首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Journal of Geodynamics》2007,43(1):118-152
The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone.Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine).Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of “wet” eruptions and Strombolian to Plinian in terms of “dry” eruptions. In historical time the magma volume extruded by individual eruptions ranges from ∼1 m3 to ∼20 km3 DRE, reflecting variable magma compositions, effusion rates and eruption durations.All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as “Fires”, which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20–25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga–Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ–WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ∼4.5% of the eruptions is not known.Magma productivity over 1100 years equals about 87 km3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km3 (∼82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ–WVZ accounts for 13% of the magma and the NWZ and the intraplate belts for 2.5% each. Collectively the axial zone (RVZ, WVZ, NVZ) has only erupted 15–16% of total magma volume in the last 1130 years.  相似文献   

2.
Products of the latest eruptions from the Valles caldera, New Mexico, consist of the El Cajete Pyroclastic Beds and Battleship Rock Ignimbrite, a sequence of pyroclastic fall and density current deposits erupted at ~ 55 ka, capped by the later Banco Bonito Flow erupted at ~ 40 ka, and collectively named the East Fork Member of the Valles Rhyolite. The stratigraphy of the East Fork Member has been the subject of conflicting interpretations in the past; a long-running investigation of short-lived exposures over a period of many years enables us to present a more complete event stratigraphy for these eruptions than has hitherto been possible. The volume of rhyolitic magma erupted during the 55 ka event may have been more than 10 km3, and for the 40 ka event can be estimated with rather more confidence at 4 km3. During the earlier event, plinian eruptions dispersed fallout pumice over much of the Valles caldera, the southern Jemez Mountains, and the Rio Grande rift. We infer a fallout thickness of several decimeters at the site of the city of Santa Fe, and significant ash fall in eastern New Mexico. In contrast, pyroclastic density currents were channeled within the caldera moat and southwestward into the head of Cañon de San Diego, the principal drainage from the caldera. Simultaneous (or rapidly alternating) pyroclastic fallout and density current activity characterized the ~ 55 ka event, with density currents becoming more frequent as the eruption progressed through two distinct stages separated by a brief hiatus. One early pyroclastic surge razed a forest in the southern caldera moat, in a similar manner to the initial blast of the May 18, 1980 eruption of Mt. St. Helens. Ignimbrite outflow from the caldera through the drainage notch may have been restricted in runout distance due to steep, rugged topography in this vicinity promoting mixing between flows and air, and the formation of phoenix clouds. Lavas erupted during both the ~ 55 and ~ 40 ka events were largely confined to the caldera moat. Any future rhyolitic eruptions of similar magnitude in the southern or western parts of the Valles caldera will likely affect similar areas.  相似文献   

3.
Three major rhyolite systems in the northeastern Davis and adjacent Barrilla Mountains include lava units that bracketed a large pantelleritic ignimbrite (Gomez Tuff) in rapid eruptions spanning 300,000 years. Extensive silicic lavas formed the shields of the Star Mountain Formation (37.2 Ma-K/Ar; 36.84 Ma 39Ar/40Ar), and the Adobe Canyon Formation (37.1 Ma-K/Ar; 36.51-39Ar/40Ar). The Gomez Tuff (36.6 Ma-K/Ar; 36.74-39Ar/40Ar) blanketed a large region around the 18×24 km diameter Buckhorn caldera, within which it ponded, forming sections up to 500 m thick. Gomez eruption was preceded by pantelleritic rhyolite domes (36.87, 36.91 Ma-39Ar/40Ar), some of which blocked movement of Star Mountain lava flows. Following collapse, the Buckhorn caldera was filled by trachyte lava. Adobe Canyon rhyolite lavas then covered much of the region. Star Mountain Formation (~220 km3) is composed of multiple flows ranging from quartz trachyte to mildly peralkalic rhyolite; three major types form a total of at least six major flows in the northeastern Davis Mountains. Adobe Canyon Formation (~125 km3) contains fewer flows, some up to 180 m thick, of chemically homogenous, mildly peralkalic comendite, extending up to 40 km. Gomez Tuff (~220 km3) may represent the largest known pantellerite. It is typically less than 100 m thick in extra-caldera sections, where it shows a pyroclastic base and top, although interiors are commonly rheomorphic, containing flow banding and ramp structures. Most sections contain one cooling unit; two sections contain a smaller, upper cooling unit. Chemically, the tuff is fairly homogeneous, but is more evolved than early pantelleritic domes. Overall, although Davis Mountains silicic units were generated through open system processes, the pantellerites appear to have evolved by processes dominated by extensive fractional crystallization from parental trachytes similar to that erupted in pre- and post-caldera lavas. Comparison with the Pantelleria volcano suggests that the most likely parental magma for the Buckhorn series is transitional basalt, similar to that erupted in minor, younger Basin and Range volcanism after about 24 Ma. Roughly contemporaneous mafic lavas associated with the Buckhorn caldera appear to have assimilated or mixed with crustal melts, and, generally, may not be regarded as mafic precursors of the Buckhorn silicic rocks, They thus form a false Daly Gap as opposed to the true basalt/trachyte Daly gap of Pantelleria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

