首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.  相似文献   

2.
无人机遥感影像林地单株立木信息提取   总被引:2,自引:1,他引:1  
针对无人机遥感技术在提取单株立木信息的限制性问题,提出一种新的自动单株立木信息提取方法。对原始无人机影像进行光谱信息增强处理以突出局部细节特征;通过引入DBI指数自动化确定K-means聚类方法的最优聚类数目,进而对影像像素进行标记;通过利用高斯马尔可夫随机场模型进一步对影像进行分割;使用数学形态学算子等方法对分割结果进行后处理得到单株立木树冠信息,通过图像几何矩原理计算得到单株立木位置以作为其识别的依据。结果表明,应用该提取方法,油松林区和樟子松林区单株立木识别总体精度分别为89.52%和95.65%、单木树冠提取精度分别为81.90%和95.65%,均具有较好地适用性。该方法不需要大量的人工干预和先验知识的输入,大大提高提取方法的自动化程度。  相似文献   

3.
This study presents a hybrid framework for single tree detection from airborne laser scanning (ALS) data by integrating low-level image processing techniques into a high-level probabilistic framework. The proposed approach modeled tree crowns in a forest plot as a configuration of circular objects. We took advantage of low-level image processing techniques to generate candidate configurations from the canopy height model (CHM): the treetop positions were sampled within the over-extracted local maxima via local maxima filtering, and the crown sizes were derived from marker-controlled watershed segmentation using corresponding treetops as markers. The configuration containing the best possible set of detected tree objects was estimated by a global optimization solver. To achieve this, we introduced a Gibbs energy, which contains a data term that judges the fitness of the objects with respect to the data, and a prior term that prevents severe overlapping between tree crowns on the configuration space. The energy was then embedded into a Markov Chain Monte Carlo (MCMC) dynamics coupled with a simulated annealing to find its global minimum. In this research, we also proposed a Monte Carlo-based sampling method for parameter estimation. We tested the method on a temperate mature coniferous forest in Ontario, Canada and also on simulated coniferous forest plots with different degrees of crown overlap. The experimental results showed the effectiveness of our proposed method, which was capable of reducing the commission errors produced by local maxima filtering, thus increasing the overall detection accuracy by approximately 10% on all of the datasets.  相似文献   

4.
多光谱数据的降维处理对基于深度学习的单木树冠检测研究有重要意义,如何使用合适的降维方法以提高单木检测的精度却少有研究讨论。本文使用无人机搭载多光谱相机进行航拍作业,采集研究区内银杏树种多光谱影像。将原始多光谱影像通过特征波段选择、特征提取、波段组合的方法生成5种不同的数据集用于训练3种经典的深度学习网络FPN-Faster-R-CNN,YOLOv3,Faster R-CNN。其中由波段组合方法得到的近红外、红色、绿色波段组合在不同类型的目标检测网络中都有最好的检测结果,其中FPN-Faster-R-CNN网络对银杏树冠的检测精度最高为88.4%,由OIF指标得到的蓝色、红色、近红外波段组合信息量最高,但在所有网络中的平均检测精度最低,仅为79.3%。实验结果表明:在不同波段降维方法中,若降维后的影像中目标物体的色彩与背景差异较明显,且轮廓清晰,则深度学习网络对树冠的检测可获得较好的结果。而影像自身的信息量则对深度学习网络的树冠检测能力的提升作用有限。本研究中针对多光谱影像的降维方法分析,为基于深度学习的单木树冠检测研究提供了重要的实验参考。  相似文献   

5.
Abstract

Individual tree crown segmentation is important step for deriving various information for fine-scale analysis of ecological process. However, only several studies have applied tree crown segmentation in tropical forest ecosystems, especially in mixed peat swamp forests. In this study, hyperspectral data were used to detect changes in the biochemical and biophysical characteristics, which are important factors for tree crown segmentation. Principal Component Analysis method was performed to investigate its influence on crown segmentation. Visually Selected PCs, 160 PCs and 160 Spectral Bands image were used and two segmentation techniques; Watershed Transformation and Region Growing segmentation were applied on those images. The highest accuracy was achieved for the crown segmentation is using Region Growing segmentation, based on 1:1 measurement, D value and RMSE value. The results obtained from 160 PCs image using region growing algorithm shows better accuracy with D value of 0.2 (80% accuracy, 20% error) and RMSE of 9.9 m2.  相似文献   

