首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Many urban areas are located in regions of moderate seismicity and are subjected to strong wind. Buildings in these regions are often designed without seismic provisions. As a result, in the event of an earthquake, the potential for damage and loss of lives may not be known. In this paper, the performance of a typical high-rise building with a thick transfer plate (TP), which is one type of building structure commonly found in Hong Kong, is assessed against both earthquake and wind hazards. Seismic- and wind-resistant performance objectives are fi rst reviewed based on relevant codes and design guidelines for high-rise buildings. After a brief introduction of wind-resistant design of the building, various methodologies, including equivalent static load analysis (ESLA), response spectrum analysis (RSA), pushover analysis (POA), linear and nonlinear time-history analysis (LTHA and NTHA), are employed to assess the seismic performance of the building when subjected to frequent earthquakes, design based earthquakes and maximum credible earthquakes. The effects of design wind and seismic action with a common 50-year return period are also compared. The results indicate that most performance objectives can be satisfi ed by the building, but there are some objectives, such as inter-story drift ratio, that cannot be achieved when subjected to the frequent earthquakes. It is concluded that in addition to wind, seismic action may need to be explicitly considered in the design of buildings in regions of moderate seismicity.  相似文献   

2.
A large mainshock may trigger numerous aftershocks within a short period, and nuclear power plant (NPP) structures have the probability to be exposed to mainshock–aftershock seismic sequences. However, the researchers focused on seismic analyses of reinforced concrete containment (RCC) buildings under only mainshocks. The aim of this paper is to thoroughly investigate the dynamic responses of a RCC building under mainshock–aftershock seismic sequences. For that purpose, 10 as-recorded mainshock–aftershock seismic sequences with two horizontal components are considered in this study, and a typical three-dimensional RCC model subjected to the selected as-recorded seismic sequences is established. Peak ground accelerations (PGAs) of mainshocks equal to 0.3 g (safe shutdown earthquake load-SSE load) are considered in this paper. The results indicate that aftershocks have a significant effect on the responses of the RCC in terms of maximum top accelerations, maximum top displacements and accumulated damage. Furthermore, in order to preserve the RCC from large damage under repeated earthquakes, local damage and global damage indices are suggested as limitations under only mainshocks.  相似文献   

3.
Introduction The estimation of damage probability distribution among different damage states of rein-forced concrete buildings is a key component of earthquake loss estimation for modern city or a group of cities. With the development of city, the reinforced concrete buildings are major compo-nent parts of modern cities. Vulnerability estimates for these kinds of buildings are of importance to those responsible for civil protection, relief, and emergency services to enable adequate contin-genc…  相似文献   

4.
A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the "Standard for classification of seismic protection of building constructions GB50223-2008" and "Code for Seismic Design of Buildings GB50011-2001." The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and precast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.  相似文献   

5.
In this study, a novel and enhanced soil–structure model is developed adopting the direct analysis method using FLAC 2D software to simulate the complex dynamic soil–structure interaction and treat the behaviour of both soil and structure with equal rigour simultaneously. To have a better judgment on the inelastic structural response, three types of mid-rise moment resisting building frames, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600 m/s, representing soil classes Ce, De and Ee, according to Australian Standards. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil–structure interaction) and (ii) flexible-base (considering soil–structure interaction). The results of the analyses in terms of structural displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that considering dynamic soil–structure interaction effects in seismic design of moment resisting building frames resting on soil classes De and Ee is essential.  相似文献   

6.
On 6th April 2009 an earthquake of magnitude M w =  6.3 occurred in the Abruzzo region; the epicentre was very close to the city of L’Aquila (about 6 km away). The event produced casualties and damage to buildings, lifelines and other infrastructures. An analysis of the main damage that reinforced concrete (RC) structures showed after the event is presented in this study. In order to isolate the main causes of structural and non-structural damage, the seismological characteristics of the event are examined, followed by an analysis of the existing RC building stock in the area. The latter issue came under scrutiny after the release of official data about structural types and times of construction, combined with a detailed review of the most important seismic codes in force in the last 100 years in Italy. Comparison of the current design provisions of the Italian and European codes with previous standards allows the main weaknesses of the existing building stock to be determined. Damage to structural and non-structural elements is finally analyzed thanks to photographic material collected in the first week after the event; the main causes of damage are then inferred.  相似文献   

