首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.
This paper is an assessment of the suspended sediment yield in the Mellah Catchment of northern Algeria. We use discharge–sediment load relationships to explore the variability of water discharge and sediment load, and to investigate the impact of geomorphic factors disturbance on erosion and sedimentation. Suspended sediment load was analyzed in the Mellah Catchment (550 km²) which was controlled by a gauging station to measure discharge and sediment transport. The relations between daily mean sediment concentration and daily mean water discharge were analyzed to develop sediment rating curves. For storms with no water samples, a sediment rating curve was developed. The technique involves stratification of data into discharge-based classes, the mean of which are used to fit a rating curve according to single flow data and season to provide various rating relationships. The mean annual sediment yield during the 24 years of the study period was 562 T km?2 in the Mellah Catchment. This drainage basin had high rainfall and runoff, the erosion was high. The high sediment yield in the Mellah basin could be explained by a high percentage of sparse grassland and cultivation developed on shallow marly silty-clayey soils with steep slopes often exceeding 12%. Almost all suspended sediment loads are transported during storm events that mainly occur in the winter and spring heavy and medium downpours. The scarceness of these events leads to a very large interseasonal variability of the wadi sediment fluxes. The negative impacts of this enhanced sediment mobility are directly felt in the western part of the basin which shows many mass movements, bank and gully erosion because cultivated areas are often bared during autumnal brief flash floods and furrowed downslope during the winter season.  相似文献   

2.
“泾渭分明”的现代特点分析   总被引:4,自引:0,他引:4  
清浊变化是指常年及汛期的含沙量及输沙量变化。泾河年均径流量仅为渭河的1/2倍(资料截止1997),输沙量却为渭河的2.35倍,含沙量为渭河的4.57倍。现在是泾浊渭清。输沙量与最大流量间为正相关关系,相关系数渭河为0.7516,泾河为0.8279。输沙量季节集中的程度更大,最大月输沙量占年输沙量的71.23%,最大月径流量占年径流量的39.22%。渭河较小的输沙量在于气候干旱导致的径流量减小。泾河较大的输沙量在于泾河流域现代人为活动对生态系统破坏更为严重。  相似文献   

3.
Small rivers draining high-rainfall basins and mountainous terrain west of the Cordilleras in South America have disproportionately high water discharge and sediment load. Fifteen rivers in western Colombia discharge a combined 254 km3 yr-1 or 8020 m3 s-1 of water into the Pacific. Sediment yield is strongly correlated with basin area (R2=0.97), and sediment load is correlated with water discharge (R2=0.73). Rio San Juan occupies a 16,465-km2 basin with a mean annual rainfall of 7277 mm. It has the highest water discharge (2550 m3 s-1), sediment load (16x106 t yr-1), and basin-wide sediment yield (1150 t km-2 yr-1) on the entire west coast of South America. Rio Patía drains a 23,700-km2 basin with a mean annual rainfall of 2821 mm. Its water discharge, sediment load, and basin-wide sediment yield are 1291 m3 s-1, 14 t yr-1, and 972 t km-2 yr-1, respectively. Rio San Juan and Rio Patía deliver 30x106 t of suspended sediment annually into the Pacific. Analysis of data for an additional 22 rivers in Colombia that drain into the Caribbean Sea indicates that the Pacific rivers have at least twice the sediment yield compared with the larger Rio Magdalena. Our results confirm that the Pacific rivers of Colombia need to be accounted for in global sediment budgets.  相似文献   

