/Earthquake Flat fall deposits, of 58.5±1.1 ka. This value, coupled with existing ages from underlying lavas, yield a new estimate for the age of the combined eruptions of 61.0±1.4 ka, which is consistent with U–Th disequilibrium model-age data for zircons from the Rotoiti deposits. Direct 40Ar/39Ar age determinations of plagioclase and biotite from the Rotoiti and Earthquake Flat eruption products yield variable values between 49.6±2.8 and 125.3±10.0 ka, with the scatter attributed to low radiogenic Ar yields, and/or alteration, and/or inheritance of xenocrystic material with inherited Ar. Rotoiti/Earthquake Flat fall deposits occur in New Zealand in association with palynological indicators of mild climate, attributed to Marine Isotope Stage (MIS) 3 and thus used to suggest an age that is post-59 ka. The natures of the criteria used to define the MIS 4/3 boundary in the Northern and Southern hemispheres, however, imply that the new 61 ka age for the Rotoiti/Earthquake Flat eruption deposits will provide the inverse, namely, a more accurate isochronous marker for correlating diverse changes across the MIS 4/3 boundary in the southwest Pacific.  相似文献   

6.
A typical HP/MT (high pressure/medium temperature) eclogite from Xiongdian, northwestern Dabie Mountains, has been geochronologically studied using the single-zircon U-Pb, 40Ar-39Ar and Sm-Nd methods. Prismatic zircons occurring as inclusions within garnets define a minimum crystallization age of 399.5±1.6 Ma. 40Ar-39Ar dating on amphibole gives a plateau age.of 399.2 ± 4 Ma, which is interpreted as a retrogression age of amphibolite facies. This integrated study enables us to conclude that the age of high-pressure metamorphism is older than 399.5 ± 1.6 Ma, suggesting Caledonian collision between the North China and Yangtze plates. Round zircon within the aggregate of quartz and muscovite gives a concordant age of 301± 2 Ma, reflecting a later retrogression event. An age profile of post-eclogite metamorphism is documented, including amphibolite facies metamorphism at 399.2 Ma shortly after eclogitization and later retrogressive metamorphism at 301 Ma. Sm-Nd mineral isochron of garnet+omphacite gives  相似文献   

7.

40Ar‐39Ar age spectra on minerals from granitic, metamorphic and hydrothermal rocks confirm that the Early Proterozoic Tennant Creek Block was affected by two thermal events during its evolution. Although extensive alteration of biotite and feldspar within the granites precludes the direct determination of their cooling history, 40Ar‐39Ar analyses for hydrothermal muscovite from several nearby gold‐copper deposits indicate that regional cooling to below ~ 300°C was not prolonged. Flat, uniform muscovite age spectra were obtained from gold deposits east of the Tennant Creek town site and indicate a minimum age of 1825–1830 Ma for their formation. These ages are within error of those for the felsic volcanism of the Flynn Subgroup, and a genetic relationship between the two may exist. Samples from gold deposits elsewhere in the area indicate disturbance of the K‐Ar isotope system. The second thermal event to affect the region occurred at around 1700 Ma, and is confirmed by the 40Ar‐39Ar muscovite ages for the ‘Warrego’ granite (1677 ± 4 Ma) and for the metamorphism of the Wundirgi Formation (1696 ± 4 Ma).  相似文献   

