首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The Fall River Formation is a 45 m thick layer of fluvial-dominated valley-fills and shore-zone strata deposited on the stable cratonic margin of the Cretaceous Western Interior Seaway. Fall River deposits in Red Canyon, in the south-west corner of South Dakota (USA), expose a cross-section of a 3.5 km wide valley-fill sandstone and laterally adjacent marine deposits. The marine deposits comprise three 10 m thick upward-shoaling sequences; each composed of multiple metres-thick upward-coarsening successions. The lower two of these sequences are laterally cut by the valley-fill sandstone, and are capped by metres-thick muddy palaeosols. The upper sequence spans the top of the valley-fill sandstone, and is overlain by the Skull Creek Shale. The 30 m thick valley sandstone is partitioned into four distinct fills by major erosion surfaces, and each of these fills contain many metres-thick channel-form bodies. Deposits in the lower parts of these fills are sheet-like, top-truncated channel bodies, whereas deposits in the upper parts of fills are upward-concave, laterally amalgamated channel bodies, more completely preserved heterolithic channel bodies, or wave-deposited sheets. Each valley-fill basal erosion surface records an episode of valley incision and relative sea-level fall, and the gradual progression from fluvial to more estuarine deposits upwards within each fill records relative sea-level rise. All fills are dominantly channel deposits and are capped by marine flooding surfaces. The dominance of channel deposits, the gradual change to more estuarine facies in the upper parts of fills, and the location of flooding surfaces at valley-fill tops all suggest that sediment supply initially kept pace with relative sea-level rise and valleys filled during late marine lowstand and transgression, not during subsequent highstands. Recently proposed facies models have focused on variations in the relative strength of tide, wave and river currents as controls on valley-fill deposits. However, relative rates of sediment supply and basin accommodation change, and the shift in this ratio along the depositional profile during multiple-scale cycles in relative sea-level, are equally important controls on the style of valley-fill deposits.  相似文献   

2.
The early Stephanian Bonar Cyclothem of the Sydney Basin, Nova Scotia, contains an erosional surface cut through coastal plain strata with economic coals and distributary channel bodies. The erosion surface is interpreted as a palaeovalley 20 m deep and at least 7 km wide that marks a sequence boundary formed during relative fall in sea level. The palaeovalley is filled with stacked alluvial channel bodies which become more isolated as the valley fill passes upward into red, alluvial plain deposits, probably laid down in an anastomosed river system. In an adjacent, interfluve area, calcretes and red, vertic palaeosols cap coastal strata. Assemblage analysis of agglutinated foraminifera and thecamoebians indicates that the palaeovalley was filled with freshwater sediments before an initial marine transgression flooded the alluvial surface and adjacent interfluve. Valley incision probably reflects glacioeustatic sea level fall. However, the alluvial nature of the valley deposits suggests that valley filling reflects an abundant sediment supply during lowstand and/or transgressive stages and was not a direct consequence of sea level rise. During the subsequent transgression phase, aggradation was rapid as sediment supply apparently kept pace with rising sea level. Features of both channel and extra-channel facies suggest that seasonality intensified during the transition from coastal plain to palaeovalley and alluvial plain deposition.  相似文献   