4.
The Narmada River flows through the Deccan volcanics and transports water and sediments to the adjacent Arabian Sea. In a first-ever attempt, spatial and temporal (annual, seasonal, monthly and daily) variations in water discharge and sediment loads of Narmada River and its tributaries and the probable causes for these variations are discussed. The study has been carried out with data from twenty-two years of daily water discharge at nineteen locations and sediment concentrations data at fourteen locations in the entire Narmada River Basin. Water flow in the river is a major factor influencing sediment loads in the river. The monsoon season, which accounts for 85 to 95% of total annual rainfall in the basin, is the main source of water flow in the river. Almost 85 to 98% of annual sediment loads in the river are transported during the monsoon season (June to November). The average annual sediment flux to the Arabian Sea at Garudeshwar (farthest downstream location) is 34.29×106 t year−1 with a water discharge of 23.57 km3 year−1. These numbers are the latest and revised estimates for Narmada River. Water flow in the river is influenced by rainfall, catchment area and groundwater inputs, whereas rainfall intensity, geology/soil characteristics of the catchment area and presence of reservoirs/dams play a major role in sediment discharge. The largest dam in the basin, namely Sardar Sarovar Dam, traps almost 60–80% of sediments carried by the river before it reaches the Arabian Sea.  相似文献   

5.
杨卫东 《水文》2004,24(1):46-49,60
根据郁江南宁站1954~2001年的流量和输沙率资料,对流量和输沙率之间进行了回归分析,得出了多年平均月均流量~输沙率的相关性、各年月均流量~输沙率的相关性、各月月均流量~输沙率年际变化的相关性和年均流量~输沙率的相关性,分析了南宁站的水沙变化趋势,得出了两者变化趋势的规律。  相似文献   

6.
冲积河流泥沙输移幂律函数关系与不平衡输沙理论是对河道不平衡输沙同一物理现象的不同描述,两者既有区别也有联系。比较研究发现:对于恒定均匀流不平衡输沙过程,当输沙位于近平衡态时两者含沙量导函数表达式具有一阶近似等价性,当输沙远离平衡态时前者含沙量导函数中隐含考虑有泥沙恢复饱和系数的变化。基于两者等价性,推导建立了幂律函数指数计算表达式,表明指数随泥沙沉速、单宽流量和沿程距离而变化,且随着输移距离的增大呈指数衰减。基于前者含沙量导函数表达式结构特点,分析建立了相应泥沙恢复饱和系数变化的计算表达式。综合以上成果,改进提出了一种变幂指数的泥沙输移幂律函数计算模型。对库里·阿雷克沉沙池沿程断面输沙指数及含沙量计算结果表明,不同距离过水断面输沙指数的变化规律是合理的,含沙量计算值与实测值变化趋势基本符合。  相似文献   

7.
A hydrologic regression sediment-yield model was established to determine the relationship between water discharge and suspended sediment discharge at the Blue Nile and the Atbara River outlet stations during the flood season. The model consisted of two main submodels: (1) a suspended sediment discharge model, which was used to determine suspended sediment discharge for each basin outlet; and (2) a sediment rating model, which related water discharge and suspended sediment discharge for each outlet station. Due to the absence of suspended sediment concentration measurements at or near the outlet stations, a minimum norm solution, which is based on the minimization of the unknowns rather than the residuals, was used to determine the suspended sediment discharges at the stations. In addition, the sediment rating submodel was regressed by using an observation equations procedure. Verification analyses on the model were carried out and the mean percentage errors were found to be +12.59 and –12.39, respectively, for the Blue Nile and Atbara. The hydrologic regression model was found to be most sensitive to the relative weight matrix, moderately sensitive to the mean water discharge ratio, and slightly sensitive to the concentration variation along the River Nile's course.  相似文献   

8.
In this study, a Physiographic Soil Erosion–Deposition Model (PSED) is applied for better management of a watershed. The PSED model can effectively evaluate the key parameters of watershed management: surface runoff discharge, suspended sediment transport rate, quantity of soil erosion, and spatial distribution of soil erosion and deposition. A basin usually contains multiple watersheds. These watersheds may have complex topography and heterogeneous physiographic properties. The PSED model, containing a physiographic rainfall-runoff model and a basin scale erosion–deposition model, can simulate the physical mechanism of the entire erosion process based on a detailed calculation of bed-load transportation, surface soil entrainment, and the deposition mechanism. With the assistance of Geographic Information Systems (GIS), the PSED model can handle and analyze extremely large hydrologic and physiographic datasets and simulate the physical erosion process without the need for simplification. We verified the PSED model using three typhoon events and 40 rainfall events. The application of PSED to Chou-Shui River basin shows that the PSED model can accurately estimate discharge hydrographs, suspended sediment transport rates, and sediment yield. Additionally, we obtained reasonable quantities of soil erosion as well as the spatial distribution of soil erosion and deposition. The results show that the PSED model is capable of calculating spatially distributed soil erosion and suspended sediment transport rates for a basin with multiple watersheds even if these watersheds have complex topography and heterogeneous physiographic properties.  相似文献   

