首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internal regions of orogenic belts may be characterized by an alignment of fold axes with mineral elongation lineations. This relationship is commonly interpreted as representing progressive tightening and rotation towards the shear direction of early buckle folds, the hinges of which were initiated orthogonal to this direction. Detailed structural analysis of lower amphibolite facies Dalradian metasediments of the Ballybofey (fold) Nappe, north-west Ireland, shows that an intense S3 schistosity is developed axial planar to mesoscopic and minor F3 folds. In areas of low D3 strain, F3 fold axes plunge gently towards the north-east, whereas in regions of greater strain plunges are towards the south-east subparallel to the constant mineral lineation. Minor folds which initiated at angles of 70–80° from the mineral lineation subsequently rotated towards the shear direction in a consistent clockwise sense. Progressive and variable non-coaxial deformation oblique to the original mean F3 orientation has resulted in a unimodal distribution pattern of fold axes. Analysis of the angular rotation of fold axes enables estimates of the bulk shear strain to be evaluated and models of progressive deformation to be assessed.  相似文献   

2.
The progressive development of folds by buckling in single isolated viscous layers compressed parallel to the layering and embedded in a less viscous host is examined in several ways; by use of experiments, an analogue model to simulate simultaneous buckling and flattening and by an application of finite-element analysis.The appearance of folds with a characteristic wavelength in an initially flat layer occurs in the experiments for viscosity ratios (μlayerhost = μ12) of between 11 and 100; progressive fold development after the initial folds have appeared is similar in the experiments and in the finite-element models. Except for the finite-element model for μ12 = 1,000 layer-parallel shortening occurs in the early stages of folding and a stage is reached where little further changes in arc length occur. The amount of layer-parallel shortening increases with decreasing viscosity contrast, and becomes relatively unimportant after the folds have attained limb dips of about 15°–25°.Thickness variations with dip are only significant here for the finite-element model with μ12 = 10, and in experiments for μ12 = 5 where the layer is initially in the form of a moderate-amplitude sine wave. The variations range from a parallel to a near-similar fold geometry, and in general depend on the viscosity contrast, the degree of shortening and the initial wavelength/thickness ratio. They are very similar to the variations predicted by the analogue model of combined buckling and flattening. The difference between the thickness/dip variations in a fold produced by buckling at low viscosity contrast and one produced by flattening a parallel fold is marked at high limb dips and very slight at low limb dips.Many natural folds in isolated rock layers or veins show thickness/dip relationships expected for a flattened parallel fold, and some show relationships expected for buckling at low viscosity contrasts. Studies of the wavelength/thickness ratios in natural folds have suggested that competence contrast is often low. Many folds in isolated rock layers or veins whose geometry may vary between parallel and almost similar, and may be indistinguishable from those of flattened parallel folds, have probably developed by a process of buckling at low viscosity contrasts.  相似文献   

3.
The moderately metamorphosed and deformed rocks exposed in the Hampden Synform, Eastern Fold Belt, in the Mt Isa terrane, underwent complex multiple deformations during the early Mesoproterozoic Isan Orogeny (ca 1590–1500 Ma). The earliest deformation elements preserved in the Hampden Synform are first‐generation tight to isoclinal folds and an associated axial‐planar slaty cleavage. Preservation of recumbent first‐generation folds in the hinge zones of second‐generation folds, and the approximately northeast‐southwest orientation of restored L1 0 intersection lineation suggest recumbent folding occurred during east‐west to northwest‐southeast shortening. First‐generation folds are refolded by north‐south‐oriented upright non‐cylindrical tight to isoclinal second‐generation folds. A differentiated axial‐planar cleavage to the second‐generation fold is the dominant fabric in the study area. This fabric crenulates an earlier fabric in the hinge zones of second‐generation folds, but forms a composite cleavage on the fold limbs. Two weakly developed steeply dipping crenulation cleavages overprint the dominant composite cleavage at a relatively high angle (>45°). These deformations appear to have had little regional effect. The composite cleavage is also overprinted by a subhorizontal crenulation cleavage inferred to have developed during vertical shortening associated with late‐orogenic pluton emplacement. We interpret the sequence of deformation events in the Hampden Synform to reflect the progression from thin‐skinned crustal shortening during the development of first‐generation structures to thick‐skinned crustal shortening during subsequent events. The Hampden Synform is interpreted to occur within a progressively deformed thrust slice located in the hangingwall of the Overhang Shear.  相似文献   