3.
This work presents the first detailed facies analysis of the upper Nyalau Formation exposed around Bintulu, Sarawak, Malaysia. The Lower Miocene Nyalau Formation exposures in NW Sarawak represent one of the closest sedimentological outcrop analogues to the age equivalent, hydrocarbon-bearing, offshore deposits of the Balingian Province. Nine types of facies associations are recognised in the Nyalau Formation, which form elements of larger-scale facies successions. Wave-dominated shoreface facies successions display coarsening upward trends from Offshore, into Lower Shoreface and Upper Shoreface Facies Associations. Fluvio-tidal channel facies successions consist of multi-storey stacks of Fluvial-Dominated, Tide-Influenced and Tide-Dominated Channel Facies Associations interbedded with minor Bay and Mangrove Facies Associations. Estuarine bay facies successions are composed of Tidal Bar and Bay Facies Associations with minor Mangrove Facies Associations. Tide-dominated delta facies successions coarsen upward from an Offshore into the Tidal Bar Facies Association. The Nyalau Formation is interpreted as a mixed wave- and tide-influenced coastal depositional system, with an offshore wave-dominated barrier shoreface being incised by laterally migrating tidal channels and offshore migrating tidal bars. Stratigraphic successions in the Nyalau Formation form repetitive high frequency, regressive–transgressive cycles bounded by flooding surfaces, consisting of a basal coarsening upward, wave-dominated shoreface facies succession (representing a prograding barrier shoreface and/or beach-strandplain) which is sharply overlain by fluvio-tidal channel, estuarine bay or tide-dominated delta facies successions (representing more inshore, tide-influenced coastal depositional environments). An erosion surface separates the underlying wave-dominated facies succession from overlying tidal facies successions in each regressive–transgressive cycle. These erosion surfaces are interpreted as unconformities formed when base level fall resulted in deep incision of barrier shorefaces. Inshore, fluvio-tidal successions above the unconformity display upward increase in marine influence and are interpreted as transgressive incised valley fills.  相似文献   

4.
The modern Severnaya Dvina and Mezen river systems in the Arkhangelsk region, NW Russia, are located within extensive palaeovalley systems. The palaeovalleys form depressions in bedrock and have controlled the drainage systems in the area at least since the Last Interglacial. Vertically stacked marine to fluvial sediments reflect deposition during fluctuating climate and sea levels.A compilation of lithostratigraphical data collected during the last decade has been coupled with bedrock topography and geomorphology from satellite images in order to describe the valley fill architecture for the two valley systems. Each system has been divided into a number of depositional units (storeys) separated by incision/non-deposition and used to investigate the timing of aggradational versus incisional phases. Time constraints for each phase are provided by optically stimulated luminescence (OSL) ages, and aggradation and incision are linked to independent records of climate and sea level change.The pattern of aggradation and erosion is regional and primarily driven by episodes of increasing and decreasing sediment supply. Aggradation is correlated to times of deglaciation with high sediment supply from the ice margin, release of sediment from ice-dammed lakes and low vegetation and degradation of permafrost on the flood plain. Incision is related to cold intervals with low sediment supply, delayed incision due to isostatic uplift and drainage of ice-dammed lakes. Relative sea level change controls the distribution of marine deposits, which show significant regional variations due to variable isostatic response across the region. Sea level change plays a limited role for fluvial aggradation/incision in the study area.  相似文献   

5.
The Lower Permian (Artinskian to Sakmarian) Pebbley Beach Formation (PBF) of the southernmost Sydney Basin in New South Wales, Australia, records sediment accumulation in shallow marine to coastal environments at the close of the Late Palaeozoic Gondwanan ice age. This paper presents a sequence stratigraphic re‐evaluation of the upper half of the unit based on the integration of sedimentology and ichnology. Ten facies are recognized, separated into two facies associations. Facies Association A (seven facies) comprises variably bioturbated siltstones and sandstones with marine body fossils, interpreted as recording sediment accumulation in open marine environments ranging from lower offshore to middle shoreface water depths. Evidence of deltaic influence is seen in several Association A facies. Facies Association B (three facies) comprises mainly heterolithic, interlaminated and thinly interbedded sandstone and siltstone with some thicker intervals of dark grey, organic‐rich mudstone, some units clearly filling incised channel forms. These facies are interpreted as the deposits of estuarine channels and basins. Throughout the upper half of the formation, erosion surfaces with several metres relief abruptly separate open marine facies of Association A (below) from estuarine facies of Association B (above). Vertical facies changes imply significant basinward shift of environment across these surfaces, and lowering of relative sea level in the order of 50 m. These surfaces can be traced over several kilometres along depositional strike, and are defined as sequence boundaries. On this basis, at least nine sequences have been recognized in the upper half of the formation, each of which is < 10 m thick, condensed, incomplete and top‐truncated. Sequences contain little if any record of the lowstand systems tract, a more substantial transgressive systems tract and a highstand systems tract that is erosionally truncated (or in some cases, missing). This distinctive stacking pattern (which suggests a dominance of retrogradation and progradation over aggradation) and the implied relative sea‐level drop across sequence boundaries of tens of metres are remarkably similar to some other studies of continental margin successions formed under the Neogene icehouse climatic regime. Accordingly, it is suggested that the stratigraphic architecture of the PBF was a result of an Icehouse climate regime characterized by repeated, high‐amplitude cycles of relative sea‐level change.  相似文献   