8.
Life spans and thermal evolution of hydrothermal systems are of fundamental metallogenic importance. We were able to establish the chronology and cooling history of the Zaldívar porphyry copper deposit (Northern Chile) by applying a combination of different isotopic dating methods in minerals with different closure temperatures, including 40Ar/39Ar geochronology and zircon fission track thermochronology, together with fluid inclusion thermometry and previous published U–Pb zircon geochronology. The hydrothermal mineralization in the Zaldívar deposit is genetically related to the Llamo Porphyry unit. Samples of igneous biotites from this intrusion yielded 40Ar/39Ar plateau ages between 35.5 ± 0.7 and 37.7 ± 0.4 Ma defining a weighted average of 36.6 ± 0.5 Ma (2σ). In contrast, one sample from the Zaldívar porphyry, one from the andesites, and two from the Llamo porphyry yielded considerably younger fission track ages of approximately 29 Ma with a weighted mean for all ages of 29.1 ± 1.7 Ma (2σ). Thermal and compositional constraints for the hydrothermal system in the Zaldívar deposit from fluid inclusions thermometry show that at least three fluid types broadly characterize two main hydrothermal episodes during the evolution of the deposit. The main mineralization and alteration event is characterized by high temperature (above 320°C) hypersaline fluids (salinity between 30 and 56 wt.% NaCl equivalents) coexisting with low-density gas-rich inclusions (salinity less than 17 wt.% NaCl equivalents) that homogenizing into the gas phase at temperatures above 350°C. The second episode corresponds to a low-temperature event which is characterized by liquid-rich fluid inclusions that homogenize into the liquid phase at temperatures ranging from 200°C to 300°C with salinities lower than 10 wt.% NaCl equivalents. The 40Ar/39Ar data (36.6 ± 0.5 Ma, weighted average) obtained from igneous biotites represent the minimum age for the last high-temperature (above 300°C) hydrothermal pulse. When compared with previously published U–Pb ages (38.7 ± 1.3 Ma) in zircons from the Llamo porphyry, a close temporal relationship between crystallization of the parental intrusion and the thermal collapse of the last high-temperature hydrothermal event is evident. Cooling took place from approximately 800°C (crystallization of the intrusive complex defined by zircon U–Pb ages) to below 300 ± 50°C (biotite 40Ar/39Ar closure temperature) within approximately 1.5 m.y. Because the thermal annealing of fission tracks in zircons occurs at temperatures of 240 ± 30°, the zircon fission track (ZFT) ages of 29.1 ± 1.7 Ma (2σ) mark the end of the thermal activity in the Zaldívar area, specifically the time when the whole area cooled below this temperature, well after the collapse of the main hydrothermal event in the Zaldívar porphyry copper deposit. This cooling age roughly coincides with the age defined for the emplacement of dacitic dikes at 31 ± 2.8 Ma (2σ) (published K–Ar whole rock), 5 km south of the Zaldívar deposit, in the Escondida area. This late magmatic pulse probably is responsible for high heat flow in the Zaldívar deposit as late as 29 Ma. There is no evidence that the low temperature hydrothermal pulse recognized by fluid inclusion studies is related to this thermal event. The zircon fission track cooling ages are interpreted to be related to the time lag required for complete relaxation of the perturbation of the isotherms in the geothermal field imposed by the intrusion of magmatic bodies, with or without any association with low temperature hydrothermal activity.  相似文献   

9.
The Yaogangxian deposit in the central Nanling region, South China consists of vein-type ore bodies hosted in Cambrian to Jurassic strata and Mesozoic granitic intrusions. Wolframite and molybdenite are the dominant ore minerals intergrown with gangue minerals of quartz, feldspar, phlogopite, and muscovite. We have carried out molybdenite Re–Os and phlogopite and muscovite 40Ar/39Ar dating to better understand the timing and genesis of mineralization. Re–Os dating of eight molybdenite samples yielded model ages ranging from 152.0±3.5 to 161.1±4.5 Ma, with an average of 156.0 Ma. The Re–Os analyses give a well-defined 187Re/187Os isochron with an age of 154.9±2.6 Ma (MSWD=2.4). Hydrothermal phlogopite and muscovite display extremely flat 40Ar/39Ar age spectra. Phlogopite yields a 40Ar/39Ar plateau age of 153.0±1.1 Ma, whereas muscovite yields a plateau age of 155.1±1.1 Ma. Both 40Ar/39Ar ages are in good agreement with the Re–Os ages, placing the timing of tungsten mineralization at about 154 Ma. This age is consistent with the field relationships. Our new data, when combined with published geochronological results from other major deposits in this region, suggest that large scale W–Sn mineralization occurred throughout the central Nanling region in the Late Jurassic.  相似文献   

