首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A possible effective stress variable for wet granular materials is numerically investigated based on an adapted discrete element method (DEM) model for an ideal three‐phase system. The DEM simulations consider granular materials made of nearly monodisperse spherical particles, in the pendular regime with the pore fluid mixture consisting of distinct water menisci bridging particle pairs. The contact force‐related stress contribution to the total stresses is isolated and tested as the effective stress candidate for dense or loose systems. It is first recalled that this contact stress tensor is indeed an adequate effective stress that describes stress limit states of wet samples with the same Mohr‐Coulomb criterion associated with their dry counterparts. As for constitutive relationships, it is demonstrated that the contact stress tensor used in conjunction with dry constitutive relations does describe the strains of wet samples during an initial strain regime but not beyond. Outside this so‐called quasi‐static strain regime, whose extent is much greater for dense than loose materials, dramatic changes in the contact network prevent macroscale contact stress‐strain relationships to apply in the same manner to dry and unsaturated conditions. The presented numerical results also reveal unexpected constitutive bifurcations for the loose material, related to stick‐slip macrobehavior.  相似文献   

3.
Micromechanical analysis of the failure process of brittle rock   总被引:1,自引:0,他引:1       下载免费PDF全文
The failure process of brittle rock submitted to a compression state of stress with different confining pressures is investigated in this paper based on discrete element method (DEM) simulations. In the DEM model, the rock sample is represented by bonding rigid particles at their contact points. The numerical model is first calibrated by comparing the macroscopic response with the macroscopic response of Beishan granite obtained from laboratory tests. After the validation of numerical model in terms of macroscopic responses, the failure process of the DEM model under unconfined and confined compression is studied in micro‐scale in detail. The contact force network and its relation to the development of micro‐cracks and evolution of major fractures are studied. Confining pressure will prohibit the development of tensile cracks and hence alter the failure patterns. An in‐depth analysis of micro‐scale response is carried out, including the orientation distribution and probability density of stress acting on parallel bonds, the effect of particle size heterogeneity on bond breakage and the evolution of fabric tensor and coordination number of parallel bond. The proposed micromechanical analysis will allow us to extract innovative features emerged from the stresses and crack evolution in brittle rock failure process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
胶结颗粒接触力学特性测试装置研制   总被引:5,自引:2,他引:3  
为验证天然结构性砂土离散元模拟中接触模型及其参数的合理性,设计了一套用于理想胶结颗粒成型及实现不同加载条件下接触力学特性测试装置。通过胶结颗粒成型装置在两大小相同的铝棒间形成具有特定几何尺寸的胶结物,随后,采用一系列辅助加载装置实现简单及复杂加载条件下胶结颗粒接触力学特性的测试。试验结果表明:该装置可用于胶结颗粒在不同加载条件下接触力学特性的测试,实测胶结颗粒接触力学响应与天然砂土离散元中接触模型基本相符,且其抗剪和抗扭强度均随着法向压力的增大而增大,在三维应力空间中胶结颗粒强度包线呈椭圆抛物面状。  相似文献   

5.
冯春  李世海  刘晓宇 《岩土力学》2015,36(4):1027-1034
为了充分发挥有限元与颗粒离散元各自的优势,提出了一种由有限元转化为颗粒流的方法。数值模型首先用较粗的有限元网格进行离散,并在单元上引入连续介质本构模型。力学计算开始后,实时跟踪各单元的应力状态。一旦某单元的应力满足Mohr-Coulomb准则或最大拉应力准则,删除该单元,同时创建具有一定数目、随机分布且微嵌入的颗粒簇。其后,该单元所在区域的非连续变形及失稳断裂由颗粒簇演化获得。各颗粒的质量、材料参数、速度、位移、接触力等信息根据插值从有限元单元中继承。为了实现有限元与颗粒流接触面的耦合计算,引入了点-棱(二维)及点-面(三维)接触模型,通过法向及切向弹簧实现接触力的计算。颗粒球与有限元板的碰撞分析、单轴压缩、岩石切割等案例展示了上述方法的精确性及合理性。  相似文献   