9.
水库拦沙对长江水沙态势变化的影响   总被引:3,自引:0,他引:3  
为探讨水库建设对水沙变化态势的影响,通过引入来沙系数、输沙模数和流域水库调控系数,深入分析了长江水库拦沙对水沙态势变异的作用。长江干支流水沙参数与流域水库库容参数之间有重要关系,主要水文站年输沙量随流域累积库容增加而逐渐减少,来沙系数和输沙模数随流域水库调控系数成指数关系衰减,表明水库蓄水拦沙是长江水沙态势变异的主要因素。长江干支流输沙量衰减规律有一定差异,支流来沙系数和输沙模数衰减规律相对独立,而干流上游站衰减幅度大于下游水文站,且干流各站输沙模数的衰减规律比较接近。  相似文献   

10.
有效流量是天然河流某一时段内悬移质输沙量最大所对应的流量,可反映中、短期造床作用。根据监利水文站1991—2016年逐月流量、输沙量及悬移质级配,分析三峡建库前后流量频率及不同粒径组悬移质泥沙输移特性;运用理论分析法与分组频率法计算下荆江分组悬移质输沙量对应有效流量的大小、重现期、历时。研究成果表明:受来水来沙、水流挟沙能力以及床沙补给等因素影响,有效流量随泥沙粒径增大而减小。建库后,因河床冲刷各粒径组间有效流量偏差增大,0. 062 mm0. 125 mm粒径组泥沙有效流量重现期减小;细颗粒泥沙含沙量严重不饱和河道输送粗颗粒泥沙的能力相对较大,悬移质级配粗化;累积50%的泥沙输移需43%~82%的累积流量以及62%~90%的累积历时,且累积流量和累积历时随着泥沙粒径的增大而减小和缩短。研究三峡建库前后有效流量变化对分析冲刷条件下下荆江河段河床演变具有重要意义。  相似文献   

11.
Typhoons Aere (2004) and Matsa (2005) caused high nephelometric turbidity in the Shihmen reservoir in northern Taiwan, jeopardizing the operation of the reservoir for several days, and ultimately impacting the living conditions and economy of the downstream residents. The torrential rains caused landslides and debris flows in upland areas, and flowed into riverbeds, likely contributing significantly to the suspended sediment yields in the reservoir. This investigation elucidates how upland landslides affect sediment attributes in the reservoir basin. Study methods including field observations, spatial analysis in GIS and aerial photo interpretation are adopted to trace the sediment sources and contributing factors to the landslide. Torrential rains induced landslides and debris-flows upland, causing river incisions and soil erosion in landslide areas lacking vegetation. These factors, together with the conditions of the engineered structures and geologic vulnerabilities of the area, caused suspended sediment yield in the reservoir. The high nephelometric turbidity could potentially reoccur, with masses of landslide-derived sediment remaining upland and in the riverbed.  相似文献   

12.
溪洛渡水电站自2013年开始直接拦截金沙江的泥沙,其排沙效果对水库运行及下游向家坝和三峡入库泥沙都会造成影响。本文基于水文泥沙及河道断面观测资料,对比分析溪洛渡水库和三峡水库排沙规律异同点,研究溪洛渡水库排沙效果及影响因素。结果表明,2014—2019年溪洛渡水库共计排沙1 490万t,排沙比为3.1%,较设计值和向家坝、三峡水库均明显偏小。溪洛渡水库排沙比偏小主要有3个原因:入库水沙峰值协调性较差、水库长期高水位运行及库区河道二级天然潜坎对泥沙运动的阻隔效应。  相似文献   