6.
The aim of this study is to present an automatic approach for olive tree dendrometric parameter estimation from airborne laser scanning (ALS) data. The proposed method is based on a unique combination of the alpha-shape algorithm applied to normalized point cloud and principal component analysis. A key issue of the alpha-shape algorithm is to define the α parameter, as it directly affects the crown delineation results. We propose to adjust this parameter based on a group of representative trees in an orchard for which the classical field measurements were performed. The best value of the α parameter is one whose correlation coefficient of dendrometric parameters between field measurements and estimated values is the highest. We determined crown diameters as principal components of ALS points representing a delineated crown. The method was applied to a test area of an olive orchard in Spain. The tree dendrometric parameters estimated from ALS data were compared with field measurements to assess the quality of the developed approach. We found the method to be equally good or even superior to previously investigated semi-automatic methods. The average error is 19% for tree height, 53% for crown base height, and 13% and 9% for the length of the longer diameter and perpendicular diameter, respectively.  相似文献   

7.
Site productivity is essential information for sustainable forest management and site index (SI) is the most common quantitative measure of it. The SI is usually determined for individual tree species based on tree height and the age of the 100 largest trees per hectare according to stem diameter. The present study aimed to demonstrate and validate a methodology for the determination of SI using remotely sensed data, in particular fused airborne laser scanning (ALS) and airborne hyperspectral data in a forest site in Norway. The applied approach was based on individual tree crown (ITC) delineation: tree species, tree height, diameter at breast height (DBH), and age were modelled and predicted at ITC level using 10-fold cross validation. Four dominant ITCs per 400 m2 plot were selected as input to predict SI at plot level for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). We applied an experimental setup with different subsets of dominant ITCs with different combinations of attributes (predicted or field-derived) for SI predictions. The results revealed that the selection of the dominant ITCs based on the largest DBH independent of tree species, predicted the SI with similar accuracy as ITCs matched with field-derived dominant trees (RMSE: 27.6% vs 23.3%). The SI accuracies were at the same level when dominant species were determined from the remotely sensed or field data (RMSE: 27.6% vs 27.8%). However, when the predicted tree age was used the SI accuracy decreased compared to field-derived age (RMSE: 27.6% vs 7.6%). In general, SI was overpredicted for both tree species in the mature forest, while there was an underprediction in the young forest. In conclusion, the proposed approach for SI determination based on ITC delineation and a combination of ALS and hyperspectral data is an efficient and stable procedure, which has the potential to predict SI in forest areas at various spatial scales and additionally to improve existing SI maps in Norway.  相似文献   

8.
This paper presents a method for individual tree crown extraction and characterisation from a canopy surface model (CSM). The method is based on a conventional algorithm used for localising LM on a smoothed version of the CSM and subsequently for modelling the tree crowns around each maximum at the plot level. The novelty of the approach lies in the introduction of controls on both the degree of CSM filtering and the shape of elliptic crowns, in addition to a multi-filtering level crown fusion approach to balance omission and commission errors. The algorithm derives the total tree height and the mean crown diameter from the elliptic tree crowns generated. The method was tested and validated on a mountainous forested area mainly covered by mature and even-aged black pine (Pinus nigra ssp. nigra [Arn.]) stands. Mean stem detection per plot, using this method, was 73.97%. Algorithm performance was affected slightly by both stand density and heterogeneity (i.e. tree diameter classes’ distribution). The total tree height and the mean crown diameter were estimated with root mean squared error values of 1.83 m and 1.48 m respectively. Tree heights were slightly underestimated in flat areas and overestimated on slopes. The average crown diameter was underestimated by 17.46% on average.  相似文献   

9.
王少腾  耿君  涂丽丽  尹高飞 《遥感学报》2021,25(10):2103-2115
作为森林冠层结构的重要组成部分,树冠形状对冠层间隙率与聚集度指数的计算有重要影响。之前的研究通常将树冠假设为圆锥形、圆柱形、圆锥+圆柱形等形状计算了冠层间隙率与聚集度指数。然而,树冠生长受外部环境以及内部顶端优势等因素的影响,相较于上述理想化的树冠形状,半椭球形更符合树冠自然生长规律。事实上,半椭球形是一种十分常见的树冠形状。本文以树冠在空间呈泊松分布为前提,推导出半椭球形树冠的冠层间隙率与聚集度指数计算公式,并进一步扩展到双半椭球形树冠。同时,以半椭球形树冠为计算基准,对比分析了半椭球形树冠与其他树冠形状冠层间隙率与聚集度指数的相对差异。模拟计算中主要输入参数包括树冠密度、树冠高度、树冠半径以及叶面积指数等。最后通过虚拟场景对结果进行验证。结果表明:(1)半椭球形树冠与其他树冠形状的冠层间隙率有较大差异。随着观测天顶角增加,不同树冠形状与半椭球形树冠的冠层间隙率的相对差异也逐渐增大。当观测天顶角为70°时,圆锥形树冠与半椭球形树冠的冠层间隙率相对差异已接近100%。(2)树冠形状对聚集度指数同样有较明显影响。极端情况下,圆锥形树冠与半椭球形树冠的聚集度指数相对差异达到30%。(3)半椭球形树冠与其他树冠形状的半球空间聚集度指数期望值的差异不容忽视。  相似文献   