4.
First generation structures in greywackes of the Yuso Group from the Cantabrian Mountains of northern Spain show a distinct variation in geometry with depth in a regional synclinal structure (Curavacas and Lechada synclines); they are easily distinguished from other deformation events. In the structurally uppermost level we find ‘flap folds’. Flap folds are recumbent structures with the inverted limb preserved. Below this level ‘cascade folds’ are found. These structures have a vergence opposite to that of parasitic folds. The nomenclature adopted is from Harrison and Falcon. Characteristically, these structures have shallowly dipping axial surfaces, in agreement with the shallow dip of the axial plane (regional) cleavage. In the lowermost structural level, upright parasitic folds with a steep cleavage are present. The variation in fold geometry is accompanied by a general steepening of the regional cleavage with increasing depth. In the absence of overprinting relationships the F1 fold geometries are included in a single deformation event.The steepening of the cleavage with depth reflects the change in orientation of the maximum shortening direction from sub-vertical in the upper part of the syncline to sub-horizontal in the lower part. With increasing depth the deformation regime during F1 changed from bending to buckling. The deformation regime on the regional scale, however, is associated with basement subsidence and passive formation of the regional synclinal structure. Furthermore, the absence of a distinct microfabric for the different F1 folds indicates that on a small scale a similar deformation regime was present. We conclude, therefore, that the scale at which we study a structure only reflects the deformation regime at that particular scale. Consequently, the overall deformation regime cannot be determined from single outcrops or microstructural analysis alone.  相似文献   

5.
The patterns of deformed early lineations (L1) over later folds (F2) can be classified into several morphological types depending on the nature of variation of L1 F2 over the folds. The field relations indicate that the folds under consideration are neither shear folds nor parallel folds modified by flattening. The lineation patterns are therefore interpreted in terms of an empirical model of simultaneous buckling and flattening in which it is assumed that (i) the central surface of the folded layer remains a sine curve in transverse profile, (ii) the ratio of rates of buckle shortening to homogeneous strain is proportional to sin 2a, with a as the dip angle and (iii) the progressive deformation is coaxial with the Z-axis of bulk strain parallel to the planar segments of the early folds. The model gives an insight into the relative importance of different physical factors which control the development of dissimilar lineation patterns. Not all lineation patterns are explicable by this simplified model. Thus complex patterns with variable L1 F2 along the fold axis may develop by a progressive rotation of the geometrically defined fold hinge through successive material lines. The theoretical results have been applied to interpret the lineation patterns in Central Rajasthan, India. It is concluded that L1 was initially very close to the E-ESE trending subhorizontal Z-axis of bulk deformation during F2-folding and that the X-axis was subhorizontal or gently plunging with a N-NNE trend.  相似文献   

6.
It has long been recognised that within zones of intense non-coaxial deformation, fold hinges may rotate progressively towards the transport direction ultimately resulting in highly curvilinear sheath folds. However, there is a surprising lack of detailed and systematic field analysis of such “evolving” sheath folds. This case study therefore focuses on the sequential development of cm-scale curvilinear folds in the greenschist-facies El Llimac shear zone, Cap de Creus, Spain. This simple shear-dominated dextral shear zone displays superb three dimensional exposures of sheath folds defined by mylonitic quartz bands within phyllonite. Increasing amounts of fold hinge curvature (δ) are marked by hinge segments rotating into sub-parallelism with the mineral lineation (Lm), whilst the acute angle between the axial-planar hinge girdle and foliation (ω) also displays a sequential reduction. Although Lm bisects the noses of sheath folds, it is also clearly folded and wrapped-around the sheath hinges. Lm typically preserves a larger angle (θ) with the fold hinge on the lower limb (L) compared to the upper (U) limb (θL > θU), suggesting that Lm failed to achieve a steady orientation on the lower limb. Adjacent sheath fold hinges forming fold pairs may display the same sense of hinge arcing to define synthetic curvature, or alternatively opposing directions of antithetic curvature. Such patterns reflect original buckle fold geometries coupled with the direction of shearing. The ratio of long/short fold limbs decreases with increasing hinge curvilinearity, indicating sheath folds developed via stretching of the short limb, rather than migrating or rolling hinge models. This study unequivocally demonstrates that both hinges of fold pairs become curvilinear with sheaths closing in the transport direction recording greater hinge-line curvilinearity compared to adjacent return hinges. This may provide a useful guide to bulk shear sense.  相似文献   