4.
We present sub-crystal-scale 238U–230Th zircon ages and 238U–230Th–226Ra plagioclase ages of bulk mineral separates from the Holocene (2.0–2.3 ka) eruptions of the Rock Mesa (RM) and Devil's Hills (DH) rhyolites at South Sister volcano, Oregon. We link these age data with sub-crystal trace-element analyses of zircon and plagioclase to provide insight into the subvolcanic system at South Sister, as an example of a small-volume continental arc volcano. Our results document the presence of coeval yet physically-distinct regions within the magma reservoir and constrain the timescales over which these heterogeneities existed. Zircons from the RM and DH dominantly record ages from 20 to 80 ka, with some grains recording ages > 350 ka, whereas plagioclase records 230Th–226Ra ages of 2.3–6.8 ka (RM) and 4.0–9.6 ka (DH-3) and a 238U–230Th age of 10 ± 34 ka (DH-3). We interpret zircons with ages < 350 ka as antecrysts inherited from a longer lived upper-crustal magma reservoir from which the rhyolites were generated, based on crystallization ages coeval with earlier periods of silicic volcanism at South Sister, the undersaturated nature of the RM and DH magmas with respect to zircon, and Ti-in-zircon temperatures consistent with low-temperature (< 815 °C) crystallization. In contrast, plagioclase ages are near the eruption age and dominantly preserve information about the recent (< 10 ka), higher-temperature evolution of the host magmas. Although zircon and plagioclase record different crystallization ages, each phase crystallized over the same time period in the RM compared to DH rhyolites. Linking these crystal age data with sub-crystal trace-element analyses demonstrates that zircon and plagioclase have distinct trace-element characteristics between eruptions, which require that the RM and DH crystals (and therefore magmas) were derived from distinct regions that had evolved independently for > 50 ka within a heterogeneous magmatic system and coexisted as physically-distinct, dominantly-liquid bodies prior to eruption. Thus, we favor a model where rhyolites are generated in independent batches by accumulation of evolved liquids in a heterogeneous, largely crystalline reservoir. Similarities in crystal age and chemical data to that at other young silicic systems (e.g., Mount St. Helens, Okataina Caldera Complex) suggest that this model may be more generally applicable to silicic magmas.  相似文献   

5.
The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ~ 2 to ~ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low-δ18O values. This suggests that the source for these ignimbrites involved a hydrothermally-altered shallow crust, while participation of the Cretaceous siliceous basement is also evidenced by moderately elevated δ18O and Sr isotopes and xenocryst contamination in two volcanoes. The majority of dates obtained for caldera-forming eruptions coincide with glacial stages in accordance with the sediment record in the NW Pacific, suggesting an increase in explosive volcanic activity since the onset of the last glaciation 2.6 Ma. Rapid changes in ice volume during glacial times and the resulting fluctuation of glacial loading/unloading could have caused volatile saturation in shallow magma chambers and, in combination with availability of low-δ18O glacial meltwaters, increased the proportion of explosive vs effusive eruptions. The presented results provide new constraints on Pliocene–Pleistocene volcanic activity in Kamchatka, and thus constrain an important component of the Pacific Ring of Fire.  相似文献   

