首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958-1986). Correlations of zonal wind anomalies to SW monsoon rainfall (r = 0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Raya  相似文献   

2.
低平流层准两年变率研究   总被引:6,自引:2,他引:4  
分析NCAR/NCEP40年分析资料得出,赤道低平流层纬向风年际变率的平均周期约28.2个月,最大振幅的20hPa,西(东)风距平平垂直下传平均速度1.21(1.04)km/月。用10hPa和70hPa月平均纬向风标准化距平之差反映整层准两年变率的相位。低平流层两半球中纬气温有与之配合的振荡,西(东)风切变时,中纬气温偏低(高)。赤道纬向风准两年变率引起的经圈环流异常是联系低续续向风与中纬气温准年  相似文献   

3.
分析NCAR/NCEP40年再分析资料得出,赤道低平流层纬向风年际变率的平均周期约28.2个月,最大振幅在20hPa,西(东)风距平垂直下传平均速度1.21(1.04)km/月。用10hPa和70hPa月平均纬向风标准化距平之差可反映整层准两年变率的相位,低平流层两半球中纬气温有与之配合的振荡,西(东)风切变时,中纬气温偏低(高)。赤道纬向风准两年变率引起的经圈环流异常是联系低纬纬向风与中纬气温准两年变率的纽带。  相似文献   

4.
使用1979—2015年欧洲长期天气预报中心所提供的ERA-Interim再分析资料和中国气象局上海台风研究所整编的西北太平洋热带气旋(TC)最佳路径资料,分析了7—8月东亚高空纬向风的季节内振荡(ISO)信号特征及其与登陆中国大陆热带气旋(TC)的关系。结果表明:(1)200 hPa纬向风在副热带、中纬度地区季节内振荡显著,尤其是在纬向西风带中,有两个南北分布的大值中心,方差贡献均超过50%。(2)基于东亚高空纬向风的ISO和EOF典型空间模定义的西风指数(EAWI),可以用来描述东亚高空纬向西风在ISO尺度上的经向移动。(3)在西风指数的ISO负位相期间,登陆中国东南沿岸22 °N以北的TC增多;反之减少。在西风急流出口南侧的副热带区域,200 hPa ISO纬向风向北移动,使纬向西风位置偏北,出现东风异常,从而使西风减弱;TC引导气流为向西的异常,有利于TC登陆中国大陆偏北沿岸;同时有异常的ISO纬向异常东风切变,有利于TC登陆过程的维持。(4)在西风指数的ISO负位相期间,在对流层高层西风急流出口区向南输送的天气尺度的E矢量,在TC登陆地区,出现异常扰动涡度通量的辐合,引起了该区域的西风减弱。   相似文献   

5.
华南前汛期的锋面降水和夏季风降水 I.划分日期的确定   总被引:7,自引:0,他引:7  
前汛期暴雨常常引发华南地区的洪涝,但是前汛期降水的预报能力却相当低。降水的预报在很大程度上依赖于对降水性质的理解,而华南前汛期降水通常被认为只是锋面性质的降水。事实上,南海夏季风在6月(甚至5月)就可以影响到华南地区并产生季风对流降水。因此,华南前汛期包含了两种不同性质的降水,即锋面降水和夏季风降水,如何区分它们是非常重要的。为了区分它们,利用NCEP/NCAR再分析资料、CMAP资料和中国730站降水资料,分析气候平均(1971~2000年)状态下锋面降水和季风降水期间大气性质和特征的差异,得到华南前汛期夏季风降水开始的基本判据:100 hPa纬向风由西风转为东风并维持5天以上。利用该判据得出气候平均条件下的华南夏季风降水开始于5月24日,并得到1951~2004年逐年华南前汛期锋面降水和季风降水的划分日期。合成分析的结果表明,得到的划分日期是基本合理的,因为它将锋面降水和季风降水期间大气特点的显著差别区分开来。  相似文献   