6.
The Mesoproterozoic Lower Tombador Formation is formed of shallow braided fluvial, unconfined to poorly-channelized ephemeral sheetfloods, sand-rich floodplain, tide-dominated estuarine, and shallow marine sediments. Lowstand braided fluvial deposits are characterized by a high degree of channel amalgamation interbedded with ephemeral, intermediate sheetflood sandstones. Sand-rich floodplain sediments consist of intervals formed by distal sheetflood deposits interbedded with thin layers of eolian sandstones. Tide-dominated estuarine successions are formed of tide-influenced sand-bed braided fluvial, tidal channel, tidal sand flat and tidal bars. Shallow marine intervals are composed of heterolithic strata and tidal sand bars. Seismic scale cliffs photomosaics calibrated with vertical sections indicate high lateral continuity of sheet-like depositional geometry for fluvial–estuarine successions. These geometric characteristics associated with no evidence of incised-valley features nor significant fluvial scouring suggest that the Lower Tombador Formation registers deposition of unincised fluvial and tide-dominated systems. Such a scenario is a natural response of the interplay between sedimentation and fluctuations of relative sea level on the gentle margins of a sag basin. This case study indicates that fluvial–estuarine successions exhibit the same facies distributions, irrespective of being related to unincised or incised-valley systems. Moreover, this case study can serve as a starting point to better understand the patterns of sedimentation for Precambrian basins formed in similar tectonic settings.  相似文献   

7.
The discovery of whale fossils from Eocene strata in the Fayum Depression has provoked interest in the life and lifestyle of early whales. Excellent outcrop exposure also affords the dataset to develop sedimentological and stratigraphic models within the Eocene strata. Previous work generally asserts that the thick, sand‐rich deposits of the Fayum Depression represent shoreface and barrier island successions with fine‐grained lagoonal and fluvial associations capping progradational successions. However, a complete absence of wave‐generated sedimentary structures, a preponderance of thoroughly bioturbated strata and increasingly proximal sedimentary successions upwards are contrary to accepted models of the local sedimentological and stratigraphic development. This study considers data collected from two Middle to Upper Eocene successions exposed in outcrop in the Wadi El‐Hitan and Qasr El‐Sagha areas of the Fayum Depression to determine the depositional affinities of Fayum strata. Based on sedimentological and ichnological data, five facies associations (Facies Association 1 to Facies Association 5) are identified. The biological and sedimentological characteristics of the reported facies associations indicate that the whale‐bearing sandstones (Facies Association 1) record distal positions in a large, open, quiescent marine bay that is abruptly succeeded by a bay‐margin environment (Facies Association 2). Upwards, marginal‐marine lagoonal and shallow‐bay parasequences (Facies Association 3) are overlain by thick deltaic distributary channel deposits (Facies Association 4). The capping unit (Facies Association 5) represents a transgressive estuarine depositional environment. The general stratigraphic evolution resulted from a regional, tectonically controlled second‐order cycle, associated with northward regression of the Tethys. Subordinate cycles (i.e. third‐order and fourth‐order cycles) are evidenced by several Glossifungites‐ichnofacies demarcated discontinuities, which were emplaced at the base of flooding surfaces. The proposed depositional models recognize the importance of identifying and linking ichnological data with physical–sedimentological observations. As such – with the exception of wave‐generated ravinement surfaces – earlier assertions of wave‐dominated sedimentation can be discarded. Moreover, this study provides important data for the recognition of (rarely reported) completely bioturbated sand‐dominated offshore to nearshore sediments (Facies Association 1) and affords excellent characterization of bioturbated inclined heterolithic stratification of deltaic deposits. Another outcome of the study is the recognition that the whales of the Fayum Depression are restricted to the highstand systems tracts, and lived under conditions of low depositional energy, low to moderate sedimentation rates, and (not surprisingly) in fully marine waters characterized by a high biomass.  相似文献   