6.
The critical state is significant to the mechanical behaviors of granular materials and the foundation of the constitutive relations. Using the discrete element method (DEM), the mechanical behaviors of granular materials can be investigated on both the macroscopic and microscopic levels. A series of DEM simulations under true triaxial conditions have been performed to explore the critical state and dilatancy behavior of granular materials, which show the qualitatively similar macroscopic responses as the experimental results. The critical void ratio and stress ratio under different stress paths are presented. A unique critical state line (CSL) is shown to indicate that the intermediate principal stress ratio does not influence the CSL. Within the framework of the unique critical state, the stress–dilatancy relation of DEM simulations is found to fulfill the state-dependent dilatancy equations. As a microscopic parameter to evaluate the static determinacy of the granular system, the redundancy ratio is defined and investigated. The results show that the critical state is very close to the statically determinate state. Other particle-level indexes, including the distribution of the contact forces and the anisotropies, are carefully investigated to analyze the microstructural evolution and the underlying mechanism. The microscopic analysis shows that both the contact orientations and contact forces influence the mechanical behaviors of granular materials.  相似文献   

7.
8.
This study aims at providing a hybrid calibration framework to estimate Hertz-type contact parameters (particle-scale shear modulus and Poisson ratio) for both two-dimensional and three-dimensional discrete element modelling (DEM). On the basis of statistically isotropic granular packings, a set of analytical formulae between macroscopic material parameters (Young modulus and Poisson ratio) and particle-scale Hertz-type contact parameters for granular systems are derived under small-strain isotropic stress conditions. However, the derived analytical solutions are only estimated values for general models. By viewing each DEM modelling as an implicit mathematical function taking the particle-level parameters as independent variables and employing the derived analytical solutions as the initial input parameters, an automatic iterative scheme is proposed to obtain the calibrated parameters with higher accuracies. Considering highly nonlinear features and discontinuities of the macro-micro relationship in Hertz-based discrete element models, the adaptive moment estimation algorithm is adopted in this study because of its capacity of dealing with noise gradients of cost functions. The proposed method is validated with several numerical cases including randomly distributed monodisperse and polydisperse packings. Noticeable improvements in terms of calibration efficiency and accuracy have been made.  相似文献   

9.
蒋明镜  胡海军  彭建兵 《岩土力学》2013,34(4):1121-1130
针对结构性湿陷性黄土大孔隙和胶结特性,应用离散元生成了不同含水率结构性黄土试样,研究试样的一维湿陷特性。首先,根据已有的结构性黄土试验资料和胶结颗粒材料离散元数值试验成果,建立胶结强度和初始饱和度之间的关系。其次,采用蒋明镜等提出的分层欠压法[1]和胶结模型[2]制得不同含水率结构性黄土离散元试样,然后进行不同含水率双线法和同一含水率4个压力下单线法湿陷试验的离散元数值模拟。数值模拟结果表明,提出的离散元分析方法能模拟天然结构性湿陷性黄土的主要力学性质,随着含水率的减少,结构屈服应力和最大湿陷压力增加,湿陷系数随着压力先增加后减小,湿陷起始压力为饱和试样的结构屈服应力,单线法湿陷后压缩曲线与饱和试样的压缩曲线接近。此外,模拟结果还表明,不同含水率结构性黄土离散元试样的最大湿陷系数与天然结构性湿陷性黄土相差较远,但在最大湿陷系数与孔隙比的比值上相接近;结构屈服对应着胶结的逐步破坏,湿陷伴随着大量的胶结破坏。提出了基于胶结点数目的损伤变量,研究了其在加载和湿陷过程中的变化规律。研究成果为认识黄土复杂力学特性和建立其本构理论提供了基础。  相似文献   

10.
董琪  王媛  冯迪 《岩土力学》2022,43(12):3270-3280
水压致裂起裂压力的预测对于油气开采、地应力测量、水工结构物抗裂设计等具有重要的意义。采用颗粒离散元结合域-管道渗流模型的流固耦合非连续数值模拟方法,基于扩展前端法生成的含规则形状钻孔的颗粒体模型,对水压致裂的细观起裂过程和起裂压力大小进行了定量模拟。结果表明,在消除了颗粒体中钻孔形状不规则性的基础上,钻孔壁的接触力链分布与理论解较为一致,拟合的离散元起裂压力公式也与理论解较为接近。进一步地,从颗粒材料受挤压时产生局部张拉力的角度解释了起裂压力拟合公式与理论解之间的差别。最后,设计了含预制钻孔的抗渗砂浆试块制备方法,对不同主应力组合下的起裂压力大小进行了真三轴室内试验,验证了离散元模拟结果的可靠性。  相似文献   