7.
The Chengde-Pingquan region is located in the central part of the Yanshan Orogenic Belt (YOB). At Daheishan and Pingquan in the central YOB, thrusts and folds of variable trends are displayed in 2 km-scale fold interference patterns. Detailed field mapping was conducted to decipher the geometry of these two superimposed structures. Map-view geometry and stereonet plots for outcrop-scale folds indicate that the superimposed structures form arrowhead interference pattern where NW-SE-trending F1 folds are refolded by later ENE-WSW F2 folding. After remove the effects of later faulting, restored map-views of the superimposed structures show that when the F1 folds have inclined axial surfaces but with no an overturned limb, an arrowhead interference pattern (here called modified type-2 pattern) can form. Our field data and reinterpretation of the findings of previous studies suggest that five major shortening phases have occurred in the Chengde-Pingquan region. The first two phases, which formed the superimposed folds, occurred earlier than the Late Triassic (D1) and during the Late Triassic to Early Jurassic (D2). These two phases were followed by three deformation phases that are mainly characterized by thrusting and strike-slip faulting, which strongly modified the large-scale fold interference patterns.  相似文献   

8.
9.
The orientation of the straight internal foliation Si within large ( 5 mm) garnet porphyroblasts has been measured relative to the orientation of the external foliation Se around a single antiform of 0.5 m wavelength, which folds the dominant regional foliation. The internal foliation is not constant in orientation, but varies consistently both with position around the fold and with the porphyroblast ellipticity. The dip of Si (hinge dip taken as zero) is consistently less than the dip of Se; it increases with increasing dip of Se and with increasing ellipticity of the porphyroblasts. Si effectively defines a fold with an opening angle greater than that in the external foliation. The opening angle of this fold in Si decreases with increasing porphyroblast ellipticity. The observed variation in the orientation of Si can be explained qualitatively by a flattened flexural flow model for fold development, as could be expected for folding of a pre-existing, strongly anisotropic foliation. The measurements clearly demonstrate that rotation of porphyroblasts relative to geographical co-ordinates did occur during the development of this fold and that a model based on the classical theories of rotation of stiff inclusions in a weaker viscous matrix is most appropriate.  相似文献   

10.
A transition from upright folds, at high structural levels, to recumbent folds at depth is described from the Variscan fold belt in southwest England. The folds tighten and cleavage intensifies progressively as the axial plane dip decreases. A simple shear model is developed in which the shortening of a multilayer and its folding produces initially upright open folds which tighten as they rotate during increasing shear strain. The model predicts the observed relationship between interlimb angle and axial plane dip and is used to discuss the development of the structure of north Cornwall.  相似文献   

11.
In the western part of the North Singhbhum fold belt near Lotapahar and Sonua the remobilized basement block of Chakradharpur Gneiss is overlain by a metasedimentary assemblage consisting of quartz arenite, conglomerate, slate-phyllite, greywacke with volcanogenic material, volcaniclastic rocks and chert. The rock assemblage suggests an association of volcanism, turbidite deposition and debris flow in the basin. The grade of metamorphism is very low, the common metamorphic minerals being muscovite, chlorite, biotite and stilpnomelane. Three phases of deformation have affected the rocks. The principal D1 structure is a penetrative planar fabric, parallel to or at low angle to bedding. No D1 major fold is observed and the regional importance of this deformation is uncertain. The D2 deformation has given rise to a number of northerly plunging major folds on E-W axial planes. These have nearly reclined geometry and theL 2lineation is mostly downdip on theS 2surface, though some variation in pitch is observed. The morphology of D2 planar fabric varies from slaty cleavage/schistosity to crenulation cleavage and solution cleavage. D3 deformation is weak and has given rise to puckers and broad warps on schistosity and bedding. The D2 major folds south of Lotapahar are second order folds in the core of the Ongarbira syncline whose easterly closure is exposed east of the mapped area. Photogeological study suggests that the easterly and westerly closing folds together form a large synclinal sheath fold. There is a continuity of structures from north to south and no mylonite belt is present, though there is attenuation and disruption along the fold limbs. Therefore, the Singhbhum shear zone cannot be extended westwards in the present area. There is no evidence that in this area a discontinuity surface separates two orogenic belts of Archaean and Proterozoic age.  相似文献   

