首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
针对页岩储层气体滑脱效应特征及其影响机制不清问题,选取四川盆地长宁地区志留系龙马溪组页岩样品,开展了低温氮气吸附孔隙结构表征实验,并利用非稳态脉冲衰竭方法测量了不同围压下氦气、氮气在页岩岩心上的气体渗透率,分析了平均孔隙压力、气体类型、围压对滑脱效应的影响,建立了滑脱因子的预测关系式.结果表明:压力低于2.5 MPa时...  相似文献   

2.
有效应力对保德区块煤储层渗透率影响研究   总被引:3,自引:0,他引:3  
薛培 《地质与勘探》2016,52(2):334-339
通过有效应力单因素影响保德区块煤岩气体渗流实验,分析了煤岩渗透率应力敏感性以及割理压缩系数变化特征.结果表明:保德区块煤储层渗透率与有效应力呈负指数函数关系;煤层埋深越深,煤岩渗透率变化幅度越小,渗透率应力敏感性下降。渗透率损害系数的线性函数拟合相关系数较低,应力敏感系数的负指数函数拟合相关系数较高,应力敏感系数比渗透率损害系数更具规律性。在高有效应力阶段,煤岩割理压缩系数更趋近于常数,低有效应力阶段,割理压缩系数应视为变量。  相似文献   

3.
李波波  杨康  袁梅  许江  杜育芹 《地球科学》2017,42(8):1403-1412
在深部煤层瓦斯抽采过程中,地温较高且孔隙压力逐渐降低,而目前综合考虑温度和孔隙压力对煤岩渗透特性耦合作用的研究较少.利用自主研发的出口端压力可调的三轴渗流装置,以贵州矿区原煤试件为研究对象,进行不同温度下改变孔隙压力的渗流试验,并建立了考虑温度的渗透率匹配模型.研究表明,煤岩渗透率随孔隙压力增大按指数函数减小;煤岩渗透率随压差的增大而减小,随温度的升高而降低,在不同的温度状态下,渗透率的下降速率和变化幅度有所不同.在模拟瓦斯开发的物理试验中,压差应尽量小,减少其误差,为建立不同边界条件的渗透率模型提供帮助;随温度的升高,温度突变系数呈增大的趋势;随孔隙压力的增大,温度突变系数呈减小的趋势.温度突变系数在整个阶段不为常数,且割理压缩系数可变,这两个特征更能真实地匹配模型,反映瓦斯的开发过程.   相似文献   

4.
曹明亮  邓泽  康永尚  李忠城  张兵  秦绍锋  邓志宇  郭明强 《地质论评》2022,68(2):2022030015-2022030015
为研究煤层气在排采过程中不同煤阶煤储层渗透率动态变化规律,利用煤岩三轴应力应变(基质收缩膨胀)测试系统,对褐煤、气煤和无烟煤样开展了有效应力与基质收缩双重效应物理模拟实验。固定轴压和围压不变,改变气体平衡压力,模拟开发过程中储层压力变化特征,测试其动态渗透率。利用实验结果,分析了不同煤阶煤岩在排采过程中动态渗透率反弹特征,并对比分析煤岩动态渗透率改善效果的差异性。研究表明:气体平衡压力从5 MPa降至1 MPa过程中,在有效应力和基质收缩双重效应作用下,褐煤样的归一化渗透率依次为1.00、0.60、0.57、0.57、0.52,气煤样依次为1.00、0. 64、0.50、0.54和0.55,无烟煤样依次为1.00、0.74、0.58、0.50和0.56。随气体平衡压力下降,中阶及高阶煤样动态渗透率先下降后上升,整体呈不对称“V”型变化规律,但拐点略有不同;低阶煤样动态渗透率呈先下降后基本稳定的趋势,整体呈斜“L”型变化规律。在有效应力和基质收缩双重效应影响下,中阶及高阶煤样动态渗透率改善效果优于低阶煤样。  相似文献   