7.
From the beginning of the twentieth century, and due to the rapid increase of reinforced concrete (RC) usage, mixed masonry–RC buildings have emerged. In Lisbon, Portugal, old mixed masonry–RC buildings appeared between 1920 and 1960, representing the transition period between masonry and proper RC. These buildings are often integrated in blocks, and frequently share the side-walls, implying, thus, the need to assess the seismic vulnerability of building aggregates. The present paper approaches the seismic vulnerability assessment of a specific type of old mixed masonry–RC buildings in Lisbon. The study comprises the analysis of a building, both as an isolated structure and inserted in its aggregate, using two approaches: (1) linear dynamic analysis with SAP2000 and (2) nonlinear static analysis by means of 3Muri/Tremuri software. A comparison of both approaches derives a good matching between the obtained results. However, a nonlinear analysis is required to identify, in an adequate manner, the critical areas of the structure requiring strengthening.  相似文献   

8.
9.
10.
As the Iranian seismic code does not address the soil–structure interaction (SSI) explicitly, the effects of SSI on RC-MRFs are studied using the direct method. Four types of structures on three types of soils, with and without the soil interaction, are modeled and subjected to different earthquake records. The results led to a criterion indicating that considering SSI in seismic design, for buildings higher than three and seven stories on soil with Vs<175 m/s and 175<Vs<375 m/s, respectively, is essential. A simplified procedure has been presented, on the basis that lateral displacement increments could be applied to the fixed-base models using simple factors.  相似文献   

11.
A two-dimensional (2-D) model of a building supported by a rectangular, flexible foundation embedded in the soil is analyzed. The building, the foundation, and the soil have different physical properties. The building is assumed to be linear, but the soil and the foundation can experience nonlinear deformations. While the work spent for the development of nonlinear strains in the soil can consume a significant part of the input wave energy—and thus less energy is available for the excitation of the building—the nonlinear response in the soil and the foundation does not signficantly alter the nature of excitation of the base of the building. It is noted that the response of a building can be approximated by translation and torsion of the base for excitation by long, strong motion waves.  相似文献   

12.
The use of characteristic period τc and peak displacement amplitude Pd of the initial P wave in earthquake early warning (EEW) was proposed by Wu and Kanamori 1, 2, 3 and 4. Here we apply this approach to strong-motion records from a building sensor array installed in Taitung County, Taiwan. This building was damaged during the 2006 Mw=6.1 Taitung earthquake with a peak ground velocity (PGV) of up to 38.4 cm/s at an epicentral distance of 14.5 km. According to our analysis, the peak displacement amplitude Pd is a better indicator for the destructiveness of an earthquake than τc because τc is more sensitive to the signal-to-noise ratio (SNR) than Pd. In accordance with previous studies, only the structurally damaging Taitung earthquake generated a Pd value larger than 0.5 cm (a threshold for identifying damaging events). Using Pd as an indicator for destructive earthquakes does not lead to missing or false alarms for EEW purposes.  相似文献   

13.
This paper evaluates the ability of simplified superstructure models, including two shear frame models and a single-story model, in predicting global responses of a full-scale five-story steel moment-frame buildings isolated by triple friction pendulum bearings subjected to earthquake motions. The investigated responses include displacement of the isolation system, roof drift, story drift, and floor acceleration. Mechanical properties of the simplified superstructure models were derived from the modal information of a verified full 3-D model. The comparison between the analytical responses and experimental responses shows that the simplified models can well predict the displacement of the isolation system. Furthermore, the shear-frame models are adequate for predicting floor acceleration when the specimen is subjected to horizontal ground motions. However, when the specimen is subjected to 3-D motions, the shear-frame models un-conservatively predict floor acceleration. The full 3-D model improves the prediction of story drift compared with the simplified models for both horizontal and 3-D motions.  相似文献   