10.
塔里木南缘煌斑岩的时代及其地质意义   总被引:7,自引:2,他引:7       下载免费PDF全文
郭坤一  张传林  赵宇  董永观  王爱国 《地质科学》2003,38(4):532-534,518
在塔里木南缘皮山县境内发现东西向煌斑岩带,它们呈脉状产出,围岩为前寒武纪绢云绿泥石英片岩、变质粉砂岩及石炭纪玄武岩、结晶灰岩等。岩石地球化学特征与典型地区的钾镁煌斑岩相似。从煌斑岩中挑选的金云母经ArAr测年,获得理想的坪年龄为217.65±0.39Ma,40Ar/36Ar39Ar/36Ar等时线年龄为217.27±1.38Ma,与坪年龄一致。这一年龄值代表了煌斑岩的形成时代,与阿尔金断裂形成时代基本一致,它代表了塔里木南缘在这一时期重要的走滑事件。煌斑岩带的发现,对塔里木南缘的金刚石找矿勘查具有重要意义。  相似文献   

11.
Four slate samples from subduction complex rocks exposed on the south coast of New South Wales, south of Batemans Bay, were analysed by K–Ar and 40Ar/39Ar step‐heating methods. One sample contains relatively abundant detrital muscovite flakes that are locally oblique to the regional cleavage in the rock, whereas the remaining samples appear to contain sparse detrital muscovite. Separates of detrital muscovite yielded plateau ages of 505 ± 3 Ma and 513 ± 3 Ma indicating that inheritance has not been eliminated by metamorphism and recrystallisation. Step‐heating analyses of whole‐rock chips from all four slate samples produced discordant apparent age spectra with ‘saddle shapes’ following young apparent ages at the lowest temperature increments. Elevated apparent ages associated with the highest temperature steps are attributed to the presence of variable quantities of detrital muscovite (<1–5%). Two whole‐rock slate samples yielded similar 40Ar/39Ar integrated ages of ca 455 Ma, which are some 15–30 million years older than K–Ar ages for the same samples. These discrepancies suggest that the slates have also been affected by recoil loss/redistribution of 39Ar, leading to anomalously old 40Ar/39Ar ages. Two other samples, from slaty tectonic mélange and intensely cleaved slate, yielded average 40Ar/39Ar integrated ages of ca 424 Ma, which are closer to associated mean K–Ar ages of 423 ± 4 Ma and 409 ± 16 Ma, respectively. Taking into account the potential influences of recoil loss/redistribution of 39Ar and inheritance, the results from the latter samples suggest a maximum age of ca 440 Ma for deformation/metamorphism. The current results indicate that recoil and inheritance problems may also have affected whole‐rock 40Ar/39Ar data reported from other regions of the Lachlan Fold Belt. Therefore, until these effects are adequately quantified, models for the evolution of the Lachlan Fold Belt, that are based on such whole‐rock 40Ar/39Ar data, should be treated with caution.  相似文献   

12.
Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau ages of 188.7±0.7 Ma, 189.7±0.6 Ma and 192.5±0.7 Ma respectively, which indicates a syn-orogenic, sinistral strike-slip thermal event. This displacement movement derived from the continent-continent collision of the North and South China blocks took place in the Early Jurassic and after uplifting of high-pressure to ultrahigh-pressure slabs to the mid-crust. It is suggested that during the collision the Tanlu fault zone was an intracontinental transform fault caused by differential subduction speeds. The 40Ar/39Ar ages of mylonite whole-rock and muscovite from the later Tanlu ductile shear zone suggest another sinistral strike-slip cooling event at 128 Ma. During this strike-slip faulting, large-scale intrusion and doming uplift occurred in the eastern part of the Dabie orogenic belt. Data o  相似文献   