6.
Pantelleria Island, located in the Sicily Channel Rift Zone (Italy), is the type locality for the peralkaline rhyolitic rocks called pantellerites. In the last 50 ka, after the large Green Tuff caldera-forming eruption, volcanic activity at Pantelleria has consisted of effusive and explosive eruptions mostly vented inside and along the rim of the caldera and producing silicic lava flows, lava domes and poorly dispersed pantelleritic pumice fall deposits. Basaltic cinder cones and lava flows are only present outside the caldera in the NW sector of the island. The most recent basaltic (Cuddie Rosse, ~ 20 ka) and pantelleritic (Cuddia Randazzo and Cuddia del Gallo, ~ 6 ka) pyroclastic products were sampled to investigate magmatic volatile contents through the study of melt inclusions.The melt inclusions in pyroxene and olivine phenocrysts of Cuddie Rosse scoriae have an alkali basalt composition. The dissolved volatiles comprise 0.9–1.6 wt.% H2O, several hundred ppm of CO2, 1600–2000 ppm of sulphur and 500–900 ppm of chlorine. The water–carbon dioxide couple gives a confining pressure ~ 2 kbar prior to the eruption. This result indicates that episodes of magma ponding and crystallization occurred in the upper crust prior to eruption. The melt inclusions in feldspar, fayalite and aenigmatite phenocrysts of Cuddia del Gallo and Cuddia Randazzo pumice have a pantelleritic composition (Agpaitic Indices 1.3–2.1), up to 4.4 wt.% H2O, 8700 ppm Cl, 6000 ppm F, and CO2 below the detection limit. Sulphur averaging 420 ppm has been measured in Cuddia Randazzo melt inclusions. These data indicate relatively high volatile contents for these low-energy Strombolian-type eruptions. Melt inclusions in Cuddia del Gallo pumice show the most evolved composition (Agpaitic Indices 2–2.1) and the highest volatile content, in agreement with fluid saturation conditions in the magma chamber prior to the eruption. This implies a confining pressure of ~ 1 kbar for the top of the pantelleritic reservoir. The composition of melt inclusions and mineralogical assemblage of Cuddia Randazzo pumice indicate that it has a lower evolutionary degree (Agpaitic Indices 1.3–1.8) and lower pre-eruptive Cl and H2O contents than Cuddia del Gallo pumice. An increase in pressure due to the exsolution of volatiles in the upper part of the pantelleritic reservoir may have triggered the Cuddia del Gallo explosive eruption. Evidence of widespread pre-eruptive mingling between trachytes and pantellerites suggests that the intrusion of trachytic magma into the pantelleritic reservoir likely played a major role in destabilizing the magma system just prior to the Cuddia Randazzo event.  相似文献   

7.
The Fontana Lapilli deposit is one of very few examples of basaltic Plinian eruptions discovered so far. Juvenile clasts have uniform chemical composition and moderate ranges of density and bulk vesicularity. However, clast populations include two textural varieties which are microlite-poor and microlite-rich respectively. These two clast types have the same clast density range, making a distinction impossible on that base alone. The high bubble number density (~ 107 cm? 3) and small bubble population of the Fontana clasts suggest that the magma underwent coupled degassing following rapid decompression and fast ascent rate, leading to non-equilibrium degassing with continuous nucleation as it is common for silicic analogues. The Fontana products have lower microlite contents (10–60 vol.%) with respect to the other documented basaltic Plinian eruptions suggesting that the brittle fragmentation, implied for the other basaltic Plinian deposits, does not apply to the Fontana products and another fragmentation mechanism led the basaltic magma to erupt in a Plinian fashion.  相似文献   