11.
Shen  Zhifu  Jiang  Mingjing  Wang  Shengnian 《Acta Geotechnica》2019,14(5):1403-1421

Damage is the key process controlling the behavior of cemented geomaterials, such as structured sand. Damage characterization of structured sand is studied based on granular material mechanics with the aid of discrete element method (DEM) simulation in this paper. Structured sand is viewed as a mixture of remolded and structured parts, whose behavior is defined by the collective responses of unbonded and bonded contacts, respectively. Based on the cross-scale links between macroscopic quantities (stress and strain) and microscopic quantities (contact force, contact position and relative motion of particles), stresses and strains of the two parts are assembled to arrive at the overall stress and strain of structured sand. The weights of the two parts in stress and strain assembling/partitioning emerge naturally as a stress-based static damage variable and a strain-based kinematic damage variable, respectively, which are then evaluated using the DEM simulation results. The static damage variable captures the role of remolded part in load-bearing structure of structured sand, while the kinematic damage variable describes the spatial geometric configuration of the two parts. Both damage variables increase with deviator strain in a sigmoidal pattern. Directional damage indexes indicate that damage is isotropic from the view of kinematic response, but it is anisotropic if examined from static point of view. The degree of anisotropy in static damage is influenced by external stress conditions and internal microstructure anisotropy. This study provides a physically robust and theoretically rigid framework for the development of a micromechanics-based constitutive model of structured sand.

  相似文献   

12.
将基于圆化多边形离散单元法与有限元方法结合,提出一种可变形圆化多边形离散单元法。此法对块体离散元进行圆化处理,可较好地表征不规则块体外形,又保留了颗粒离散元计算高效的优势。在求解接触力时,消除了角点处法向奇异等问题,同时增强计算的稳定性和简化接触判断。同时对切向接触力计算模型进行修正,使得接触力计算效率得到提高。此法突破了圆化多边形刚体假设的限制,可以精确计算任意形状不规则离散单元之间的相互作用,对单元的运动和变形进行模拟。通过超静定梁冲击试验、不规则块体单轴压缩试验和料斗流动“卡阻”试验3个数值模拟算例,论证此法可以有效地捕捉单元的碰撞、分离和变形等空间运动和自身特性以及其细观力学表征。  相似文献   

13.
The discrete element method (DEM) is crucial in investigating and modeling the elementary behavior of granular materials under varying loading conditions, especially those that cannot be adequately investigated via conventional laboratory testing. However, the application of the DEM in simulations that involve complex loading paths under undrained conditions is scarce, primarily owing to the inability to maintain a constant-volume condition. This paper presents a unified discrete element approach that can apply arbitrary loading paths while satisfying the equivalent undrained condition. The proposed method comprises two parts: (1) a novel strategy that determines the virtual pore pressure under complex undrained loading conditions, and (2) an advanced undrained servomechanism that can simultaneously control each stress component independently. Numerical algorithms corresponding to three new undrained loading paths, that is, true triaxial test, rotational shear, and traffic loading path that have never been simulated using DEM are successfully implemented in a unified manner. Macroscale simulation results under these loading paths are qualitatively in good agreement with their experimental counterparts, thereby confirming the practicality and robustness of the proposed approach. Furthermore, in-depth discussions on the DEM results from these three new loading paths are presented from microscopic perspective.  相似文献   

14.
Wave propagation in granular materials is numerically studied using discrete element simulation. Primary interest is concerned with linking material microstructure with wave propagational behaviors for materials composed of elliptical particles. The discrete element (DEM) scheme uses a nonlinear hysteretic contact law which accounts for differences related to the radius of curvature at the interparticle point of contact. Modeling results yield information on wave speed and amplitude attenuation on two-dimensional, meso-domain model systems of both regular and random assemblies. Particulate models were numerically generated using a biasing scheme whereby partial control of particular fabric measures could be achieved. Three specific fabric measures which were used to characterize the granular material models include branch, contact normal and orienation vectors. DEM simulation results indicated that wave speed and attenuation generally correlated with vector distributions of these fabric variables. A power law relation was proposed between wave speed/attenuation and three averaged projected fabric variables based on orientation, contact normal and branch vectors. Predictions from this specific relation correlated reasonably well with DEM results.  相似文献   

15.
This paper presents an evaluation of the behaviour of geogrid-reinforced railway ballast. Experimental large box pull-out tests were conducted to examine the key parameters influencing the interaction between ballast and the geogrid. The experimental results demonstrated that the triaxial geogrid outperforms the biaxial geogrid and the geogrid aperture size is more influential than rib profile and junction profile. The discrete element method (DEM) has then been used to model the interaction between ballast and geogrid by simulating large box pull-out tests and comparing with experimental results. The DEM simulation results have been shown to provide good predictions of the pull-out resistance and reveal the distribution of contact forces in the geogrid-reinforced ballast system. Therefore, the calibrated geogrid model and the use of clumps to model ballast particles hold much promise for investigating the interaction between geogrids and ballast and therefore optimising performance.  相似文献   