6.
A new synthesized index for estimating the hazard of both accumulated strong winds and heavy rainfall from a tropical cyclone (TC) is presented and applied to represent TC potential hazard over Southeast China. Its relationship with the East Asian westerly jet in the upper troposphere is also investigated. The results show that the new TC potential hazard index (PHI) is good at reflecting individual TC hazard and has significantly higher correlation with economic losses. Seasonal variation of TC-PHI shows that the largest TC-PHI on average occurs in July-August, the months when most TCs make landfall over mainland China. The spatial distribution of PHI at site shows that high PHI associated with major landfall TCs occurs along the southeast coast of China. An East Asian westerly jet index (EAWJI), which represents the meridional migration of the westerly jet, is defined based on two regions where significant correlations exist between TC landfall frequency and zonal wind at 200 hPa. Further analyses show that an anomalous easterly steering flow occurred above the tracks of TCs, and favored TCs making landfall along the southeast coast of China, leading to an increase in the landfall TC when the EAWJ was located north of its average latitude. Meanwhile, anomalous easterly wind shear and positive anomaly in low-level relative vorticity along TCs landfall-track favored TC development. In addition, anomalous water vapor transport from westerly wind in the South China Sea resulted in more condensational heating and an enhanced monsoon trough, leading to the maintenance of TC intensity for a longer time. All of these environmental factors increase the TC potential hazard in Southeast China. Furthermore, the EAWJ may affect tropical circulation by exciting meridional propagation of transient eddies. During a low EAWJI phase in July-August, anomalous transient eddy vorticity flux at 200 hPa propagates southward over the exit region of the EAWJ, resulting in eddy vorticity flux convergence and the weakening in the zonal westerly flow to the south of the EAWJ exit region, producing a favorable upper-level circulation for a TC making landfall.  相似文献   

7.
南海夏季风演变的气候学特征   总被引:17,自引:2,他引:17  
王启  丁一汇 《气象学报》1997,55(4):466-483
本文总结南海北部地区夏季风演变的气候学特征,发现南海地区5月第3候对流层高层东风和北风爆发,对流层低层西风第1次跃升,东亚经向季风环流圈开始形成,这可以成为南海地区夏季风爆发的标志。对流层低层西风在6月中旬开始的第2次连续跃升对应江淮地区的梅雨爆发期。类似地,中国大陆夏季对流层低层5月初和6月初有两次爆发性增暖过程,第2次比第1次强烈得多。南海北部地区对流层低层纬向风速、比湿盛夏呈双峰型,纬向风速峰值分别出现在6月第5候和8月第4候,比湿峰值分别出现在6月第6候和8月第5候。比湿突升对应纬向风速突升,但略落后于风速峰值出现的时间。南海北部地区季风爆发前,温度是波动式上升的,南海季风爆发后,温度是波动式下降的。中国大陆东部及南海地区夏季对流层低层比湿分布有3次突变,即4月中旬南海北部比湿突增,并开始出现高比湿中心,而南海南部为最大比湿中心;5月中旬最大比湿中心已从南海南部跳到了南海北部-华南并向江淮流域扩展;6月中旬江淮流域比湿突增并一直维持到8月,同时南海南部高比湿带消失。而5月中旬OLR有一次突变,OLR低值区爆发性向北扩张,这对应于南海地区夏季风的爆发。而孟加拉湾地区夏季风演变的气候学特征与南海地区有较  相似文献   

8.
青藏高原大气热力异常对西风急流的影响   总被引:1,自引:0,他引:1  
本文基于NCEP/NCAR月平均再分析资料,分析了对流层上层200 hPa纬向西风的时空变化特征,并通过EOF分解得到一个表征西风急流位置的指数(Westerly Jet Position Index,WJPI);同时基于对流层中上层(500~200 hPa)温度纬向偏差,构建了一个描述青藏高原(简称高原)大气热力特征的指标(Plateau Atmosphere Heating Index,PAHI),定量分析了该指数与西风急流位置的关系。结果表明:由冬到夏西风急流轴不断北抬西伸,风速逐渐减小;各季西风急流轴均处于西风变率的小值区,表明各季急流均轴的位置较稳定。各季PAHI与200 hPa纬向风的显著正相关区均分布在高原北侧,即高原PAHI增强时,其北侧西风增强,南侧西风减弱,对流层上层西风急流北移;各季WJPI与PAHI之间均存在显著相关,表明PAHI异常对西风急流位置的变化有重要作用。  相似文献   