8.
Holocene deposits of the Hawkesbury River estuary, located immediately north of Sydney on the New South Wales coast, record the complex interplay between sediment supply and relative sea-level rise within a deeply incised bedrock-confined valley system. The present day Hawkesbury River is interpreted as a wave-dominated estuarine complex, divisible into two broad facies zones: (i) an outer marine-dominated zone extending 6 km upstream from the estuary mouth that is characterized by a large, subtidal sandy flood-tidal delta. Ocean wave energy is partially dissipated by this flood-tidal delta, so that tidal level fluctuations are the predominant marine mechanism operating further landward; (ii) a river-dominated zone that is 103 km long and characterized by a well developed progradational bayhead delta that includes distributary channels, levees, and overbank deposits. This reach of the Hawkesbury River undergoes minor tidal level fluctuations and low fluvial runoff during baseflow conditions, but experiences strong flood flows during major runoff events. Fluvial deposits of the Hawkesbury River occur upstream of this zone. The focus of this paper is the Hawkesbury River bayhead delta. History of deposition within this delta over the last c. 12 ka is interpreted from six continuous cores located along the upper reaches of the Hawkesbury River. Detailed sedimentological analysis of facies, whole-core X-ray analysis of burrow traces and a chronostratigraphic framework derived from 10 C-14 dates reveal four stages of incised-valley infilling in the study area: (1) before 17 ka BP, a 0–1 m thick deposit of coarse-grained fluvial sand and silt was laid down under falling-to-lowstand sea level conditions; (2) from 17 to 6·5 ka BP, a 5–10 m thick deposit composed of fine-grained fluvial sand and silt, muddy bayhead delta and muddy central-basin deposits developed as the incised valley was flooded during eustatic sea-level rise; (3) during early highstand, between 6·5 and 3 ka BP, a 3–8 m thick bed of interbedded muddy central-basin deposits and sandy river flood deposits, formed in association with maximum flooding and progradation of sandy distributary mouth-bar deposits commenced; (4) since 3 ka BP, fluvial deposits have prograded toward the estuary mouth in distributary mouth-bar, interdistributary-bay and bayhead-delta plain environments to produce a 5–15 m thick progradational to aggradational bayhead-delta deposit. At the mouth of the Hawkesbury estuary subaqueous fluvial sands interfinger with and overlie marine sands. The Hawkesbury River bayhead-delta depositional succession provides an example of the potential for significant variation of facies within the estuarine to fluvial segment of incised-valley systems.  相似文献   