10.
机载激光雷达及高光谱的森林乔木物种多样性遥感监测   总被引:1,自引:0,他引:1  
利用机载LiDAR和高光谱数据并结合37个地面调查样本数据,基于结构差异与光谱变异理论,通过相关分析法分别筛选了3个最优林冠结构参数和6个最优光谱指数,在单木尺度上利用自适应C均值模糊聚类算法,在神农架国家自然保护区开展森林乔木物种多样性监测,实现了森林乔木物种多样性的区域成图。研究结果表明,(1)基于结合形态学冠层控制的分水岭算法可以获得较高精度的单木分割结果(R~2=0.88,RMSE=13.17,P0.001);(2)基于LiDAR数据提取的9个结构参数中,95%百分位高度、冠层盖度和植被穿透率为最优结构参数,与Shannon-Wiener指数的相关性达到R~2=0.39—0.42(P0.01);(3)基于机载高光谱数据筛选的16个常用的植被指数中,CRI、OSAVI、Narrow band NDVI、SR、Vogelmann index1、PRI与Shannon-Wiener指数的相关性最高(R~2=0.37—0.45,P0.01);(4)在研究区,利用以30 m×30 m为窗口的自适应模糊C均值聚类算法可预测的最大森林乔木物种数为20,物种丰富度的预测精度为R~2=0.69,RMSE=3.11,Shannon-Wiener指数的预测精度为R~2=0.70,RMSE=0.32。该研究在亚热带森林开展乔木物种多样性监测,是在区域尺度上进行物种多样性成图的重要实践,可有效补充森林生物多样性本底数据的调查手段,有助于实现生物多样性的长期动态监测及科学分析森林物种多样性的现状和变化趋势。  相似文献   

11.
用地基激光雷达提取单木结构参数——以白皮松为例   总被引:6,自引:1,他引:5  
以白皮松(Pinus bungeana Zucc)为研究对象,针对地基激光雷达TLS扫描的3维点云数据在单株木垂直方向的分布特征,提出了一种基于体元化方法的树干覆盖度变化检测方法,获取单木枝下高;然后根据获取的枝下高引入2维凸包算法获取垂直方向分层树冠轮廓,并计算树冠体积和冠幅;同时获取的单木参数还有胸径与树高。结果表明:单木枝下高的估测精度较高,R2与RMSE分别为0.97 m和0.21 m;胸径估测结果的R2与RMSE分别为0.79 cm和1.07 cm;采用逐步线性回归方法建立单木树冠体积与其他单木参数的相关关系,模型变量包括冠幅、叶子填充树冠长度和胸径,样本数为20,模型的R2与RMSE分别是0.967 m3和2.64 m3。本文方法能较准确地估测枝下高,TLS数据具有对树冠结构3维建模的潜力。  相似文献   

12.
树冠形状对孔隙率及叶面积指数估算的影响分析   总被引:1,自引:1,他引:0  
叶片在树冠尺度的聚集是森林场景中的重要聚集形式,模型中常假设树冠为规则的几何形体(椭球、圆锥、圆锥+圆柱等)。对树冠形状归属进行判断时界限并不明显,从而具有很强的主观性。本文首先扩展了Nilson的森林孔隙率模型,使其适用于椭球、圆锥、圆锥+圆柱等3种常见形状的树冠,并基于该模型分析了孔隙率、聚集指数对树冠形状的敏感性。同时,本文还分析了树冠形状对叶面积指数(LAI)地面间接测量精度的影响。基于不同形状树冠的模拟数据分析发现,树冠的体积、投影面积是树冠形状产生作用的主要因子,在冠层底部椭球形树冠和圆锥+圆柱形树冠的平均孔隙率、聚集指数都非常接近,而圆锥形树冠与两者存在较大差异。树冠形状的错误设置在极端情况下可导致估算的真实LAI误差超过25%。  相似文献   