9.
Global gridded daily mean data from the NCEP/NCAR Reanalysis(1948-2012) are used to obtain the onset date,retreat date and duration time series of the South China Sea summer monsoon(SCSSM) for the past 65 years.The summer monsoon onset(retreat) date is defined as the time when the mean zonal wind at 850 hPa shifts steadily from easterly(westerly) to westerly(easterly) and the pseudo-equivalent potential temperature at the same level remains steady at greater than 335 K(less than 335 K) in the South China Sea area[110-120°E(10-20°N)].The clockwise vortex of the equatorial Indian Ocean region,together with the cross-equatorial flow and the subtropical high,plays a decisive role in the burst of the SCSSM.The onset date of the SCSSM is closely related to its intensity.With late(early) onset of the summer monsoon,its intensity is relatively strong(weak),and the zonal wind undergoes an early(late) abrupt change in the upper troposphere.Climate warming significantly affects the onset and retreat dates of the SCSSM and its intensity.With climate warming,the number of early-onset(-retreat) years of the SCSSM is clearly greater(less),and the SCSSM is clearly weakened.  相似文献   

10.
Summary Using high altitude rocketsonde data for Thumba (8.5 N, 76.9E) and Balasore (21.5 N, 86.9E) and the stratalert messages for high latitudes for the winter (December–March) 1984–1985, an examination has been made to study the perturbations in the temperature and winds in the tropical middle atmosphere and their linkage with the dynamical events occurring over the high-latitude middle atmosphere during that winter.The results of analysis indicated occurrence of strong cooling in the mesosphere over a period of seven days (5–12 December 1984) and the depth of the cooling layer was 15 km. This incident was followed by a strong warming over a period of seven days (12–19 December 1984) and the depth of the warming layer was 13 km. The major warming event, which occurred over high latitudes during the later part of December and the first week of January, was followed by the cooling in the mesosphere and warming in the stratosphere at Thumba. Also the zonal winds were strong easterly and the meridional winds were northerly in the upper stratosphere and the lower mesosphere over tropics during the same period. Weaker zonal winds/stronger easterly winds were generally noticed to be associated with coolings/warmings over tropics.With 7 Figures  相似文献   

11.
Multi-scale contributions are involved in the South China Sea (SCS) summer monsoon (SCSSM) onset process. The relative roles of intraseasonal oscillation and above-seasonal component in the year-to-year variation of the SCSSM onset are evaluated in this study. The 30-90-day and above-90-day components are major contributors to the year-to-year variation of the SCSSM onset, and the former contributes greater portion, while the 8-30-day component has little contribution to the onset. In the early onset cases, the 30-90-day westerly winds move and extend eastward from the tropical Indian Ocean (TIO) to the SCS monsoon region relatively earlier, and replace the easterly winds over the SCS with the cooperation of the 30-90-day cyclone moving southward from northern East Asia. The westerly anomalies of the above-90-day component in spring jointly contribute to the early SCSSM onset. In the late onset cases, the late eastward expansion of 30-90-day westerly wind over the TIO, accompanied by the late occurrence and weakening of the 30-90-day anticyclone over the SCS, and its late withdraw from the SCS, as well as the persistent easterly anomalies of above-90-day component, suppress the SCSSM onset. However, the SCSSM outbreaks in the obvious weakening stage of 30-90-day easterly anomalies. The easterlies-to-westerlies transition of the 30-90-day 850- hPa zonal wind over the SCS in spring is closely associated with sea surface temperature in the tropical western Pacific in preceding winter and spring, while the interannual variation of the above-90-day zonal wind in April-May is closely related to the decaying stage of the El Ni?o-Southern Oscillation events.  相似文献   