8.
The Donguinyó-Huichapan caldera complex is located 110 km to the NNW of Mexico City, in the central sector of the Mexican Volcanic Belt. It is a 10 km in diameter complex apparently with two overlapping calderas, each one related to an ignimbrite sequence that contrasts in composition, mineralogy, welding, distribution, and physical aspect. The geologic evolution of this complex includes the following phases, 1) A first caldera formed at 5.0 ± 0.3 Ma, with the eruption of several discrete pulses of andesitic to trachydacitic pyroclastic flows that produced a series of densely welded ignimbrites; 2) At 4.6 ± 0.3 Ma, several small shield volcanoes and cinder cones built the rim of this caldera and erupted basaltic-andesite and andesitic lava flows; 3) At 4.2 ± 0.2 Ma, a second caldera was formed associated to the eruption of the Huichapan Tuff, which is a rhyolitic pyroclastic sequence consisting of minor unwelded ignimbrites, pumice fall and surge deposits, and a voluminous welded ignimbrite; 4) Also yielding an age of 4.2 ± 0.2 Ma, several trachydacitic lava domes were extruded along the new ring fracture and formed the rim of the Huichapan caldera, as well as five intra-caldera domes of dacitic and trachydacitic composition. Peripheral volcanism includes a large 2.5 ± 0.1 Ma shield volcano that was emplaced on the Huichapan caldera rim.The two calderas that form the Donguinyó-Huichapan complex have contrasting differences in volcanic styles that were apparently due to their differences in composition. Products erupted by the Donguinyó caldera are basaltic-andesite to trachydacitic in composition, whereas Huichapan caldera products are all high-silica rhyolites.  相似文献   

9.
The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%–35% quartz, sanidine, plagioclase, ±biotite, ±hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5±0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K–Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows.The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was erupted imposes useful constraints for future evaluation of possible models for petrogenesis and the origin of trace-element characteristics of the system.  相似文献   

10.
Two mineralogically and chemically distinct rhyolite magmas (T1 and T3) were syn-erupted from the same conduit system during the 21.9 ka basalt intrusion-triggered Okareka eruption from Tarawera volcano, New Zealand. High spatial resolution U–Th disequilibrium dating of zircon crystals at the ~ 3–5 μm scale reveals a protracted yet discontinuous zircon crystallization history within the magmatic system. Both magma types contain zircon whose interiors predate the eruption by up to 200 ka. The dominant age peak in the T1 magma is ~ 30 ka with subordinate peaks at ~ 45, ~ 75, and ~ 100 ka, whereas the T3 magma has a dominant zircon interior age peak at ~ 90 ka with smaller modes at ~ 35 and ~ 150 ka. These patterns are consistent with isolated pockets of crystallization throughout the evolution of the system. Crystal rim analyses yield ages ranging from within error of the eruption age to at least ~ 90 ka prior to eruption, highlighting that zircon crystallization frequently stalled long before the eruption. Continuous depth profiling from crystal rims inward demonstrates protracted growth histories for individual crystals (up to ~ 100 ka) that were punctuated by asynchronous hiatuses of up to 30 ka in duration. Disparate zircon growth histories can result from localized thermal perturbations caused by mafic intrusions into a silicic reservoir. The crystal age heterogeneity at hand-sample scale requires considerable crystal transport and mixing. We propose that crystal mixing was achieved through buoyancy instabilities caused by mafic magma flow through crystal mush. A terminal pre-eruptive rejuvenation event was capable of mobilizing voluminous melts that erupted, but was too short (< 102–103 years) to result in extensive zircon growth. The contrasting, punctuated zircon histories argue against closed-system fractional crystallization models for silicic magmatism that require protracted cooling times following a mostly liquid starting condition.  相似文献   