13.
Water discharge from the Patuxent River into its estuary was near-average (95%) during the water year 1968–1969 although precipitation was only 79% of the average. Suspended-sediment discharge into the estuary, however, was more then double the normal yield (344 metric tons/km2 compared to 143 metric tons/km2). These increases in runoff and suspended-sediment yields, despite decreased precipitation, must be attributed to urbanization of the drainage basin.The maximum measured suspended-sediment concentrations in the rural Middle Patuxent basin (Piedmont Province) increased only 40-fold during an increase from “average” to high water runoff (15 mg/l to 600 mg/l). In the portion of the Little Patuxent River basin undergoing urbanization (Piedmont portion), stream concentrations increased by over two orders of magnitude (20 mg/l to 2400 mg/l) as a result of heavy rainfall. The area undergoing urbanization of the Little Patuxent yielded more than twice as much suspended sediment per unit area as the rural Middle Patuxent (620 metric tons/km2 versus 290 metric tons/km2). This increase also is interpreted to be the direct result of erosion of soils denuded or disturbed during urban construction.Using the Middle Patuxent as a “standard” for normal erosion rates in rural areas, construction sites contributed about 82% of the suspended sediment discharged by the Patuxent River into its estuary even though such sites represented only 23% of the drainage basin.  相似文献   

14.
基于1956-2015年洞庭湖主要控制站实测水文数据,运用Mann-Kendall检验法、主成分分析法对比分析了近60 a来洞庭湖东、南、西三个湖区水位演变特征及其影响因素。结果表明:从调弦口堵口至葛洲坝截流后,南咀和城陵矶站同流量下水位均升高,但南咀站平均水位受三口分流能力减弱而下降(0.03 m),城陵矶站平均水位受湖盆泥沙淤积和长江干流顶托作用而上升(1.33 m);三峡水库运行后,湖盆冲淤基本持平,湖泊同流量下水位基本不变,由于该时段长江流域整体为相对枯水期,因而与葛洲坝截流后相比湖泊年平均水位下降约0.31~0.58 m。近60 a来南咀站平均水位呈显著下降趋势(p<0.05),而城陵矶站水位呈显著上升趋势(p<0.01),说明湖泊水位影响因素作用存在空间异质性。洞庭湖年内水位存在涨(4-5月)~丰(6-9月)~退(10-11月)~枯(12月-次年3月)的变化特征,葛洲坝运行期丰水期水位上涨明显,三峡运行期各月水位均有下降,受水库调度方式影响7-10月水位降幅最大。洞庭湖流域降水量、四水入湖和出湖径流大小以及长江干流水情是洞庭湖水位变化的主要影响因素,三口来沙变异条件下的洞庭湖冲淤量变化是湖泊水位变化的次要因素。  相似文献   

15.
Trapping of sustained turbidity currents by intraslope minibasins   总被引:1,自引:0,他引:1  
Depositional turbidity currents have filled many intraslope minibasins with sediment creating targets for petroleum exploration. The dynamics of sustained turbidity currents and their depositional characteristics are investigated in a scaled physical model of a minibasin. Each turbidity current deposited a downstream thinning wedge of sediment near the inlet. Farther downstream the turbidity current was ponded by a barrier. The ponded part of the turbidity current was separated from the sediment‐free water above by a relatively sharp, horizontal settling interface indicating highly Froude‐subcritical flow. The very slow moving flow within the ponded zone created conditions for the passive rainout of suspended sediment onto the bed. In the lower part of the ponded zone, the concentration and mean grain‐size of the sediment in suspension tended to be relatively uniform in both the vertical and streamwise directions. As a result, the deposit emplaced in the ponded zone showed only a weak tendency toward downstream fining and was passively draped over the bed in such a way that irregularities in the inerodible bed were accurately reflected. The discharge of suspended sediment overflowing the downstream end of the minibasin was significantly less than the inflow discharge, resulting in basin sediment trapping efficiencies >95%. A simple model is developed to predict the trapping of sediment within the basin based on the relative magnitudes of the input discharge of turbid water and the detrainment discharge of water across the settling interface. This model shows a limiting case in which an intraslope basin captures 100% of the sediment from a ponded turbidity current, even through a succession of sustained flow events, until sediment deposition raises the settling interface above the downstream lip of the minibasin. This same process defines one of the mechanisms for minibasin filling in nature, and, when this mechanism is operative, the trap efficiency of sediment can be expected to be high until the minibasin is substantially filled with sediment.  相似文献   