12.
利用1979—2017年欧洲中期天气预报中心提供的ERA-Interim再分析数据与中国气象局-上海台风研究所(China Meteorological Administration-Shanghai Typhoon Research Institute,CM A-STI)、美国联合台风警报中心(Joint Typhoon Warning Center,JTWC)整编的西北太平洋热带气旋(Tropical Cyclone,TC)资料集,分析东亚高层(200hPa)纬向风季节内振荡(Intraseasonal Oscillation,ISO)与7—8月登陆中国大陆TC频数年际变化的联系。结果表明:7—8月中国大陆登陆TC频数与西风急流出口区南侧(北侧)纬向风为显著负(正)相关,南侧显著相关区与北侧的差定义的东亚西风急流指数(East Asian Westerly Jet Index,EAWJI)可定量描述急流经向移动,EAWJI负异常时急流北移、登陆TC偏多,反之急流南移、登陆TC偏少。急流北移,TC活动区域对流层高层呈偏东风异常,产生异常东风切变,有利于TC登陆过程的维持,使登陆中国大陆TC频数增多。东亚高层纬向风ISO与年际变化的标准差场、EOF模态的高度相似性说明两者由同一空间主导模态所控制,表明若其ISO偏北偏南振荡发生频率为非正态分布,剩余偏差将改变其季节平均。TC登陆多年,东亚西风急流指数ISO呈更高频率偏北移动,引起急流出口区南侧ISO尺度扰动涡度通量辐合,使季节平均西风减小,急流位置北移,说明高层纬向风ISO可通过间接调制影响TC登陆的大尺度环流进而与登陆TC频数的年际变化相联系。  相似文献   

13.
Aim of this diagnostic study is to investigate the impact of intra-seasonal oscillations in terms of number, duration and intensity on rainfall during June through September, 1979–2006. Analysis of wavelet spectra for winds at 850 hPa field for monsoon period reveals number and duration of oscillations, which exercise profound influence on monsoon rainfall. Results indicate that four to six oscillations appear in normal rainfall or flood cases, while two or three oscillations are identified in the years of drought episodes. Though total duration of above oscillations is varied from 25 to 85 days, the duration is short (20 to 35 days) obviously in the years of less number of oscillations and also the number of oscillations are directly related to the monsoon rainfall. The coefficient of correlation between them is 0.56, which is significant at 1% level. To examine the strength of intra-seasonal oscillations in terms of different indices on seasonal rainfall is investigated. The Madden and Julian Oscillation Index shows an inverse relationship with rainfall, where as a direct relationship is noticed between Monsoon Shear Index and rainfall for the study period. Both results are significant at 5% level. To consolidate the above statistical relationships, seasonal circulation changes in the contrasting years of monsoon rainfall have been examined; present study reveals that anomaly negative outgoing longwave radiation is noticed over most of Arabian Sea, Indian sub-continent and the Bay of Bengal during June through September in flood year (1988). But opposite convective activity is true in drought year (2002). Similarly the spatial U-850 hPa field distribution showed much stronger monsoon winds in 1988, while zonal circulation was very weak in 2002. Such differences are observed in the anomaly zonal wind field at 200 hPa also. Over the monsoon region U-850 hPa field is almost a mirror image of U-200 hPa distribution of wind field. Finally annual cycles of U-850 and U-200 hPa fields reflect striking difference at 200 hPa level during the summer monsoon period in flood and drought years.  相似文献   