5.
为研究煤层气在排采过程中不同煤阶煤储层渗透率动态变化规律,利用煤岩三轴应力应变(基质收缩膨胀)测试系统,对褐煤、气煤和无烟煤样开展了有效应力与基质收缩双重效应物理模拟实验。固定轴压和围压不变,改变气体平衡压力,模拟开发过程中储层压力变化特征,测试其动态渗透率。利用实验结果,分析了不同煤阶煤岩在排采过程中动态渗透率反弹特征,并对比分析煤岩动态渗透率改善效果的差异性。研究表明:气体平衡压力从5 MPa降至1 MPa过程中,在有效应力和基质收缩双重效应作用下,褐煤样的归一化渗透率依次为1. 00、0. 60、0. 57、0. 57、0. 52,气煤样依次为1.00、0. 64、0. 50、0. 54和0. 55,无烟煤样依次为1.00、0. 74、0. 58、0. 50和0. 56。随气体平衡压力下降,中阶及高阶煤样动态渗透率先下降后上升,整体呈不对称“V”型变化规律,但拐点略有不同;低阶煤样动态渗透率呈先下降后基本稳定的趋势,整体呈斜“L”型变化规律。在有效应力和基质收缩双重效应影响下,中阶及高阶煤样动态渗透率改善效果优于低阶煤样。  相似文献   

6.
煤层气排采过程中煤储层孔隙度和渗透率的动态变化,是煤层气开发地质研究的热点之一。本文利用晋城无烟煤样,分析了三轴应力条件下煤岩的应力-应变效应,讨论了煤样渗透率的动态变化规律。结果表明,围限压力条件下,煤岩吸附甲烷后其抗压强度明显增大;煤样最大径向吸附应变与孔隙压力的关系,可用朗格缪尔方程形式予以描述;煤岩渗透性与有效应力、煤岩吸附膨胀量均呈负指数关系,说明两者对煤岩渗透性影响的实质相同,即煤岩孔隙、裂隙受到应力作用逐渐减小或闭合。同时,在较低孔隙压力条件下,需考虑克林伯格效应对煤层渗透性的影响。经检验,S-D模型能够较为客观地预测煤岩渗透性动态变化规律。  相似文献   

7.
气体渗透率作为重要的孔隙介质属性,是页岩气开发的重要参数。在纳米孔隙介质中,气体渗透率很大程度上受分子滑脱效应的影响。当孔隙大小和分子自由程达到了可比较的程度,单个气体分子与孔壁之间的相互作用更加明显,气体传输不再遵循达西定律。本次研究采用压力脉冲衰减技术测量了鄂尔多斯盆地延长组第7段泥岩(YK-108)和页岩(YK-81)的气体渗透率,通过Klinkenberg校正求得了样品的固有渗透率,建立了样品的渗透率应力敏感性,定量表征了分子滑脱效应的相对贡献并探讨了其影响因素,最后讨论了地质条件下的分子滑脱效应及其地质意义。研究发现,矿物组成影响渗透率应力敏感性,分子滑脱效应对表观渗透率有显著贡献,测试样品中气体主要通过滑脱流和转换流传输,不属于达西流范畴。  相似文献   

8.
功率声波影响煤层甲烷储运的初步探讨   总被引:5,自引:0,他引:5  
分析了功率声波对煤岩介质孔隙率和渗透率的影响规律及作用机理。结果表明,功率声波能够增加煤的孔隙体积,提高甲烷在煤层中的渗透率;功率声波对煤岩等介质的主要作用机理有机械作用、激波作用、定向作用、热效应、空化作用,使煤岩层产生微裂缝,改变煤岩的孔隙结构,降低甲烷气体的粘度,从而为煤层甲烷开发提供了一种新的思路。   相似文献   

9.
考虑基质收缩效应的煤层气应力场-渗流场耦合作用分析   总被引:2,自引:0,他引:2  
在煤层气的初级生产过程中,为了获取较高的生产率,需要降低储层压力,储层压力下降对于煤层气的渗透率具有两个相反的效应:(1)储层压力下降,有效应力增加,煤层裂隙压缩闭合,渗透率降低;(2)煤层气解吸,煤基质收缩,煤层气流动路径张开,渗透率升高。Shi和Durucan、Palmer-Mansoori以及Gray等都建立了包含了基质收缩效应以及有效应力的影响的渗透率模型,其模型都基于以下两个关键假设:煤岩体处于单轴应变状态以及竖向应力恒定。为了检验上述两个假设的合理性,建立了一个考虑基质收缩效应以及渗流场-应力场耦合作用下的煤层气流动模型,对煤层气初级生产过程中渗透率的变化进行了耦合分析。分析结果表明:单轴应变的假设具有合理性,而竖向应力是随指向生产井的应变梯度的变化而变化的,其对于渗透率的变化具有重要影响,因此,竖向应力恒定的假设可能导致渗透率预测出现误差;上述渗透率模型都可能低估煤层气初级生产过程中渗透率的变化。  相似文献   