13.
郑义  张莉  郭正林 《岩石学报》2013,29(1):191-204
新疆铁木尔特铅锌铜矿床位于阿尔泰造山带南缘克兰盆地内,矿体呈脉状产于康布铁堡组火山岩地层中.为准确厘定其成岩成矿时代,作者分别对矿区赋矿火山岩和含矿石英脉中的云母进行了年龄测定,获得2件火山岩样品的锆石LA-ICP-MS U-Pb年龄分别为396±5Ma和405±5Ma,2件黑云母样品的40 Ar/39 Ar坪年龄分别为240±2Ma和235±2Ma,相应的39Ar/36Ar-40Ar/36Ar等时线年龄分别为238±3Ma和233±3Ma,与坪年龄在误差范围内一致.据此,认为矿区内康布铁堡组火山岩形成于396~405 Ma,成矿作用发生于235~240Ma;成岩年龄早于成矿年龄约165Ma.因此,铁木尔特铅锌铜矿为典型的后生矿床,而不可能是同生VMS型矿床.考虑到成矿年龄稍晚于区域大规模变质作用(约250Ma),推测成矿作用与阿尔泰造山带碰撞造山作用有关.结合矿床地质特征和流体包裹体特征,认为铁木尔特铅锌铜矿为典型的陆陆碰撞体制下形成的造山型矿床.  相似文献   

14.
《Precambrian Research》1987,37(3):191-197
A low pressure metamorphic Pan African terrain, composed mainly of schists and hornfels, ranging from high greenschist to low amphibolite facies, is exposed west of Dahab, southeastern Sinai, located between the metamorphic Kid Complex and the Feirani Volcanics.The studied metamorphic unit was dated using RbSr and KAr methods. A RbSr whole-rock isochron (based on seven samples) yields an age of 602 ± 11 Ma with an initial (87Sr/86Sr) ratio of 0.7041 ± 4. The RbSr age is assumed to be the age of a metamorphic phase (600 ± 10 Ma) well known in the area. On the other hand, KAr whole-rock ages (based on nine samples) show different values ranging from 590 to 526 Ma. These low KAr ages are due to the resetting of the KAr system by a thermal event, before 530 Ma affecting the Ar behaviour without disturbing the RbSr system. The Ar escape took place mainly from K-bearing feldspars, which were not affected by later textural, crystallographic or mineralogic variations.  相似文献   

15.
Abstract Recent investigations reveal that the ultrahigh‐pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile‐brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile‐brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite‐plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite‐facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K‐feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K‐feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh‐pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3–4 km/Ma from the mantle (about 80–100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20‐30km at 220 Ma), and at the rate of 1–2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.  相似文献   