16.
The Susquehanna River is the major contributor to sediment loadings in the Chesapeake Bay. Because many environmental contaminants are associated with suspended particulates, the degree of particle retention within the reservoirs of the lower Susquehanna River is an important consideration in evaluating contaminant loadings to the Chesapeake Bay. Profiles of weapons-test Cs-137, nuclear power plant-related Cs-134 and Cs-137, and naturally-derived Pb-120 were used to estimate rates of sediment accretion in the conowingo Reservioir, an impoundment of the Susquehanna River along the Maryland-Pennsylvania border. Net accretion rates ranged from about 2 cm yr?1 downstream of a nuclear power plant cooling discharge to a high of about 7 cm yr?1 at the mount of an incoming creek. Slight, but consistent, increases in the annual rate of accretion since the creation of the reservoir in 1928 are apparent. The current net average annual sediment load reatined by the reservoir is estimated to be 0.4×106 to 1.5 × 106 metric tons yr?1. The retained sediment load represents about 8–23% of the long-time average sediment input to the reservoir.  相似文献   

17.
从误差传播及经验关系分析两条途径出发,分别获得流量输沙率关系不确定度。通过F检验,证明了所获成果的可靠性。本文分析对于流量输沙率关系不确定度控制指标的确定,以及流量输沙率关系的应用具有实际意义。  相似文献   

18.
陈界仁  曹淼 《水科学进展》2003,14(6):696-699
在坡面土壤侵蚀输沙计算中,可选用的输沙能力模式较多,但这些模式多运用于恒定输沙,在非恒定输沙中运用不多。建立了坡面土壤侵蚀非恒定输沙数学模型,模型中的输沙能力运用水流切应力、水流功率、单位水流功率3种模式,对模型过程采用有限差分格式离散求解。根据实测水沙资料进行模型参数率定,运用3种输沙能力模式于不同降雨强度、不同坡度的非恒定坡面输沙过程中。结果表明:在坡面非恒定输沙计算中,不同输沙能力模式对计算结果有明显影响,在降雨强度较小时,单位水流功率模式结果较其他两个模式为好,而在雨强较大时,切应力模式计算结果较好。  相似文献   

19.
Massive construction on the Drava River basin and on the river itself during the last centuries, as well as recent climate change and/or variability, has caused many different and possibly dangerous changes to its hydrological and ecological regime. Since 1975, numerous hydrotechnical works have been carried out on the 60-km long section of the Drava River from the Slovenian–Croatian border to the River Mura mouth. Three hydrotechnical power plants with three reservoirs and three long inlet and outlet canals have been built. Changes in water level, discharge and suspended sediment yield along the Drava River measured in Croatia, downstream of the three Croatian reservoirs, during the last 30–130 years are presented. The investigation focuses on changes that have occurred during the last thirty-odd years, caused by the anthropogenic influences on the Drava River watercourse and its catchment in Croatia and Hungary, and probably by climate change or variability. Methods of rescaled adjusted partial sums, statistical tests, as well as regression and correlation analyses are used to explain changes in water level, discharge and suspended sediment yield. There is evidence in the time series of decreases in the minimum, mean and maximum annual water levels, and minimum and mean discharges on the lower part of the Drava River. One of the main objectives of this study was to examine the effect of dams and reservoirs operation on the changes in the downstream suspended sediment regime. The amount of suspended sediment has been greatly reduced, which can cause serious consequences.  相似文献   

20.
Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment–discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30–40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the “flushing season” (October through April). Previous estimates of annual or seasonal sediment delivery from tributaries and the Federal Dam to the ETM and harbor may be high for those years with extreme tributary high-flow events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号