10.
水力压裂技术是煤矿瓦斯灾害防治与煤层气开采的关键技术之一,在实施水力压裂过程中,支撑剂的嵌入往往会诱发煤储层裂隙宽度的一系列变化。其中,滑脱效应的强度与渗透率的变化主要由裂隙宽度决定。因此,支撑剂嵌入将影响水力压裂技术的有效性。为探究水力压裂背景下气体的滑脱效应与煤的渗流规律,采用赫兹接触理论量化支撑剂的嵌入深度,并构建支撑剂与有效应力综合作用的气体滑脱系数计算方程与渗透率模型。结果表明:在不同瓦斯压力下,煤的渗透率随有效应力的增大先减小后趋于平缓;恒定有效应力条件下,瓦斯压力越低,渗透率相对越高;且铺置多层砂的增透效果相对铺置单层砂的增透效果更佳;两种铺置条件下,滑脱因子b在不同瓦斯压力下呈相同的变化趋势,均随支撑剂嵌入深度的增大而增大;不同形态裂缝的滑脱因子均随着有效应力的增大而增大,其中球形裂缝的滑脱因子最大,圆柱形次之,狭缝形最小。同时,不同形态裂缝煤的渗透率均随有效应力的增加而减小,而3种形态裂缝渗透率之间的大小关系与滑脱因子大小关系一致;考虑到有效应力与支撑剂对裂缝宽度的贡献,构建了考虑支撑剂和有效应力综合作用的裂隙渗透率模型,并通过公开发布的试验数据验证其合理性。研究结果将有助于水力压裂技术在煤矿瓦斯灾害防治与煤层气开采中的进一步应用。   相似文献   

11.
Geologic sequestration in deep unmineable coal seams and enhanced coalbed methane production is a promising choice, economically and environmentally, to reduce anthropogenic gases such as carbon dioxide in the atmosphere. Unmineable coal seams are typically known to adsorb large amounts of carbon dioxide in comparison to the sizeable amounts of sorbed methane, which raises the potential for large scale sequestration projects. During the process of sequestration, carbon dioxide is injected into the coalbed and desorbed methane is produced. The coal matrix is believed to shrink when a gas is desorbed and swell when a gas is sorbed, sometimes causing profound changes in the cleat porosity and permeability of the coal seam. These changes may have significant impact on the reservoir performance. Therefore, it is necessary to understand the combined influence of swelling and shrinkage, and geomechanical properties including elastic modulus, cleat porosity, and permeability of the reservoir.The present paper deals with the influence of swelling and shrinkage on the reservoir performance, and the geomechanical response of the reservoir system during the process of geologic sequestration of carbon dioxide and enhanced coalbed methane production in an actual field project located in northern New Mexico. A three-dimensional swelling and shrinkage model was developed and implemented into an existing reservoir model to understand the influence of geomechanical parameters, as well as swelling and shrinkage properties, on the reservoir performance. Numerical results obtained from the modified simulator were compared to available measured values from that site and previous studies. Results show that swelling and shrinkage, and the combination of geomechanical and operational parameters, have a significant influence on the performance of the reservoir system.  相似文献   

12.
Influence of gas production induced volumetric strain on permeability of coal   总被引:10,自引:0,他引:10  
Summary The gas permeability of a coalbed, unlike that of conventional gas reservoirs, is influenced during gas production not only by the simultaneous changes in effective stress and gas slippage, but also by the volumetric strain of the coal matrix that is associated with gas desorption. A technique for conducting laboratory experiments to separate these effects and estimate their individual contribution is presented in this paper. The results show that for a pressure decrease from 6.2 to 0.7 MPa, the total permeability of the coal sample increased by more than 17 times. A factor of 12 is due to the volumetric strain effect, and a factor of 5 due to the gas slippage effect. Changes in permeability and porosity with gas depletion were also estimated using the measured volumetric strain and the matchstick reservoir model geometry for flow of gas in coalbeds. The resulting variations were compared with results obtained experimentally. Furthermore, the results show that when gas pressure is above 1.7 MPa, the effect of volumetric strain due to matrix shrinkage dominates. As gas pressure falls below 1.7 MPa, both the gas slippage and matrix shrinkage effects play important roles in influencing the permeability. Finally, the change in permeability associated with matrix shrinkage was found to be linearly proportional to the volumetric strain. Since volumetric strain is linearly proportional to the amount of gas desorbed, the change in permeability is a linear function of the amount of desorbing gas.  相似文献   