9.
This article describes a complete sedimentary succession of an ancient macrotidal tide-dominated estuarine system based on the detailed outcrop study. The Eocene siliciclastic sedimentary facies of Ameki Group in the south-eastern Nigeria provides a record of the sedimentary response to an initial regression, followed by marine incursion (transgression) into the Niger Delta Basin. These sedimentary successions are analogues to the subsurface petrolific Niger Delta lithostratigraphic units. Seven facies associations (FA 1 to FA 7) are documented in the study area and the sediments are interpreted as fluvial channel, tidally influenced fluvial channel, tidal channel, tidal flats, supratidal, tidal sand bar and estuarine embayment (open estuarine) deposits. The occurrence of low diversity ichnofaunal assemblages and/or localised high-density monospecific ichnofossil assemblages indicates brackish-water condition typical of estuarine settings. The suites of assemblages include Scoyenia, Skolithos, Cruziana, mixed Skolithos-Cruziana, Glossifungites, Psilonichnus and Teredolites ichnofacies. A complete depositional sequence is encountered in the Eocene Ameki Group which consists of the lowstand, transgressive, highstand and falling stage systems tracts. This depositional succession was most probably controlled by relative sea level changes, sediment supply, accommodation and regional tectonics which affected the development of Niger Delta Basin.  相似文献   

10.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

11.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

12.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

13.
This study utilized three-dimensional exposures to evaluate how sea-level position and palaeotopography control the facies and geometries of heterozoan carbonates. Heterozoan carbonates were deposited on top of a Neogene volcanic substrate characterized by palaeotopographic highs, palaeovalleys, and straits that were formed by subaerial erosion, possibly original volcanic topography, and faults prior to carbonate deposition. The depositional sequence that is the focus of this study (DS1B) consists of 7–10 fining upward cycles that developed in response to relative sea-level fluctuations. A complete cycle has a basal erosion surface overlain by deposits of debrisflows and high-density turbidity currents, which formed during relative sea-level fall. Overlying tractive deposits most likely formed during the lowest relative position of sea level. Overlying these are debrites grading upward to high-density turbidites and low-density turbidites that formed during relative sea-level rise. The tops of the cycles consist of hemipelagic deposits that formed during the highest relative position of sea level. The cycles fine upward because upslope carbonate production decreased as relative sea level rose due to less surface area available for shallow-water carbonate production and partial drowning of substrates. The cycles are dominated by two end-member types of facies associations and stratal geometries that formed in response to fluctuating sea-level position over variable substrate palaeotopography. One end-member is termed ‘flank flow cycle’ because this type of cycle indicates dominant sediment transport down the flanks of palaeovalleys. Those cycles drape the substrate, have more debrites, high-density turbidites and erosion on palaeovalley flanks, and in general, the lithofacies fine down the palaeovalley flanks into the palaeovalley axes. The second end-member is termed ‘axial flow cycle’ because it indicates a dominance of sediment transport down the axes of palaeovalleys. Those cycles are characterized by debrites and high-density turbidites in palaeovalley axes, and lap out of strata against the flanks of palaeovalleys. Where and when an axial flow cycle or flank flow cycle developed appears to be related to the intersection of sea level with areas of gentle or steep substrate slopes, during an overall relative rise in sea level. Results from this study provide a model for similar systems that must combine carbonate principles for sediment production, palaeotopographic controls, and physical principles of sediment remobilization into deep water.  相似文献   

14.
Sandyhaven Pill is a ‘drowned valley’ type of estuary. Thus the deposits differ from most other described estuarine deposits which are of ‘tidally influenced river’ type. The surface sediments may be divided broadly into wave-dominated deposits (22% of area), tide-dominated deposits (65%), deposits related to marginal cliff collapse (12%) and river-dominated deposits (1%). Further subdivision shows that the subenvironments are nested in a progression up the estuary with trends to finer sediment size, reduced sorting and increased biogenic activity. The latter relates to a marine to estuarine faunal change and a strong relationship between the distributions of biota and depositional subenvironments. Over a 29 day period, reduction in wave height was reflected in wave-dominated areas by shoreward movement of some subenvironment boundaries and by improved definition of symmetrical ripples. The tidal cycle had only a limited effect on the tide-dominated sediments. The most reliable indicators of estuary trend are channels and asymmetrical ripples; but coring shows that ripples and other minor structures are rarely preserved. Heavy mineral analysis indicates that most of the estuarine sand came from offshore. Gradual sediment build-up will result in a regressive sequence. If this were preserved under a later transgression, the resultant deposit would be an elongate sediment body bounded laterally by a coarse marginal facies. The sediment sequence would be inward and upward fining with diachronous facies boundaries sloping upwards towards the offshore end and towards the axis of the body.  相似文献   