12.
A new method to estimate strain and competence contrast from natural fold shapes is developed and verified by analogue and numerical experiments. Strain is estimated relative to the nucleation amplitude, AN, which is the fold amplitude when the amplification velocities caused by kinematic layer thickening and dynamic folding are identical. AN is defined as the initial amplitude corresponding to zero strain because folding at amplitudes smaller than AN is dominantly by kinematic layer thickening. For amplitudes larger than AN, estimates of strain and competence contrast are contoured in thickness-to-wavelength (H/λ) and amplitude-to-wavelength (A/λ) space. These quantities can be measured for any observed fold shape. Contour maps are constructed using existing linear theories of folding, a new nonlinear theory of folding and numerical simulations, all for single-layer folding. The method represents a significant improvement to the arc length method. The strain estimation method is applied to folds in viscous (Newtonian), power-law (non-Newtonian) and viscoelastic layers. Also, strain partitioning in fold trains is investigated. Strain partitioning refers to the difference in strain accommodated by individual folds in the fold train and by the whole fold train. Fold trains within layers exhibiting viscous and viscoelastic rheology show different characteristic strain partitioning patterns. Strain partitioning patterns of natural fold trains can be used to assess the rheological behaviour during fold initiation.  相似文献   

13.
大别-苏鲁造山带不同岩片(块)经历了不同的褶皱变形.榴辉岩块(或透镜体)和硬玉石英岩片经历了高压-超高压背景下的两幕褶皱变形之后,在区域性第一幕变形期间主要发生透镜化为主,后期与围岩共同经历紧闭同斜第二幕褶皱.而其它岩片主要经历了现今野外可见的区域性三幕褶皱,其中区域性第一幕褶皱为片内残留褶皱,在斜长角闪岩透镜体中多见,宏观规律不明.区域性第二幕褶皱在露头尺度多见,轴面为折劈理,局部强烈置换成片理化带(复合片理或第二期片理),恢复第三幕褶皱改造作用后,揭示出各种岩片中的各级尺度的第二幕褶皱都为轴面北西倾南东倒、轴迹走向为NNE向的紧闭不对称褶皱,不对称性一致反映其指向与各种岩片向南东的逆冲运动有关.第三幕褶皱为以片理或折劈理为变形面的宽缓褶皱,轴迹走向NWW,枢纽向西倾伏.韧性剪切带为非透入性构造,分早晚两期,早期为韧性逆冲,新县穹隆以南,运动学标志指示向北逆冲,错切第二幕褶皱,结合新县穹隆北部向南的逆冲特征,反映这些韧性逆冲断层多数为第二幕大型褶皱翼部的次级逆冲断层;晚期为韧性滑脱带,其发育局限于几个岩性差异较大的接触带,带内伸展型折劈理发育,并对挤压构造样式有重要的改造作用.华北克拉通东部地块是华北克拉通的重要组成,其盖层古生界和三叠系在印支运动期间经历了一幕宽缓褶皱作用,其轴迹方向主体也为NWW向.这一褶皱构造明显在变形时间、变形样式和展布方向上都和大别-苏鲁造山带中的第三幕褶皱非常一致,说明它们具有动力学上的必然联系.同时,研究表明在华北克拉通东部地块中没有经历大别-苏鲁造山带中区域性第一、第二幕褶皱变形的记录,故本文认为印支期这两幕变形主要发生在华北板块东南缘的边界上,并没有波及到板内,而且从东向西高压-超高压岩石剥露具有穿时性.只有当华北板块和华南板块在第二幕变形之后构成了统一块体后,第三幕变形才波及华北板内.  相似文献   