14.
 NCEP/NCAR and ECMWF daily reanalyses are used to investigate the synoptic variability of easterly waves over West Africa and tropical Atlantic at 700 hPa in northern summer between 1979–1995 (1979–1993 for ECMWF). Spectral analysis of the meridional wind component at 700 hPa highlighted two main periodicity bands, between 3 and 5 days, and 6 and 9 days. The 3–5-day easterly wave regime has already been widely investigated, but only on shorter datasets. These waves grow both north and south of the African Easterly Jet (AEJ). The two main tracks, noted over West Africa at 5 °N and 15 °N, converge over the Atlantic on latitude 17.5 °N. These waves are more active in August–September than in June–July. Their average wavelength/phase speed varies from about 3000 km/8 m s-1 north of the jet to 5000 km/12 m s-1 south of the jet. Rainfall, convection and monsoon flux are significantly modulated by these waves, convection in the Inter-Tropical Convergence Zone (ITCZ) being enhanced in the trough and ahead of it, with a wide meridional extension. Compared to the 3–5-day waves, the 6–9-day regime is intermittent and the corresponding wind field pattern has both similar and contrasting characteristics. The only main track is located north of the AEJ along 17.5 °N both over West Africa and the Atlantic. The mean wavelength is higher, about 5000 km long, and the average phase speed is about 7 m s-1. Then the wind field perturbation is mostly evident at the AEJ latitude and north of it. The perturbation structure is similar to that of 3–5-days in the north except that the more developed circulation centers, moving more to the north, lead to a large modulation of the jet zonal wind component. South of the AEJ, the wind field perturbation is weaker and quite different. The zonal wind core of the jet appears to be an almost symmetric axis in the 6–9-day wind field pattern, a clockwise circulation north of the AEJ being associated with a counter-clockwise circulation south of the jet, and vice versa. These 6–9-day easterly waves also affect significantly rainfall, convection and monsoon flux but in a different way, inducing large zonal convective bands in the ITCZ, mostly in the trough and behind it. As opposed to the 3–5-day wave regime, these rainfall anomalies are associated with anomalies of opposite sign over the Guinea coast and the Sahelian regions. Over the continent, these waves are more active in June–July, and in August–September over the ocean. GATE phase I gave an example of such an active 6–9-day wave pattern. Considered as a sequence of weak easterly wave activity, this phase was also a sequence of high 6–9-day easterly wave activity. We suggest that the 6–9-day regime results from an interaction between the 3–5-day easterly wave regime (maintained by the barotropic/baroclinic instability of the AEJ), and the development of strong anticyclonic circulations, north of the jet over West Africa, and both north and south of the jet over the Atlantic, significantly affecting the jet zonal wind component. The permanent subtropical anticyclones (Azores, Libya, St Helena) could help initiation and maintenance of such regime over West Africa and tropical Atlantic. Based on an a priori period-band criterion, our synoptic classification has enabled us to point out two statistical and meteorological easterly wave regimes over West Africa and tropical Atlantic. NCEP/NCAR and ECMWF reanalyses are in good agreement, the main difference being a more developed easterly wave activity in the NCEP/NCAR reanalyses, especially for the 3–5-day regime over the Atlantic. Received: 28 May 1998 / Accepted: 2 May 1999  相似文献   

15.
在“季节转换期间副热带高压带形态变异及其机制的研究Ⅰ :副热带高压结构气候学特征研究”的基础上 ,进一步讨论亚洲夏季风爆发与当地对流层中上层东西向暖脊的经向位置变化关系。亚洲夏季风相继在孟加拉湾、南海和南亚爆发期间 ,除了对流层高、低空风场及深对流活动在季风爆发前后具有反相的变化以外 ,副热带高压脊面附近大气经向温度梯度亦具有明显的反相特征。对流层中上层 (2 0 0~ 5 0 0hPa)脊面附近建立的北暖南冷的温度结构 ,能够反映亚洲各季风区夏季风爆发共同的本质特征 ,根据季节转换的热力学基础 ,指出对流层中上层经向温度梯度作为度量季风爆发的指标是合理可行的。文中提出了以副热带高压脊面附近对流层中上层大气经向温度梯度作为表征季节转换的指数 ,给出了确定季节转换开始日期的具体定义以及历年季节转换日期序列 ,同时给出由85 0hPa纬向风和OLR表征的季风爆发日期序列。相关分析表明 ,85 0hPa纬向风只是个区域性指标 ,而南北温度梯度具有一定的普适性  相似文献   

16.
宋燕  李智才  朱临洪  张世英 《气象》2008,34(2):61-68
采用EOF分解和合成分析方法研究了1960-2003年山西夏季降水异常之北少(多)南多(少)型(第二类雨型)和山西省气温的变化异常.结果表明,两者具有较好的对应关系.分析了第二类异常雨型的时空分布,并给出相应的典型年份.EOF时间系数变化特征揭示了山西夏季降水第二类雨型有显著的年际振荡.利用合成分析,从500hPa位势高度场、纬向风、850hPa风场、700hPa水汽场和水汽输送场等物理量场研究了山西夏季第二类雨型的环流异常特征.结果表明,第二类雨型与弱的东亚夏季风相关联,北多南少和北少南多是弱夏季风的不同表现.山西省夏季降水北多南少年副高呈带状分布,位置偏北,强度较强;中高纬度地区异常波列呈大圆路径分布,在高纬度地区存在纬向排列的- -波列,同时在东亚大陆沿岸存在经向排列的- -波列.并且华北北部有西风异常,北支锋区偏北,由西南向东北水汽输送较强.北少南多年与之相反.海温场分析表明,第二类雨型与中北太平洋海温异常紧密相关.  相似文献   