15.
Many bedrock-confined fjord valleys along the Norwegian coast contain thick accumulations of fine-grained sediments that were deposited during and after the last deglaciation. The deposits gradually emerged above sea level due to glacioisostatic uplift, and fjord marine sedimentation was gradually followed by shallow marine and fluvial processes. During emergence terraces and river-cut slopes were formed in the valleys. Subsequent leaching of salt ions from the pore water in the marine deposits by groundwater has led to the development of quick clay. The deposits are subject to river erosion and destructive landslides involving quick clay. Most slides are of prehistoric age. Others are known from modern observations as well as from historic records.Landforms such as distinct slide scars or the hummocky terrain of slide deposits may be strongly modified by secondary processes. In addition, deposits from the most liquid part of quick clay slides may have planar surfaces. Clay-slide deposits on a fluvial or deltaic terrace, therefore, are not always easily recognized from morphology, and only exposures may reveal their internal structures and allow them to be distinguished from overbank flood sediments. Detailed sedimentological work shows that slide deposits in such setting consist of distinct facies containing reworked marine sediments. We propose three facies successions of clay-slide deposits that form a continuum. The dominant components of these succession types are: slightly deformed blocks of laminated clay and silt (A), highly deformed clay and silt with gravel clasts (B) and massive to stratified clay and silt with scattered clasts (C). We suggest that in many cases a basal muddy diamicton is a characteristic, and possibly diagnostic feature. Processes and depositional models are interpreted from the different succession types. The results may be relevant for identifying clay-slide deposits elsewhere and may be useful during general mapping of fjord marine deposits and characterization of slide-prone areas as well as during identification of prehistoric slides.  相似文献   

16.
《Sedimentary Geology》2005,173(1-4):151-185
An Early Miocene (Early Burdigalian) incised valley-fill was produced through development of an alluvial system during active extension and block rotation in the Mut Basin. Five phases of alluvial activity have been recognized and are linked to specific tectono-stratigraphic factors. The entrenchment phase (phase 1) was a response to a rapid decrease in accommodation caused by a combination of sea-level fall and accelerated tectonism that occurred around the basin during active extension. A lacustrine depositional system that pre-dated entrenchment was abruptly succeeded by an erosional fluvial system. The initial erosion, the entrenchment phase was followed by the deposition of ephemeral meandering fluvial facies and later by high sinuosity sandy meandering fluvial facies. During the aggradational phase (Phase 2), coarser-grained, lower sinuosity meandering river facies were vertically stacked in response to successive periods of fault-block rotation and basinal subsidence. The thickest stratigraphic interval was deposited during this time. Simultaneously in a basinward position, finer-grained distal facies were deposited. The succeeding backfilling phase (Phase 3) was marked by further fault-block rotation and an increase in the catchment area that resulted in higher flow regime and more sediment input. A further increase in accommodation space due to block rotation resulted in the retreat of facies belts, and the deposition of a retrogradational stacked gravelly low-sinuosity meandering facies during the early transgressive phase (Phase 4). In the downstream part of the alluvial valley, fluvio-deltaic and non-marine transitional facies were deposited and progressively retreated landwards during marine flooding. Phase 5 marks the main interval of Early Miocene marine transgression (a combination of global eustasy and regional epeiric subsidence). During this time, the facies belts within the incised valley-fill were dominated by estuarine and lagoonal facies assemblages, while the distal parts of the alluvial valley became completely flooded with marine waters. At the end of the transgressive phase, in the uppermost early Burdigalian, the estuarine and lagoonal facies migrated further inland, while shallow-marine sediments (reefal limestones) were deposited in distal parts of the now-drowned valley, blanketing the pre-existing topography.  相似文献   