14.
The objective of this paper is to present incremental dynamic analysis (IDA) and seismic performance evaluation results for a two-story cold-formed steel (CFS)–framed building. The archetype building was designed to current U.S. standards and then subjected to full-scale shake table tests under the U.S. National Science Foundation Network for Earthquake Engineering Simulation (NEES) program. Test results showed that the building's stiffness and capacity were considerably higher than expected and the building suffered only nonstructural damage even at excitations in excess of Maximum Considered Earthquake levels for a high seismic zone. For the archetype building, three-dimensional finite element models at different modeling fidelity levels were created using OpenSees. The models are subjected to IDA using the far-field ground motion records prescribed in Federal Emergency Management Agency (FEMA) P695. Seismic performance quantification following the FEMA P695 procedure shows that if the modeling fidelity only follows the state-of-the-practice, ie, only includes shear walls, unsafe collapse margin ratios are predicted. State-of-the-art models that account for participation from CFS gravity walls and architectural sheathing have overall performance that are consistent with testing, and IDA results indicate acceptable collapse margin ratios, predicated primarily on large system overstrength. Neglecting the lateral force resistance of the gravity system and nonstructural components, as done in current design, renders a safe design in the studied archetype, but largely divorced from actual system behavior. The modeling protocols established here provide a means to analyze a future suite of CFS-framed archetype buildings for developing further insight on the seismic response modification coefficients for CFS-framed buildings.  相似文献   

15.
In April 2007, a caldera collapsed at the Dolomieu summit crater of Piton de La Fournaise (La Réunion Island, Indian Ocean) revealing new outcrops up to 340?m high along the crater walls. The lithostratigraphic interpretation of these new exposures allows us to investigate the most recent building history of a basaltic shield volcano. We present the history of the Piton de La Fournaise terminal cone, from the building of a juvenile cone during which periods of explosive activity dominated, to the most recent effusive period. The changes in eruptive dynamics are the cause of successive summit crater/pit–crater collapses. In April 2007, such an event occurred during rapid emptying of the shallow plumbing system feeding a large effusive lateral eruption. During the most recent effusive period, an eastward migration of the eruptive crater was observed and was linked to the successive destructions of the shallow magma reservoir during each collapse. The resulting changes in the local stress field favor the formation of a new reservoir and thus the migration of activity. Internal structures reveal that the building of the upper part of the terminal cone was predominantly by exogenous growth and that the hydrothermal system is confined at a depth >?350?m. These observations on Piton de La Fournaise provide new insights into construction of the summits of other basaltic shield volcanoes.  相似文献   

16.
HCl:SO2 mass ratios measured by open path Fourier transform spectroscopy (OP-FTIR) in the volcanic plume at Soufrière Hills Volcano, Montserrat, are presented for the second phase of dome building between November 1999 and November 2000. HCl:SO2 mass ratios of greater than 1 and HCl emission rates of greater than 400 t day–1 characterise periods of dome building for this volcano. The data suggest that chlorine partitions into a fluid phase as the magma decompresses and exsolves water during ascent. This is substantiated by a correlation between chlorine and water content in the melt (derived from the geochemical analysis of plagioclase melt inclusion and matrix glasses from phase I and II of dome growth). The matrix glass from the November 1999 and March 2000 domes indicate an open system degassing regime with a fluid-melt partition coefficient for chlorine of the order of 250–300. September 1997 glasses have higher chlorine contents and may indicate a switch to closed system degassing prior to explosive activity in September and October 1997. The OP-FTIR HCl time series suggests that HCl emission rate is strongly related to changes in eruption rate and we infer an emission rate of over 13.5 kt day–1 HCl during a period of high extrusion rate in September 2000. A calculation of the HCl emission rate expected for varying extrusion rates from the open-system degassing model suggests a HCl emission rate of the order of 1–4 kt day–1 is indicative of an extrusion rate of between 2 and 8 m3 s–1. Monitoring of HCl at Soufrière Hills Volcano provide a proxy for extrusion rate, with changes in ratio between HCl and SO2 occurring rapidly in the plume. Order of magnitude changes occur in HCl emission rates over the time-scale of hours to days, making these changes easy to detect during the day-to-day monitoring of the volcano. Mean water emission rates are calculated to range from 9–24 kt day–1 during dome building activity, calculated from the predicted mass ratio of H2O:HCl in the fluid at the surface and FTIR-derived HCl emission rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号