14.
First phase folds F1 developed in polydeformed Ajabgarh Group rocks of Proterozoic age are studied using various geometrical methods of analysis for compatibility of homogeneous strain in both class 1–3 pairs by correlatingt′ ga/α plots with existing curves for competent layers and matchingt ga/α plots with the flattening curves for the incompetent layers. F1 folds were initiated by the process of buckling but underwent [(λ21) = 0.2 to 0.7] for competent layers andR- values of 1.1 to 5 for incompetent layers. The varying flattening is also revealed by the geometry of folds. The apparent buckle shortening of folds which ranges between 49 and 67 per cent with a majority of the folds having shortening values between 50% and 55% (exclusive of layer parallel strain) and inverse thickness method strain up to 50%. Besides flattening, the fold geometry was also modified by the pressure solution. This is borne by the presence of dark seams rich in phyllosilicates and disseminated carbonaceous material offsetting limbs of buckled quartz veins in slates  相似文献   

15.
《Tectonophysics》1999,301(1-2):159-171
A new classification scheme based on the degree of fluctuation in the geometry of different layers of a multilayered fold is suggested. The classification scheme uses the degree of fluctuation in geometry in terms of the standard deviation (σn) of the thickness parameters tα′ (orthogonal thickness parameter) and Tα′ (axial plane parallel thickness parameter) for n number of layers, and dip angle α. The degree of fluctuation in the geometry of a multilayered fold can be represented by σn(tα′) or σn(Tα′) versus α plots on a Cartesian plane. In the proposed classification scheme, multilayered folds have been divided into two broad categories, namely `isodeviatoric' and `anisodeviatoric'. Isodeviatoric folds have a constant fluctuation in the geometry of different layers recorded in terms of σn(tα′) or σn(Tα′) for α>10°. A special type of isodeviatoric fold is recognised as `analogous fold' in which each layer exhibits identical geometry [σn(tα′) or σn(Tα′)=0]. Plots of isodeviatoric folds lie parallel to the abscissa (α) and those of analogous folds lie along the abscissa in the σn(tα′) or σn(Tα′) (ordinate) versus α (abscissa) diagram. Analogous folds have been divided into ten varieties (1A1, 1A2, 1A3, 1B, 1C, 2, 3A, 3B, 3C and composite-analogous types). The anisodeviatoric folds do not exhibit constant fluctuation (deviation) in the geometry of different constitutive layers. Such folds have been subdivided into `peri-analogous', `sub-analogous', `sub-non-analogous', `non-analogous' and `strongly non-analogous' types. This classification scheme is applied to folds developed in low-grade metasedimentary rocks of the Mahakoshal Group and low- to medium-grade rocks of the Chhotanagpur Granite Gneiss Complex in central India.  相似文献   

16.
The structure of the Ciudad Rodrigo area (Iberian Massif, Central Iberian Zone) has been revisited in order to integrate new geological data with recent models of the evolution of the Iberian Massif. Detailed mapping of fold structures along with a compilation of field data have been used to constrain the geometry and relative timing of ductile deformation events in this section of the hinterland of the Variscan belt. The structural evolution shows, in the first place, the development of a regional train of overturned folds with associated axial planar foliation (D1). Towards the lower structural levels, the deflection of the fold limbs and a subhorizontal crenulation cleavage depict the upper structural boundary of a superimposed low angle shear zone (D2), which extends at least to the deepest parts of the basement exposed in the study area. The amplification and rotation of D1 folds about a horizontal axis also occurred within this shear zone. The flat-lying character of the D2 structures accounts for the attenuation of the previously thickened crust, which developed following gravity gradients during thermal re-equilibration. Subsequent deformation led to the formation of two orthogonal sets of upright folds (D3), representing a new shift between crustal thinning and crustal thickening in the region.  相似文献   