16.
The Olympic Cu–Au Province, Gawler Craton, is host to the Olympic Dam and Prominent Hill iron oxide–copper–gold (IOCG) deposits. Both of these deposits and the region between the two are covered by Neoproterozoic to Cenozoic sediment, making inferences about prospectivity in this portion of the Olympic Domain reliant on geophysical interpretation and sparse drill hole information. We present new U–Pb zircon sensitive high resolution ion microprobe (SHRIMP) dates from two basement intersecting drill holes in the region between Olympic Dam and Prominent Hill that show bimodal volcanism occurred at 2555 ± 5 Ma, and was followed by intrusion of tonalite at 2529 ± 6 Ma. Laser 40Ar/39Ar dating of biotite and muscovite from the tonalite yields ages around ca 2000 Ma, consistent with slow cooling trends observed in Archean rocks elsewhere in the northern Gawler Craton. Step heating experiments on K-feldspar from the same tonalite yields an age spectrum with older ages around 1740 Ma from the highest temperature steps becoming progressively younger to a minimum of 1565 Ma in the lowest temperature heating steps; this is consistent with either Paleoproterozic cooling to final closure of K-feldspar by 1565 Ma or a reheating event at ca 1565 Ma, with the latter more likely, given the evidence for sub-solidus alteration of the K-feldspar. Sericite within hematite–sericite–chlorite altered portions of the tonalite yield a poorly defined age of ca 1.6 Ga. Taken together the 40Ar/39Ar data providing evidence for a fluid event affecting this region between Olympic Dam and Prominent Hill during the early Mesoproterozoic. Low temperature quartz–carbonate–adularia veins occur in <10 cm wide fractures within basalt in one drill hole in this region. Adularia from these veins yields 40Ar/39Ar ages that span from ca 1.3–1.1 Ga. This age range is interpreted to approximate either the timing of adularia formation during a hydrothermal event or the timing of resetting of the 40Ar/39Ar systematics within the adularia as a result of fluid flow in this sample. This is evidence for a mid-Mesoproterozoic fluid event in the Gawler Craton and necessitates a reconsideration of the long-term stability of the craton, as it appears to have been affected, at least locally, by fluid flow related to a much larger event within the Australian continent, the Musgrave Orogeny.  相似文献   

17.
The Koktokay No. 3 pegmatite is the largest Li–Be–Nb–Ta–Cs pegmatitic rare‐metal deposit of the Chinese Altai orogenic belt, and is famous for its concentric ring zonation pattern (nine internal zones). However, the formation age and evolution time span have been controversial. Here, we present the results of LA‐ICP–MS zircon U–Pb dating and muscovite 40Ar–39Ar dating. Four groups of zircon U–Pb ages (~210 Ma, ~193–198 Ma, ~186–187 Ma and ~172 Ma) for Zones II, V, VI, VII, and VIII, and a weighed mean 206Pb/238U age of 965 ± 11 Ma for Zone IV are identified. Also, Zones II, IV, and VI have muscovite 40Ar–39Ar plateau ages of 179.7 ± 1.1 Ma, 182.1 ± 1.0 Ma, and 181.8 ± 1.1 Ma, respectively. Considering previous U–Pb age studies (Zones I, V, and VII), the ages of emplacement, Li mineralization peak, hydrothermal stage of the No. 3 pegmatite are in ranges of 193–198 Ma, 184–187 Ma and 172–175 Ma, with weighted mean 206Pb–238U ages of 194.8 ± 2.3 Ma, 186.6 ± 1.3 Ma and 173.1 ± 3.9 Ma, respectively. The No. 3 pegmatite formed in the early Jurassic. The results of xenocrysts suggest that there is another pegmatite forming event of around 210 Ma in the mining district and the old zircon U–Pb ages imply that Neoproterozoic crustal rocks pertain to sources of the No. 3 pegmatite. Including the previous muscovite 40Ar–39Ar age studies (Zones I and V), a cooling age range of 177–182 Ma is considered as the time of hydrothermal stage and end of formation. The evolution process of the No. 3 pegmatite lasted 16 Ma. Therein, the magmatic stage continued for 9–11 Myr and the magmatic–hydrothermal transition and hydrothermal stages were sustained at 5–7 Ma. These time spans are long because of huge scale, cupola shape, large formation depth, and complex internal zoning patterns and formation processes. Considering some pegmatite dikes in the Chinese Altai, there is an early Jurassic pegmatite forming event.  相似文献   