11.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

12.
Collapse calderas have received considerable attention due to their link to Earth's ore deposits and geothermal energy resources, but also because of their tremendous destructive potential. Although calderas have been investigated through fieldwork, numerical models and experimental studies, some important aspects on their formation still remain poorly understood. One key issue concerns the volume of magmas involved in caldera-forming eruptions. We perform analogue experiments to correlate the structural evolution of a collapse with the erupted magma chamber volume fraction. The experimental device consists of a transparent box (60 × 60 × 40 cm) filled with dry quartz sand and a water-filled latex balloon as a magma chamber analogue. Evacuation of water through a pipe causes a progressive deflation of the balloon that leads to a collapse of the overlying structure. The experimental design allows to record the temporal evolution of the collapse and to track the evolution of fractures and faults. We study the appearance and development of specific brittle structures, such as surface fractures or internal reverse faults, and correlate each different structure with the corresponding removed magma chamber volume fraction. We also determine the critical conditions for caldera onset. Experimental results show that, at any stage of caldera developments, the experimental relationship between volume fraction and chamber roof aspect ratio fits a logarithmic curve. It implies that volume fractions required to trigger caldera collapse are lower for chambers with low aspect ratios (shallow and wide) than for chambers with high aspect ratios (deep and small). These results are in agreement with natural examples and previous theoretical studies.  相似文献   

13.
The 1.0 Ma Kidnappers supereruption (~ 1200 km3 DRE) from Mangakino volcanic centre, Taupo Volcanic Zone, New Zealand, produced a large phreatomagmatic fall deposit followed by an exceptionally widespread ignimbrite. Detailed sampling and analysis of glass shards and mineral phases have been undertaken through a proximal 4.0 m section of the fall deposit, representing the first two-thirds of erupted extra-caldera material. Major and trace element chemistries of glass shards define three distinct populations (types A, B and C), which systematically change in proportion through the fall deposit and are inferred to represent three magma types. Type B glass and biotite first appear at the same level (~ 0.95 m above base) in the fall deposit suggesting later tapping of a biotite-bearing magma. Plagioclase and Fe–Ti oxide compositions show bimodal distributions, which are linked to types A and B glass compositions. Temperature and pressure (T–P) estimates from hornblende and Fe–Ti oxide equilibria from each magma type are similar and therefore the three magma bodies were adjacent, not vertically stacked, in the crust. Most hornblende model T–P estimates range from 770 to 840 °C and 90 to 170 MPa corresponding to storage depths of ~ 4.0–6.5 km. Hornblende model T–P estimates coupled with in situ trace element fingerprinting imply that the magma bodies were individually well mixed, and not stratified. Compositional gaps between the three glass compositional types imply that no mixing between these magmas occurred. We interpret these data, coupled with the systematic changes in shard compositional proportions through the fall deposit, to reflect that three independent melt-dominant bodies of magma contributed large (A, ~ 270 km3), medium (B, ~ 90 km3) and small (C, ~ 40 km3) volumes (as reflected in the fall deposits) and were systematically tapped during the eruption. We propose that the systematic evacuation of the three independent magma bodies implies that there was tectonic triggering and linkage of eruptions. Our results show that supereruptions can be generated by near simultaneous multiple eruptions from independent magma chambers rather than the evacuation of a large single unitary magma chamber.  相似文献   