13.
Characterization of coal reservoirs and determination of in-situ physical coal properties related to transport mechanism are complicated due to having lack of standard procedures in the literature. By considering these difficulties, a new approach has been developed proposing the usage of relationships between coal rank and physical coal properties. In this study, effects of shrinkage and swelling (SS) on total methane recovery at CO2 breakthrough (TMRB), which includes ten-year primary methane recovery and succeeding enhanced coalbed methane (ECBM) recovery up to CO2 breakthrough, and CO2 sequestration have been investigated by using rank-dependent coal properties. In addition to coal rank, different coal reservoir types, molar compositions of injected fluid, and parameters within the extended Palmer & Mansoori (P&M) permeability model were considered. As a result of this study, shrinkage and swelling lead to an increase in TMRB. Moreover, swelling increased CO2 breakthrough time and decreased displacement ratio and CO2 storage for all ranks of coal. Low-rank coals are affected more negatively than high-rank coals by swelling. Furthermore, it was realized that dry coal reservoirs are more influenced by swelling than others and saturated wet coals are more suitable for eliminating the negative effects of CO2 injection. In addition, it was understood that it is possible to reduce swelling effect of CO2 on cleat permeability by mixing it with N2 before injection. However, an economical optimization is required for the selection of proper gas mixture. Finally, it is concluded from sensitivity analysis that elastic modulus is the most important parameter, except the initial cleat porosity, controlling SS in the extended P&M model by highly affecting TMRB.  相似文献   

14.
Enhanced coalbed methane (ECBM) involves the injection of a gas, such as nitrogen or carbon dioxide, into the coal reservoir to displace the methane present. Potentially this strategy can offer greater recovery of the coal seam methane and higher rates of recovery due to pressure maintenance of the reservoir. While reservoir simulation forms an important part of the planning and assessment of ECBM, a key question is the accuracy of existing approaches to characterising and representing the gas migration process. Laboratory core flooding allows the gas displacement process to be investigated on intact coal core samples under conditions analogous to those in the reservoir. In this paper a series of enhanced drainage core floods are presented and history matched using an established coal seam gas reservoir simulator, SIMED II. The core floods were performed at two pore pressures, 2 MPa and 10 MPa, and involve either nitrogen or flue gas (90% nitrogen and 10% CO2) flooding of core samples initially saturated with methane. At the end of the nitrogen floods the core flood was reversed by flooding with methane to investigate the potential for hysteresis in the gas displacement process. Prior to the core flooding an independent characterisation programme was performed on the core sample where the adsorption isotherm, swelling with gas adsorption, cleat compressibility and geomechanical properties were measured. This information was used in the history matching of the core floods; the properties adjusted in the history matching were related to the affect of sorption strain on coal permeability and the transfer of gas between cleat and matrix. Excellent agreement was obtained between simulated and observed gas rates, breakthrough times and total mass balances for the nitrogen/methane floods. It was found that a triple porosity model improved the agreement with observed gas migration over the standard dual porosity Warren-Root model. The Connell, Lu and Pan hydrostatic permeability model was used in the simulations and improved history match results by representing the contrast between pore and bulk sorption strains for the 10 MPa cases but this effect was not apparent for the 2 MPa cases. There were significant differences between the simulations and observations for CO2 flow rates and mass balances for the flue gas core floods. A possible explanation for these results could be that there may be inaccuracy in the representation of mixed gas adsorption using the extended Langmuir adsorption model.  相似文献   

15.
沁水盆地煤层割理的充填特征及形成过程   总被引:3,自引:0,他引:3  
刘洪林  康永尚  王烽  邓泽 《地质学报》2008,82(10):1376-1381
煤层作为煤层气的源岩和储集层,与常规天然气储层不同在于煤储层是一种双孔隙岩层,由基质孔隙和裂隙组成,且有自身独特的割理系统,基质孔隙和割理的大小、形态、孔隙度和连通性等决定了煤层气的储集、运移和产出,其中以割理系统对煤层气的产出最为重要。本文以沁水煤田为例,对煤层割理、割理填充物类型、充填方式、自生矿物形成时代进行了研究,总结了填充物形成的先后顺序,并根据填充物的形成时代、煤层埋藏史等提出了割理形成的3种机制:埋藏增压机制;岩浆诱发机制;抬升卸压机制。  相似文献   