13.
针对大光斑激光雷达回波信号噪声影响森林冠顶高估测精度,且回波分析法判定回波位置受限于平坦地区的问题,利用高斯低通滤波和小波去噪两种方法对GLAS波形进行去噪处理,提出了结合均方根倍差法和回波分析法来判定回波位置的有效算法。经小波去噪后信号的信噪比23.360 704,均方根误差为0.000 233 3,经均方根倍差法和回波分析法相结合来判定回波位置估测的冠顶高结果与实测结果相关性系数r值为0.864,效果均优于高斯低通滤波去噪。基于GLAS回波数据实验结果表明:小波去噪较好地实现了对回波信号的去噪处理,均方根倍差法和回波分析法相结合,实现了对坡度相对较大地区的GLAS波形的回波开始位置和地面回波位置的准确判定,对森林冠顶高的精确估算具有重要意义。  相似文献   

14.
无人机航测技术在森林蓄积量估测中的应用   总被引:5,自引:0,他引:5  
无人机(UAV)航测技术是近年来发展起来的快速获取高分辨率影像的测绘新技术。森林蓄积量估算需要快速高效地获取森林遥感影像。虽然利用卫星和机载雷达同样可获取高分辨率遥感影像,但无人机航测技术与其相比具有飞行成本低、外业周期短、机动灵活等优点。本文利用无人机航测系统获取了案例地区DSM和DEM,采用最大邻域法提取了树高,采用分水岭算法分割了树冠信息,并以树高和冠幅作为解释变量的立木材积二元模型估算了森林蓄积量。结果表明,树高提取精度为83.73%,冠幅提取精度为86.98%,林分蓄积量估算精度为81.80%。  相似文献   

15.
利用遥感进行退耕还林成活率及长势监测方法的研究   总被引:2,自引:0,他引:2  
黄建文  鞠洪波  赵峰  陈巧  马红 《遥感学报》2007,11(6):899-905
本文以张家口退耕还林工程的新造经济林为例,提出了一种利用高分辨率遥感技术监测新造林成活率及长势的方法。主要采用面向对象的信息提取技术提取退耕地新造林的树冠信息。开发了基于树冠分布图的树冠因子提取程序,计算树冠因子,统计造林成活率,从而掌握新造林地的现状。最后,根据实际测量的数据进行误差检验,由遥感数据自动提取的树冠冠幅平均误差为:东西冠幅为0.337m,南北冠幅为0.433m;计算新造林成活率的精度达到了89.837%。为退耕还林工程科学,高效的管理及决策支持提供了依据。  相似文献   

16.
以浙江省海宁市4种代表行道树(广玉兰、无患子、悬铃木、香樟树)为研究对象,结合无人机(UAV)影像和三维激光扫描数据,利用ContextCapture、LiDAR360软件完成点云拼接、滤波、降噪和编辑,通过迭代最近点算法实现点云精细匹配,完成多平台点云数据融合,进而得到数字表面模型与数字高程模型,并制作冠层高度模型;采用分水岭分割算法对不同行道树树种的冠层高度模型进行单木分割,并综合局部最大值法实现单木树高、冠幅的参数提取。结果表明,本文方法进行行道树单木分割的精度高,树高、冠幅参数提取值的效果好,满足行道树几何参数调查要求。  相似文献   

17.
UAVs are fast emerging as a remote sensing platform to complement satellite based remote sensing. Agriculture and ecology is one of the important applications of UAV remote sensing, also known as low altitude remote sensing (LARS). This work demonstrates the use and potential of LARS in agriculture, particularly small holder open field agriculture. Two UAVs are used for remote sensing. The first UAV is a fixed wing aircraft with a high spatial resolution visible spectrum also known as RGB camera as a payload. The second UAV is a quadrotor UAV with an RGB camera interfaced to an on-board single board computer as the payload. LARS was carried out to acquire aerial high spatial resolution RGB images of different farms. Spectral–spatial classification of high spatial resolution RGB images for detection, delineation and counting of tree crowns in the image is presented. Supervised classification is carried out using extreme learning machine (ELM), a single hidden layer feed forward network neural network classifier. ELM was modelled for RGB values as input feature vectors and binary (tree and non-tree pixels) output class. Due to similarities in spectral intensities, some of the non-tree pixels were classified as tree pixels and in order to remove them, spatial classification was performed on the image. Spatial classification was carried out using thresholded geometrical property filtering techniques. Threshold values chosen for carrying out spatial classification were analysed to obtain optimal values. Finally in the delineation and counting, the connected tree crowns were segmented using Watershed algorithm performed on the image after marking individual tree crowns using Distance Transform method. Five representative UAV images captured at different altitudes with different crowns of banana plant, mango trees and coconut trees were used to demonstrate the performance of the proposed method. The performance was compared with the traditional KMeans spectral–spatial method of clustering. Results and comparison of performance parameters of KMeans spectral–spatial and ELM spectral–spatial classification methods are presented. Results indicate that ELM performed better than KMeans.  相似文献   