14.
Cerro Pinto is a Pleistocene rhyolite tuff ring-dome complex located in the eastern Trans-Mexican Volcanic Belt. The complex is composed of four tuff rings and four domes that were emplaced in three eruptive stages marked by changes in vent location and eruptive character. During Stage I, vent clearing produced a 1.5-km-diameter tuff ring that was then followed by emplacement of two domes of approximately 0.2 km3 each. With no apparent hiatus in activity, Stage II began with the explosive formation of a tuff ring ~2 km in diameter adjacent to and north of the earlier ring. Subsequent Stage II eruptions produced two smaller tuff rings within the northern tuff ring as well as a small dome that was mostly destroyed by explosions during its growth. Stage III involved the emplacement of a 0.04 km3 dome within the southern tuff ring. Cerro Pinto’s eruptive history includes sequences that follow simple rhyolite-dome models, in which a pyroclastic phase is followed immediately by effusive dome emplacement. Some aspects of the eruption, however, such as the explosive reactivation of the system and explosive dome destruction, are more complex. These events are commonly associated with polygenetic structures, such as stratovolcanoes or calderas, in which multiple pulses of magma initiate reactivation. A comparison of major and trace element geochemistry with nearby Pleistocene silicic centers does not show indication of any co-genetic relationship, suggesting that Cerro Pinto was produced by a small, isolated magma chamber. The compositional variation of the erupted material at Cerro Pinto is minimal, suggesting that there were not multiple pulses of magma responsible for the complex behavior of the volcano and that the volcanic system was formed in a short time period. The variety of eruptive style observed at Cerro Pinto reflects the influence of quickly exhaustible water sources on a short-lived eruption. The rising magma encountered small amounts of groundwater that initiated eruption phases. Once a critical magma:water ratio was exceeded, the eruptions became dry and sub-plinian to plinian. The primary characteristic of Cerro Pinto is the predominance of fall deposits, suggesting that the level at which rising magma encountered water was deep enough to allow substantial fragmentation after the water source was exhausted. Isolated rhyolite domes are rare and are not currently viewed as prominent volcanic hazards, but the evolution of Cerro Pinto demonstrates that individual domes may have complex cycles, and such complexity must be taken into account when making hazard risk assessments.  相似文献   

15.
A key question in volcanology is the driving mechanisms of resurgence at active, recently active, and ancient calderas. Valles caldera in New Mexico and Lake City caldera in Colorado are well-studied resurgent structures which provide three crucial clues for understanding the resurgence process. (1) Within the limits of 40Ar/39Ar dating techniques, resurgence and hydrothermal alteration at both calderas occurred very quickly after the caldera-forming eruptions (tens of thousands of years or less). (2) Immediately before and during resurgence, dacite magma was intruded and/or erupted into each system; this magma is chemically distinct from rhyolite magma which was resident in each system. (3) At least 1?km of structural uplift occurred along regional and subsidence faults which were closely associated with shallow intrusions or lava domes of dacite magma. These observations demonstrate that resurgence at these two volcanoes is temporally linked to caldera subsidence, with the upward migration of dacite magma as the driver of resurgence. Recharge of dacite magma occurs as a response to loss of lithostatic load during the caldera-forming eruption. Flow of dacite into the shallow magmatic system is facilitated by regional fault systems which provide pathways for magma ascent. Once the dacite enters the system, it is able to heat, remobilize, and mingle with residual crystal-rich rhyolite remaining in the shallow magma chamber. Dacite and remobilized rhyolite rise buoyantly to form laccoliths by lifting the chamber roof and producing surface resurgent uplift. The resurgent deformation caused by magma ascent fractures the chamber roof, increasing its structural permeability and allowing both rhyolite and dacite magmas to intrude and/or erupt together. This sequence of events also promotes the development of magmatic–hydrothermal systems and ore deposits. Injection of dacite magma into the shallow rhyolite magma chamber provides a source of heat and magmatic volatiles, while resurgent deformation and fracturing increase the permeability of the system. These changes allow magmatic volatiles to rise and meteoric fluids to percolate downward, favouring the development of hydrothermal convection cells which are driven by hot magma. The end result is a vigorous hydrothermal system which is driven by magma recharge.  相似文献   