16.
Fluid flow characteristics of cleat systems in coalbed methane reservoirs are crucial in reservoir management and field development plans. This paper aims to evaluate the cleat system properties including cleat porosity, permeability, and aperture as well as the impact of permeability growth on production performance in the Bandanna Coal Formation of the Fairview Field, eastern Queensland. Owing to the presence of bad hole conditions and poor core recovery of the coal intervals, the petrophysical well logs and laboratory measurements cannot be used as a source of information for this purpose. Hence, a new approach is employed that utilises early water production data to measure water in place and absolute permeability of the coal. In addition, micro-computed tomography (CT) scan method is used to investigate the cleat system that is preserved in a core sample and results are compared with the ones obtained by analysis of production data. Cleat system evaluation by analysis of production data and micro-CT scan technique provides a comprehensive approach that brings confidence in measurements and helps to obtain cleat properties at the sufficient scale for reservoir engineering purposes. The necessary information including production data and core samples are collected from a dewatering well and the nearby observation well in the study area. Analysis of early water production data (single-phase flow) indicates that coal permeability is 189 mD and the average cleat porosity is approximately 5%. High cleat porosity describes the large volume of water produced over the life of the study well. The 3D model of the fossilised cleat system constructed by the micro-CT scan method reveals that coal is well-cleated and cleat spacing and mean cleat aperture are 4 and 0.136 mm, respectively. The average cleat porosity that is measured by the micro-CT scan method is 5.7%, which is fairly close to the cleat porosity measured by analysis of production data. Production data analysis indicates that effective permeability to gas starts to grow at the midlife of the well and it strongly controls the shape of the production profile. The results of this study help in future field development and infill drilling programs in the Fairview Field and provide important insights into cleat system of Bandanna Coal Formation.  相似文献   

17.
山西沁水盆地中-南部煤储层渗透率物理模拟与数值模拟   总被引:14,自引:2,他引:14  
通过对山西沁水盆地中南部上主煤层宏观裂隙观测,力学参数测量和应力渗透率实验,分别建立了裂隙面密度、裂隙产状、裂隙宽度与煤储层渗透率之间的预测数学模型;利用FLAC—3D软件,模拟了该区上主煤层内现代地应力状态,结合煤层气试井渗透率资料,构建了应力与渗透率之间关系预测的数学模型,并对该区上主煤层渗透率进行了全面预测。通过吸附膨胀实验,揭示了各煤类煤基质的收缩特征,构建了有效应力、煤基质收缩与渗透率之间的耦合数学模型,并对煤层气开发过程中渗透率动态变化进行了数值模拟。  相似文献   

18.
沁水盆地南部TS地区煤层气储层测井评价方法   总被引:1,自引:0,他引:1  
煤层气是一种自生自储于煤岩地层的非常规天然气资源,其储层测井评价内容及方法不同于常规天然气,在煤层气勘探开发过程中更关注于有关煤岩工业分析组分、基质孔隙度、裂缝渗透率及煤层含气量等一系列关键的储层参数。针对沁水盆地南部TS地区煤层气勘探目标层,分析了各种测井响应特征,采用回归分析法计算煤岩工业分析组分;针对煤层气含量影响因素众多且较为复杂的特点,结合相关地区煤岩样品实验分析结果,利用基于等温吸附实验的兰氏煤阶方程估算煤层含气量参数;通过煤岩孔隙结构的分析,采用变骨架密度的密度孔隙度计算公式求取煤岩总孔隙度,利用迭代逼近算法计算裂缝孔隙度;根据煤岩裂缝中面割理发育而端割理不甚发育的特点,以简化的单组系板状裂缝模型计算煤岩裂缝渗透率。通过对TS-A井进行实际计算,结果表明,煤岩工业分析组分和煤层含气量计算结果精度高,总孔隙度一般在5.5%左右,而裂缝孔隙度则大多小于0.5%,裂缝渗透率主要分布在0.001×10-3~10×10-3μm2之间,孔渗参数计算结果与相邻井区现有资料相符。采用测井方法可以快速、系统地对煤层气储层多种参数进行准确评价。  相似文献   

19.
煤层气开采过程中储层渗透率的变化对产气量影响较大,通过引入S&D渗透率变化模型,建立了考虑渗透率变化的煤储层三维气水两相渗流数学模型,完成模型检验后应用所编制软件研究了煤储层参数、吸附参数及渗透率模型特征参数对开发效果的影响。结果表明,煤层气产量随着初始含气量、煤层有效厚度、裂缝渗透率和Langmuir压力的增大而增大,随储层原始压力、裂缝孔隙度和Langmuir体积的增大而减小,而解吸时间对产气量影响不大;裂缝渗透率随着杨氏模量和基质收缩/膨胀系数的增大而增大,随泊松比和裂缝压缩系数的增大而减小。引入S&D模型后计算的累积产气量要比常规模型低1.3%,因此不可忽视煤层气产出过程中渗透率的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号