16.
Discrete element modeling of direct shear tests for a granular material   总被引:1,自引:0,他引:1  
A succinct 3D discrete element model, with clumps to resemble the real shapes of granular materials, is developed. The quaternion method is introduced to transform the motion and force of a clump between local and global coordinates. The Hertz–Mindlin elastic contact force model, incorporated with the nonlinear normal viscous force and the Mohr–Coulomb friction law, is used to describe the interactions between particles. The proposed discrete element model is used to simulate direct shear tests of the irregular limestone rubbles. The simulation results of vertical displacements and shear stresses with a mixture of clumps are compared well with that of laboratory tests. The bulk friction coefficients are calculated and discussed under different contact friction coefficients and normal stresses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
采用颗粒离散单元法进行动力计算时,人工截断边界上需设置吸收边界条件,以防止波的反射。鉴于颗粒离散单元数值计算模型的人工边界上颗粒单元半径大小不一、边界面凸凹不平,在连续介质的黏性、黏弹性、自由场边界条件方程基础之上,推导出适用于离散介质的等效方程。在离散介质的黏性边界条件等效方程中引入微调系数,提出比值迭代法以快速确定其最优值,以实现对波的最佳吸收。采用二维颗粒离散单元计算软件PFC2D,分别建立黏性、黏弹性、自由场边界条件相关数值分析模型,探讨颗粒分布模式对黏性边界上颗粒单元半径、速度分布及比值迭代过程的影响;采用外源波动算例及经典Lamb问题算例验证黏弹性边界设置方法的正确性;通过隧洞算例检验提出的自由场边界条件设置方法的正确性。  相似文献   

18.
A new model for three-dimensional non-linear contact problems with irreversible friction is presented here for the interaction between the rock foundation and an arch dam structure. Based on the finite element method and load incremental theory, a constraint contact element with displacements and contact stresses as node parameters is developed. In this approach, four contact conditions are considered, i.e. fixed, slip, free and mixed. This model can simulate frictional slippage, decoupling and re-bonding of two bodies initially mating at a common interface or with any initial gaps. Furthermore boundary conditions for this element are discussed and treatment measures proposed. This method is shown to be effective and to have the advantage of being easily implemented into standard finite element programs. Solutions are obtained for a centrally loaded, simply supported composite beam and for an end-loaded elastica with initial gaps in regional contact with a rigid surface. The results obtained for these examples are compared to the plane stress solutions by contact friction analysis. As an application example, Quanshui arch dam located in Ruyuan County of Guangdong Province in southern China is simulated with the new element.  相似文献   

19.
简化接触模型的月壤离散元数值分析   总被引:2,自引:2,他引:0  
郑敏  蒋明镜  申志福 《岩土力学》2011,32(Z1):766-0771
根据月壤其颗粒级配可归类于粉质砂土。针对真实月壤所处的环境(无水、低重力场、低气压等),将Perko等2001年提出的月壤颗粒间的范德华力植入离散元分析软件PFC2D中,模拟了刚性边界下加入该模型与未加该模型试样的双轴压缩试验,研究了颗粒间范德华力对试样的宏观力学特性与微观颗粒接触的影响。结果表明,颗粒间的范德华力对试样的抗剪强度、体应变以及颗粒平均配位数都有显著的影响  相似文献   

20.
This paper describes a three-dimensional random network model to evaluate the thermal conductivity of particulate materials. The model is applied to numerical assemblies of poly-dispersed spheres generated using the discrete element method (DEM). The grain size distribution of Ottawa 20–30 sand is modeled using a logistic function in the DEM assemblies to closely reproduce the gradation of physical specimens. The packing density and inter-particle contact areas controlled by confining stress are explored as variables to underscore the effects of micro- and macro-scales on the effective thermal conductivity in particulate materials. It is assumed that skeletal structure of 3D granular system consists of the web of particle bodies interconnected by thermal resistor at contacts. The inter-particle contact condition (e.g., the degree of particle separation or overlap) and the particle radii determine the thermal conductance between adjacent particles. The Gauss–Seidel method allows evaluation of the evolution of temperature variation in the linear system. Laboratory measurements of thermal conductivity of Ottawa 20–30 sand corroborate the calculated results using the proposed network model. The model is extended to explore the evolution of thermal conduction depending on the nucleation habits of secondary solid phase as an anomalous material in the pore space. The proposed network model highlights that the coordination number, packing density and the inter-particle contact condition are integrated together to dominate the heat transfer characteristics in particulate materials, and allows fundamental understanding of particle-scale mechanism in macro-scale manifestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号