16.
Understanding the processes at the origin of explosive events is crucial for volcanic hazard mitigation, especially during long-lasting eruptions at andesitic volcanoes. This work exposes the case of Tungurahua volcano, whose unrest occurred in 1999. Since this date, the eruptive activity was characterized by low-to moderate explosiveness, including phases with stronger canon-like explosions and regional ash fallout. However, in 2006, a sudden increase of the explosiveness led to pyroclastic flow-forming eruptions on July 14th (VEI 2) and August 16–17th (VEI 3). All magmas emitted from 1999 to 2005, as well as the samples from the 2006 eruptions, have homogeneous bulk-rock andesitic compositions (58–59 wt.% SiO2), and contain the same mineral assemblage consisting of pl + cpx + opx + mag ± ol. However, during the August 16–17th event, the erupted tephra comprise two types of magmas: a dominant, brown andesitic scoria; and scarce, light-grey pumice representing a subordinate, silica-rich juvenile component. For the andesitic magma, thermobarometric data point to magmatic temperatures ranging from 950 to 1015 °C and pressures in the range of 200 to 250 MPa, which corresponds to 7.5–9.5 km below the summit. Disequilibrium textures in plagioclase and pyroxene phenocrysts, particularly thin overgrowth rims, indicate the recharge of this magma body by mafic magma. Between 1999 and 2005, repeated injections from depth fed the intermittent eruptive activity observed while silica-rich melts were produced by in-situ crystallization in the peripheral parts of the reservoir. In April 2006, the recharge of a primitive magma produced strong convection and homogenisation in the reservoir, as well as pressure increase and higher magma ascent rate after seven years of only moderately explosive activity. This work emphasizes the importance of petrological studies in constraining the pre-eruptive magmatic conditions and processes, as a tool for understanding the fundamental causes of the changes in the eruptive dynamism, particularly the occurrence of paroxysmal phases in andesitic systems with open-vent behaviour.  相似文献   

17.
The Alisitos arc is an approximately 300 × 30 km oceanic arc terrane that lies in the western wall of the Peninsular Ranges batholith south of the modern Agua Blanca fault zone in Baja California. We have completed detailed mapping and dating of a 50 × 30 km segment of this terrane in the El Rosario to Mission San Fernando areas, as well as reconnaissance mapping and dating in the next 50 × 30 km segment to the north, in the San Quintin area. We recognize two evolutionary phases in this part of the arc terrane: (I) extensional oceanic arc, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions at the onset of arc rifting, and (II) rifted oceanic arc, characterized by mafic effusive and hydroclastic rocks and abundant dike swarms. Two types of units are widespread enough to permit tentative stratigraphic correlation across much of this 100-km-long segment of the arc: a welded dacite ignimbrite (tuff of Aguajito), and a deepwater debris-avalanche deposit. New U–Pb zircon data from the volcanic and plutonic rocks of both phases indicate that the entire 4000-m-thick section accumulated in about 1.5 MY, at 111–110 MY. Southwestern North American sources for two zircon grains with Proterozoic 206Pb / 207Pb ages support the interpretation that the oceanic arc fringed North America rather than representing an exotic terrane.The excellent preservation and exposure of the Alistos arc terrane makes it ideal for three-dimensional study of the structural, stratigraphic and intrusive history of an oceanic arc terrane. The segment mapped and dated in detail has a central major subaerial edifice, flanked by a down-faulted deepwater marine basin to the north, and a volcano-bounded shallow-water marine basin to the south. The rugged down-faulted flank of the edifice produced mass wasting, plumbed large-volume eruptions to the surface, and caused pyroclastic flows to disintegrate into turbulent suspensions that mixed completely with water. In contrast, gentler slopes on the opposite flank allowed pyroclastic flows to enter the sea with integrity, and supported extensive buildups of bioherms. Caldera collapse on the major subaerial edifice ponded the tuff of Aguajito to a thickness of at least 3 km. The outflow ignimbrite forms a marker in nonmarine to shallow marine sections, and in deepwater sections it occurs as blocks up to 150 m long in a debris-avalanche deposit. These welded ignimbrite blocks were deposited hot enough to deform plastically and form peperite with the debris-avalanche matrix. The debris avalanche was likely triggered by injection of feeder dikes along the basin-bounding fault zone during the caldera-forming eruption.Intra-arc extension controlled very high subsidence rates, followed shortly thereafter by accretion through back-arc basin closure by 105 Ma. Accretion of the oceanic arc may have been accomplished by detachment of the upper crust along a still hot, thick middle crustal tonalitic layer, during subduction of mafic–ultramafic substrate.  相似文献   