17.
The Sis conglomerate body represents the Middle Eocene to Oligocene transfer‐zone trunk palaeovalley fill of the Sis fluvial system, a drainage system established within the Pyrenees during Late Palaeocene times. The spatial stability of the fluvial transfer zone (active for at least 38 My), and hence the longevity of its aggradational palaeovalley component (>19·5 My), was controlled by its location between long‐lived pre‐existing structures. Coarse‐grained fluvial facies dominate the palaeovalley fill, with alluvial fan facies shed from its defining marginal structures. The detailed sedimentology of very proximal fluvial facies deposited within the dominantly erosional realm of an active mountain belt has rarely been documented before because of their poor preservation potential. The Sis conglomerate body contains a robust internal stratigraphy with stratigraphic units defined by distinct bounding surfaces, across which there are pronounced changes in facies and provenance. These mark the reorganization of the headward portions of the Sis fluvial system during the evolution of the Pyrenean Axial Zone antiformal stack. Major changes in discharge resulted, demonstrating the highly variable nature of even mountain belt‐scale fluvial systems when viewed on timescales of several to tens of millions of years. Provenance details indicate that initial unroofing of Hercynian granitoids, situated within the Pyrenean Axial Zone, occurred around 54·5 Ma (early Ypresian) immediately before the first significant exhumation event within the drainage basin of the Sis fluvial system. This is earlier than previously constrained by apatite fission track studies. Rock uplift accelerated in the Lutetian and Bartonian with the initial aggradation of the palaeovalley fill (the Cajigar and Cornudella Formations and Sis One and Two Members). This became marked in the Priabonian (Sis Three and Four Members), with significant activity on local structures including the Morreres backthrust. An increase in basement‐derived clasts and a headwater decapitation event also indicate pronounced Axial Zone antiformal stack development at this time. Axial Zone development intensified further in the Oligocene with the deposition of the Collegats Formation and the switch in the main depositional loci of the system from the Tremp‐Graus thrust‐sheet‐top basin to the Ebro Basin to the south.  相似文献   

18.
Intracontinental subduction of the South China Block below the North China Block in the Late Triassic resulted in formation of the transpressional Sichuan foreland basin on the South China Block. The Upper Triassic Xujiahe Formation was deposited in this basin and consists of an eastward-tapering wedge of predominantly continental siliciclastic sedimentary rocks that are up to 3.5 km thick in the western foredeep depocenter and thin onto the forebulge and into backbulge depocenters.Five facies associations (A–E) make up the Xujiahe Formation and these are interpreted, respectively, as alluvial fan, transverse and longitudinal braided river, meandering river, overbank or shallow lacustrine, and deltaic deposits. This study establishes a sequence stratigraphic framework for the Xujiahe Formation which is subdivided into four sequences (SQ1, 2, 3 and 4). Sequence boundaries are recognized on the basis of facies-tract dislocations and associated fluvial rejuvenation and incision, and systems tracts are identified based on their constituent facies associations and changes in architectural style and sediment body geometries. Typical sequences consist of early to late transgressive systems tract deposits related to a progressive increase in accommodation and represented by Facies Associations A, B and C that grade upwards into Facies Association D. Regionally extensive and vertically stacked coal seams define maximum accommodation and are overlain by early highstand systems tract deposits represented by Facies Associations D, E and C. Late highstand systems tract deposits are rare because of erosion below sequence boundaries. Sequence development in the Xujiahe Formation is attributed to active and quiescent phases of thrust-loading events and is closely related to the tectonic evolution of the basin. The Sichuan Basin experienced three periods of thrust loading and lithospheric flexure (SQ1, lower SQ2 and SQ3), two periods of stress relaxation and basin widening (upper SQ 2 and SQ3) and one phase of isostatic rebound (SQ4). Paleogeographic reconstruction of the Sichuan Basin in the Late Triassic indicates that the Longmen Mountains to the west, consisting of metamorphic, sedimentary and pre-Neoproterozoic basement granitoid rocks, was the major source of sediment to the foredeep depocenter. Subordinate sediment sources were the Xuefeng Mountains to the east to backbulge depocenters, and the Micang Mountains to the northwest during the late history of the basin. This study has demonstrated the viability of sequence stratigraphic analysis in continental successions in a foreland basin, and the influence of thrust loading on sequence development.  相似文献   