17.
利用WRF区域模式模拟分析了中南半岛地区春季土壤湿度异常对亚洲热带夏季风建立和发展的影响,结果表明:亚洲热带夏季风对中南半岛春季土壤湿度的响应是不对称的,当中南半岛春季土壤湿度偏高时,中南半岛及孟加拉湾周边地区呈现异常东风,伴随降水减少,季风减弱;而中南半岛春季土壤湿度偏低时,孟加拉湾及周边地区西风减弱,降水减少,季风也对应减弱。通过进一步分析物理机制得到,中南半岛春季土壤湿度异常偏高使季风建立初期感热减小,陆表温度明显降低,从而导致海陆温差逐渐降低,使季风减弱;而中南半岛春季土壤湿度异常偏低使整个中南半岛区域蒸发减少,导致地表向上输送的水汽减少,减弱季风环流和降水。此外,通过分析850 h Pa纬向风及对流层中上层经向温度梯度两项季风暴发指数,探讨了中南半岛春季土壤湿度异常对孟加拉湾东部季风暴发时间的影响,结果表明:中南半岛春季土壤湿度偏高时,孟加拉湾东部季风暴发时间大约推迟10天左右,而土壤湿度较低对亚洲热带夏季风暴发时间影响甚微。  相似文献   

18.
The Community Climate Model Version 3.6 is used to simulate the mean climate of West Africa during the Northern Hemisphere summer season (June-August). The climate model uses prescribed climatological sea surface temperatures (SSTs) and observed SSTs during the 1979-1993 period. Two important circulation features, the African Easterly Jet (AEJ) and the Tropical Easterly Jet (TEJ), are found in the simulations but a westerly wind bias is found with respect to 700 hPa winds. Consequently, easterly waves and rain rates are poorly simulated. The primary cause of the poorly simulated AEJ is the advection of cold air from Europe producing a cold bias over northern Africa and a weaker than observed meridional temperature gradient. The cold bias is caused by an eastward displacement of the simulated Azores surface high into Western Europe creating a stronger than observed meridional sea level pressure gradient over northern Africa. This bias systematically occurs in simulations using both climatological and observed SSTs. The biases in sea level pressure, temperature and zonal winds have the potential to produce poor regional climate model results for West Africa if the meteorological output from the CCM3 is used as lateral boundaries. Moreover, these biases introduce uncertainties to West African GCM sensitivity studies associated with interannual variability, land-use change and elevated anthropogenic greenhouse gases.  相似文献   

19.
In correspondence with the establishment of the "upper high and lower high" pressure pattern due to the activities of 500 hPa high over the Tibetan Plateau in summer,a series of changes of the East Asia atmospheric circulation will take place.In this paper,the distributions of divergence and vertical velocity of 500 hPa high,the evolutions of atmospheric heat source,the variations of vorticity and zonal wind at 100 hPa level and vertical meridional cell over the Tibetan Plateau etc.are statistically analyzed.Thus,we can see that the ascending motion and the convective heating over the Tibetan Plateau,the South Asia high and the westerly jet on the north of the Plateau at 100 hPa level are weakned.The northern branch and the southern branch of the easterly jet on the south of the Plateau merge into a single whole and situate on the south of the former northern branch.In the meantime,thermodynamic land-sea discrepancy in South Asia and the convective heating over the Bay of Bengal is enhanced.It will play an important role in the maintenance of the easterly jet and the South Asia monsoon.  相似文献   

20.
根据热带西太平洋(130°-160°E,10°-20°N)上空对流的年际变化,对表面温度、向外长波幅射、850 hPa纬向风进行了合成分析。合成分析结果表明,热带西太平洋上空的弱(强)对流对应着前冬和春季厄尔尼诺(拉尼娜)型的海温异常。与以前的研究结果进行了比较,说明上述海温异常的时空分布也与热带西太平洋和南海季风的爆发早晚相关联。合成分析结果还表明,热带西太平洋上空的弱(强)对流对应着从热带西太平洋向西伸展到盂加拉湾的东风(西风)异常。数值模拟也得到类似的结果。此外,在对流弱(强)的夏季,热带西太平洋上空的对流和南海低层纬向风均表现出弱(强)的季节演变特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号