18.
Abstract The Sambagawa metamorphic belt exposed in central Shikoku records a high-P–T metamorphic event. It is represented by the Oboke nappe and structurally overlying, internally imbricated, Besshi nappe complex. These major structural units are in ductile thrust contact. A melange is developed along a ductile internal tectonic contact within the Besshi nappe complex. Tectonic emplacement of a high-T enclave (Sebadani eclogite) in the melange zone resulted in the development of a contact metamorphic aureole within the host Sambagawa rocks. 36Ar/40Ar versus 39Ar/40Ar isotope correlation ages recorded by hornblende from the Sambagawa basic schists which surround the Sebadani enclave are 83.4 ± 0.3 Ma (within contact aureole) and 83.6 ± 0.5 Ma (outside aureole). 40Ar/39Ar plateau ages recorded by muscovite from the same samples are 87.9 ± 0.3 and 89.3 ± 0.4 Ma. Amphibole from the amphibolite within the Sebadani enclave records isotope correlation ages of 93.7 ± 1.1 and 96.5 ± 0.7 Ma (massive interior) and 84.6 ± 1.2 Ma (marginal shear zone). Amphibole within the massive amphibolite is significantly higher in XMg than that within the host Sambagawa basic schists. The older ages recorded by amphibole within the Sebadani enclave are interpreted to date cooling through somewhat higher closure temperatures than which characterize the more Fe-rich amphibole in surrounding schists. The younger amphibole age recorded within the marginal shear zone probably indicates that crystallization of amphibole continued until cooling through the relatively lower amphibole closure temperatures. These results, together with the previously published 40Ar/39Ar ages of the Sambagawa schists, suggest: (i) metamorphic culmination occurred in the Besshi nappe complex at c. 100–90 Ma; (ii) at c. 95 Ma the Besshi nappe complex was internally imbricated and tectonic enclaves were emplaced; (iii) at c. 85 Ma, the composite Besshi nappe was rapidly exhumed and tectonically emplaced over the Oboke nappe (which attained peak metamorphic conditions at c. 75 Ma); (iv) the Besshi and Oboke nappe complexes were further exhumed as a coherent tectonic unit and unconformably overlain by the Eocene Kuma Group at c. 50 Ma.  相似文献   

19.
The precision and accuracy of 40Ar/39Ar dates are ultimately linked to co-irradiated reference materials of known age. Here we provide new data from the SK01 sanidine, which was analysed in three different laboratories to evaluate it as a 40Ar/39Ar reference material. Aliquots of 5 mg, incrementally heated in two laboratories, yielded indistinguishable results with a weighted mean age of 27.58 ± 0.06 Ma (95% confidence level). Single-crystal step heating and single-crystal total fusion analyses of SK01 sanidine were undertaken in the third laboratory to further test the intracrystalline homogeneity. For the seven step-heating analyses, six crystals yielded nearly concordant age spectra with 40Ar/39Ar ages ranging from 26.853 ± 0.094 Ma to 26.963 ± 0.067 Ma, whereas one crystal gave an older age of 27.774 ± 0.071 Ma with a slightly discordant age spectrum. Twenty-three single-crystal total fusion analyses yielded 40Ar/39Ar ages ranging from 27.070 ± 0.108 Ma to 27.736 ± 0.062 Ma with a dispersion of ~ 3.8%. The older ages from single-crystal total fusion dates are interpreted to reflect an inherited or excess argon component in some crystals. This is an initial characterisation of the SK01 sanidine, and additional work needs to be conducted to further evaluate the age dispersion so that it can be utilised as a 40Ar/39Ar reference material.  相似文献   

20.
40Ar-39Ar dating of albite from the Meishan and Taocun iron deposits yields plateau ages of 122.90±0.16 Ma and 124.89±0.30 Ma, and isochron ages of 122.60±0.16 Ma and 124.90±0.29 Ma, respectively. Phlogopite from the Zhongshan-Gushan ore field has a plateau age of 126.7±0.17 Ma and an isochron age of 127.21±1.63 Ma. Analysis of regional geodynamic evolution of the middle-lower Yangtze River region suggests that the porphyry iron deposits were formed as a result of large-scale lithosphere delamination and strong sinistral strike-slip movement of the Tancheng Lujiang fault zone. The copper, molybdenum and gold deposit system in the middle-lower Yangtze River region was formed during the stress transition period of the eastern China continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号