17.
Kilometer-size fold interference patterns in the Beishan Orogenic Collage (BOC) in the southernmost Altaids formed by fold superimposition in fossiliferous Permian sedimentary rocks. First-phase (F1), upright and almost north-trending folds, were refolded by E- to ENE-trending F2 folds, whose axial planes and axes are vertical or subvertical. From east to west there is a regional change in style of interference patterns from lobate–cuspate-, to crescent- to mushroom-shape. This variation is accompanied by a westward decrease in the F2 interlimb angle and related to a higher percentage of coarse-grained clastic rocks, suggesting a dependence of the F2 deformation on lithology. Axial planar slaty cleavages are well developed in F1 and poorly developed in F2 folds. The superposed folds mainly underwent flexural-slip and flexural flow folding to give rise to the lobate–cuspate pattern, and to the crescent pattern caused by flattening and flexural flow folding where the sediments were unconsolidated and enriched in fluids. The two folding events are interpreted to result from a major change in plate configuration that caused the inversion of an inter-arc basin during the final amalgamation of the BOC in the latest Permian to early to mid-Triassic. The two folding events bracketed between a maximum detrital zircon age of <273 Ma, and the youngest age of an intruded dyke at 219.0 ± 1.2 Ma suggest rapid plate reconfiguration related to final amalgamation of the Altaids orogen.  相似文献   

18.
Strain has been measured from clasts within a deformed conglomerate layer at 17 localities around an asymmetric fold in the Rundemanen Formation in the Bergen Arc System, West Norwegian Caledonides. Strain is very high and a marked gradient in strain ellipsoid shape exists. To either side of the fold, strain within the conglomerate bed is of the extreme flattening type. In the fold, especially on the lower fold closure, the strain is constrictional. Mathematical models of perturbations of flow in glacial ice have produced folds of the same geometry as this fold, with a strikingly similar pattern of finite strain. The fold geometry and strain pattern, as well as other field observations, suggest that the fold developed passively, as the result of a perturbation of flow in a shear zone, where the strain was accommodated by simple shear accompanied by extension along Y.  相似文献   

19.
S1 cleavage in the Hawick Rocks of the Galloway area is non-axial planar, cutting obliquely across the F1 folds in a predominantly clockwise sense. Individual S1 cleavage planes within cleavage-fans in F1 folds strike clockwise, locally anti-clockwise, of axial surfaces, and the mean plane to the S1 cleavage-fans dips predominantly more steeply than the axial surface. F1 folds investigated at scattered localities in Silurian and Ordovician rocks north of the Hawick Rocks are also transected by the S1 cleavage, indicating that non-axial planar S1 cleavage is widespread in the Southern Uplands. The S1 cleavage is a composite fabric. Objects deformed within sandstones and tuffs indicate oblate strain. F1 fold plunge varies from NE to SW and fold hinges locally are markedly curvilinear. Steeply plunging and locally downward-facing F1 folds are present along the southeast margin of the Hawick Rocks. The non-axial planar S1 cleavage relationships persist in the steeply plunging F1 folds. Synchronous development of the non-axial planar S1 cleavage and the variably plunging F1 folds is proposed.  相似文献   

20.
Transpressional deformation has played an important role in the late Paleozoic evolution of the western Central Asian Orogenic Belt (CAOB), and understanding the structural evolution of such transpressional zones is crucial for tectonic reconstructions. Here we focus on the transpressional Irtysh Shear Zone with an aim at understanding amalgamation processes between the Chinese Altai and the West/East Junggar. We mapped macroscopic fold structures in the southern Chinese Altai and analyzed their relationships with the development of the adjacent Irtysh Shear Zone. Structural observations from these macroscopic folds show evidence for four generations of folding and associated fabrics. The earlier fabric (S1), is locally recognized in low strain areas, and is commonly isoclinally folded by F2 folds that have an axial plane orientation parallel to the dominant fabric (S2). S2 is associated with a shallowly plunging stretching lineation (L2), and defines ∼NW-SE tight-close upright macroscopic folds (F3) with the doubly plunging geometry. F3 folds are superimposed by ∼NNW-SSE gentle F4 folds. The F3 and F4 folds are kinematically compatible with sinistral transpressional deformation along the Irtysh Shear Zone and may represent strain partitioning during deformation. The sub-parallelism of F3 fold axis with the Irtysh Shear Zone may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation (F3) in fold zones. The strain partitioning may have become less efficient in the later stage of transpressional deformation, so that a fraction of transcurrent components was partitioned into F4 folds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号