18.
Six silicic eruptive cycles have been recognized in the last 50 ka at Pantelleria. The products of each cycle exhibit a compositional variation from pantellerite to less peralkaline rhyolite or to trachyte. The relationships between the range of chemical variation, the erupted volume and the time of eruptions, allow us to estimate an average differentiation rate of 5% crystal fractionation per 1000 years and a constant long-term rate of magma discharge of 0.1 km3 per 1000 years. Pressure increase in the magma chamber caused by the addition of new magma, accumulation of highly-differentiated, volatile-rich magma in the roof zone and a concomitant build-up of a vapour phase, is postulated as a possible triggering mechanism for eruptions.  相似文献   

19.
Several crystal-rich, intermediate to silicic magmas erupted at arc volcanoes record a reheating event shortly prior to eruption: they provide evidence for remobilization of crystal mushes by mafic magmas. As hybridization between the mush and the mafic magma is often limited, bulk mixing could not be the dominant process in transferring heat. Conductive heating from a basaltic underplate plays a role, but a few characteristics of these rejuvenated mushes suggest that reheating occurs faster than predicted by conduction.In the upper crust, a process that can transport heat faster than conduction, and still remain chemically nearly imperceptible, is the upward migration of a hot volatile phase (“gas sparging”) that originates in underplated mafic magmas. Using numerical simulations, we quantified the thermal effects of two-phase flow (a silicic melt phase and a H2O–CO2 fluid phase) in the pore space of shallow silicic mushes that have reached their rheological lock-up point (i.e., rigid porous medium, crystallinity ≥ 50 vol.%). Results show that the reheating rates are significantly faster than conduction for volatile fluxes > 0.1 m3/m2 yr. Considering that volatiles can be rapidly exsolved from the underplated mafic magma, these high fluxes can be promptly reached, leading to fast reheating; sill-like batches of mushes with volumes similar to the 1995–present eruption of the Soufrière Hills (Montserrat, W.I.) can be reheated by a few tens of degrees and remobilized within days to weeks. At these high fluxes, a considerable volume of volatiles is needed (similar to the volume of mush being reheated). Large silicic systems (> 100–1000 km3) require unrealistic amounts of volatiles to be reheated in a continuous, high-flux sparging event. Rejuvenation of batholithic mushes therefore requires multiple sparging episodes separated by periods dominated by near-conductive heat transfer at low-flux sparging (< 0.1 m3/m2 yr) and may take up to 100–200 ky.  相似文献   

20.
Long Valley Caldera is an active volcanic region in east central California. Surface deformation on the resurgent dome within the caldera was an order of magnitude higher for the five-month period September 1997 through January 1998 compared to the previous three-year average. However, the location of the immediate (shallow) source of deformation remained essentially constant, 5–7 km beneath the dome, near the top of a region of probable magma accumulation defined by seismic data. Similarly, although the rate of seismic moment release increased dramatically, earthquake locations remained similar to earlier periods. The rate of deformation increased exponentially between April–May 1997 and late November 1997 with a time constant of ∼55–65 days, after which it decreased exponentially with about the same time constant. We develop a model consistent with these observations and also consistent with independent constraints on sub-surface rheology from thermal, geochemical and laboratory data. Deformation at sites on the resurgent dome most sensitive to the shallow deformation source are well fit by a model with a single pressure source at 6 km depth which experienced a pressure pulse that began in late 1996, peaked in November 1997, close to the time of major seismic moment release, and essentially ended in mid-1999. The pressure source in our model is surrounded by a 1 km thick “shell” of Maxwell viscoelastic material (shell viscosity 1016 Pa s) within an elastic half space, and has peak values that are much lower than corresponding purely elastic half space models. The shell viscosity is characteristic of a weak, deformable solid, e.g. quartz-bearing country rock surrounding the magma chamber at temperatures in the range 500–600°C, i.e. above the brittle–ductile transition, and/or largely crystallized rhyolite near its solidus temperature of ∼670°C, material that probably exists near the top of the zoned magma chamber at Long Valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号