18.
Forest data acquisition, which is of crucial importance for modeling global biogeochemical cycles and climate, makes a contribution to building the ecological Digital Earth (DE). Due to the complex calculations and large volumes of data associated with high-resolution images of large areas, accurate and effective extraction of individual tree crowns remains challenging. In this study, two GeoEye-1 panchromatic images of Beihai and Ningbo in China with areas of 5 and 25 km2, respectively, were used as experimental data to establish a novel method for the automatic extraction of individual tree crowns based on a self-adaptive mutual information (SMI) algorithm and tile computing technology (SMI-TCT). To evaluate the performance of the algorithm, four commonly used algorithms were also applied to extract the individual tree crowns. The overall accuracy of the proposed method for the two experimental areas was superior to that of the four other algorithms, with maximum extraction accuracies of 85.7% and 63.8%. Moreover, the results also indicated that the novel method was suitable for individual tree crowns extraction in sizeable areas because of the multithread parallel computing technology.  相似文献   

19.
激光雷达森林参数反演研究进展   总被引:6,自引:0,他引:6  
李增元  刘清旺  庞勇 《遥感学报》2016,20(5):1138-1150
激光雷达通过发射激光能量和接收返回信号的方式,来获取高精度的森林空间结构和林下地形信息。全波形激光雷达通过记录返回信号的全部能量,得到亚米级植被垂直剖面;离散回波激光雷达记录的单个或多个回波,表示来自不同冠层的回波信号。星载激光雷达一般采用全波形或光子计数激光剖面系统,仅能获取卫星轨道下方的单波束或多波束数据,用于区域/全球范围的森林垂直结构及变化观测。机载激光雷达多采用离散回波或全波形激光扫描系统,能够获取飞行轨迹下方特定视场范围内的扫描数据,用于林分/区域范围的森林结构观测。地基激光雷达多采用离散回波激光扫描系统,获取以测站为中心的球形空间内扫描数据,用于单木/样地范围的森林结构观测。激光雷达单木因子估测方法可分为CHM单木法、NPC单木法和体元单木法3类。CHM单木法通过局部最大值识别树冠顶点,采用区域生长或图像分割算法识别树冠边界或树冠主方向,NPC单木法一般通过空间聚类或形态学算法识别单木,体元单木法在3维体元空间采用区域生长或空间聚类算法识别树冠。根据激光雷达冠层高度分布可以估测林分因子,冠层高度分布特征来自于离散点云或全波形。多时相激光雷达可用于森林生长量、生物量变化等监测,以及森林采伐、灾害等引起的结构变化监测。随着激光雷达技术的发展,它将在森林调查、生态环境建模等生产与科学研究领域中得到更为广泛的应用。  相似文献   

20.
Urban green space is important for the well-being of urban residents. Seeking for three spatial dimension stereopsis is a very important issue in investigating urban green space. A potential applicability in the domain of urban tree space measurement and modelling has been explored based on LiDAR data in our study. This paper aims to present a framework—through a more automatic way—to extract canopy structure attributes. In this study, treetops were filtered by local maxima filtering algorithm from canopy height model. An improved spoke wheel algorithm was used to delineate the crown boundaries. And, an estimation issue of crown volume was simplified into three measurable parameters by estimating the crown structures. For accuracy assessment, data of 363 sampled trees located in the subset of Székesfehérvár city were selected randomly. The overall detection rate of treetop had proven to be 95.87% and crown boundaries were recognized effectively with a delineation quality of 88.59%, which were acceptable. About 80.26% of investigated crown volume estimates were obtained with shape distortion ranging from 3.1 to 7.8% according to the error analysis. The results indicated that the method can be used to extract canopy structure in urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号