19.
Investigations in quarry exposures in the Asheldham Gravel and related deposits of southeast Essex are described. Section logging, mapping and borehole investigations are supported by clast lithological, heavy and clay mineralogical determinations. The sediments are derived from reworking of local Thames basin materials, fine sediment being predominantly from the London Clay. The sequence is shown to represent an aggradation that began as the fluvial infilling of the River Medway valley. The River Thames, diverted into this valley by glaciation further west, overwhelmed the Medway, reworking the deposits. The valley was subsequently drowned and fine laminated lake sediment was initially deposited. This was during a period when the valley was drowned by the glacial lake ponded in the southern North Sea basin by the Anglian/Elsterian ice sheet. Progradation by a braid-delta complex advanced along the valley and subsequently fluvial deposition returned. Valley widening and straightening accompanied the delta progradation. The deposits were dissected by deep fluvial valleys infilled by Hoxnian interglacial sediments. The Asheldham Gravel is therefore placed in the Anglian/Elsterian Stage.  相似文献   

20.
Cyclothemic sedimentary rocks of the Plio-Pleistocene Petane Group outcrop extensively in the Tangoio block of central Hawke's Bay, New Zealand. They are products of inner to mid-shelf sedimentation and were deposited during glacio-eustatic sea level fluctuations along the western margin of a shallow, pericontinental seaway located in a forearc setting. The succession consists of five laterally continuous cyclothems, each containing a fine grained interval of silt and a coarse grained interval of siliciclastic sand ± gravel or limestone. Five sedimentary facies assemblages comprising 20 separate facies have been recognized. Coarse grained intervals of cyclothems were deposited mostly during relative sea level lowstands and contain up to four facies assemblages: (1) a non-marine assemblage (with three component facies, representing braided river and overbank environments); (2) an estuarine assemblage (with three component facies, representing tidal flat and mud-dominated estuarine environments); (3) a siliciclastic shoreline assemblage (with six component facies, representing greywacke pebble beach, shoreface and inner shelf environments); and (4) a carbonate shelf assemblage (with four component facies, representing tide-dominated, inshore and shallow marine environments). Fine grained intervals of cyclothems were deposited during sea level highstands when the Tangoio area was generally experiencing mid-shelf sedimentation. This produced an offshore assemblage consisting of four component facies. The distribution of facies assemblages during relative sea level lowstands was dependent upon proximity to the shoreline, the type and rate of sediment supply to the basin, and shelf hydrodynamics. Carbonate shelf facies dominate coarse grained intervals in Cyclothems 3–5, but siliciclastic shoreline and non-marine facies dominate in Cyclothems 1 and 2. The abrupt change from siliciclastic to carbonate sedimentation during relative sea level lowstand deposition is thought to have been induced by rapidly falling interglacial to glacial sea level accentuated by regional tectonic shoaling. This caused most of the terrigenous sediment supply to bypass the Tangoio area. Consequently, carbonate sediment accumulated in inshore and shallow marine settings. Facies assemblages rarely show lateral interdigitation, but are vertically stratified over the entire Tangoio block. Facies successions in each cyclothem preserve a record of relative sea level change during deposition of the Petane Group and are consistent with a Plio-Pleistocene sea level change in eastern New Zealand of c. 75–150 m, i.e. approximately the magnitude suggested for Late Quaternary glacio-eustatic sea level changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号