首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张海元 《甘肃地质》2000,9(2):86-91
通过对上磨水库磨拉石建造红砂岩的岩性、结构、物理力学性质的论述 ,对红砂岩的变形特性及其影响因素进行了专题论述 ,对红砂岩的真空饱和含水量与其强度、变形模量、密度相关关系等作了总结。提出红砂岩在浸水、失水风干和再浸水的不断循环条件下 ,其强度会大幅度降低 ,为本工程施工、设计及与之相类似的工程提供了基础资料。  相似文献   

2.
应变率对红砂岩渐进破坏过程和特征应力的影响   总被引:6,自引:0,他引:6  
为了深入研究脆性岩石的渐进破坏过程,利用RMT-150C型岩石力学试验系统对产自鲁南地区的一种红砂岩进行了系统的力学性质试验研究,得出该类型砂岩试样在不同应变率条件下的力学表现。将试件的渐进破坏过程通过特征应力分为裂纹闭合阶段、线弹性变形阶段、裂纹起裂和稳定扩展阶段以及裂纹不稳定扩展阶段,通过对应力-应变曲线、轴向变形刚度、体积应变曲线和裂纹体积应变等数据的分析,以及采用动点回归技术确定了试样的起裂应力和致损应力,并进一步研究了该类红砂岩的渐进破坏过程及红砂岩峰值强度、起裂应力等参数和应变率之间的关系。试验结果表明,随着应变率的增加,红砂岩试样的峰值强度先降低后提高,起裂应力及致损应力与峰值强度的比值均有所降低。分析了红砂岩峰值强度变化的物理机制并给出了解释,研究了应变率对红砂岩渐进破坏过程的影响  相似文献   

3.
针对红砂岩风化土遇水易湿化、崩解,从而影响路基填筑体稳定性的问题,选取某高速公路红砂岩风化料,采用单线法,在两种密度条件下进行了三轴湿化变形试验,分析了密度、围压和应力水平对湿化轴向应变的影响规律,并对湿化后试样的后续剪切强度进行了研究。试验结果表明:随着围压的增大和应力水平的提高,红砂岩风化料的湿化轴向变形有明显提高;而随着密实度的增加,湿化轴向变形有所减小。同一围压下,湿化轴向应变随着应力水平的增长而增大,两者近似呈线性关系。湿化后试样的峰值强度随应力水平的增加略有降低,而且普遍低于饱和状态试样的峰值强度。  相似文献   

4.
刘菊兰 《广东地质》2012,(1):199-203
针对广东地区的红砂岩,利用岩石三轴试验系统,开展不同围压条件下的饱水红砂岩的三轴压缩试验研究,得到了红砂岩在不同围压条件下的应力应变曲线,分析了红砂岩的变形特征和强度特征,并探讨了表现这些特征的原因。  相似文献   

5.
考虑荷载与浸水条件的预崩解炭质泥岩变形与强度试验   总被引:1,自引:0,他引:1  
预崩解炭质泥岩作为路堤填料已在我国西南地区路堤工程中广泛应用,为研究荷载与浸水条件下预崩解炭质泥岩变形与强度特性,研发一套可综合考虑多因素影响的湿化变形试验装置,并设计正交试验方案开展预崩解炭质泥岩湿化变形与直剪试验。结果表明:在加载初期和首次浸水时,预崩解炭质泥岩将产生较大竖向变形,分别为压缩变形和湿化变形,竖向荷载、循环次数、浸水时间、压实度、含水率对预崩解炭质泥岩竖向变形影响程度依次降低;预崩解炭质泥岩湿化变形过程中抗剪强度的变化主要源于黏聚力的变化,各因素对黏聚力的影响程度由强至弱依次为循环次数、浸水时间、竖向荷载、压实度及含水率;抗剪强度随竖向变形的增加先急剧降低后逐渐趋于稳定,拟合得到抗剪强度与竖向变形的函数关系式,可为炭质泥岩变形计算及工程实践提供一定参考依据。  相似文献   

6.
预崩解炭质泥岩作为路堤填料已在我国西南地区路堤工程中广泛应用,为研究荷载与浸水条件下预崩解炭质泥岩变形与强度特性,研发一套可综合考虑多因素影响的湿化变形试验装置,并设计正交试验方案开展预崩解炭质泥岩湿化变形与直剪试验。结果表明:在加载初期和首次浸水时,预崩解炭质泥岩将产生较大竖向变形,分别为压缩变形和湿化变形,竖向荷载、循环次数、浸水时间、压实度、含水率对预崩解炭质泥岩竖向变形影响程度依次降低;预崩解炭质泥岩湿化变形过程中抗剪强度的变化主要源于粘聚力的变化,各因素对粘聚力的影响程度由强至弱依次为循环次数、浸水时间、竖向荷载、压实度及含水率;抗剪强度随竖向变形的增加先急剧降低后逐渐趋于稳定,拟合得到抗剪强度与竖向变形的函数关系式,可为炭质泥岩变形计算及工程实践提供一定参考依据。  相似文献   

7.
预崩解炭质泥岩作为路堤填料已在我国西南地区路堤工程中广泛应用,为研究荷载与浸水条件下预崩解炭质泥岩变形与强度特性,研发一套可综合考虑多因素影响的湿化变形试验装置,并设计正交试验方案开展预崩解炭质泥岩湿化变形与直剪试验。结果表明:在加载初期和首次浸水时,预崩解炭质泥岩将产生较大竖向变形,分别为压缩变形和湿化变形,竖向荷载、循环次数、浸水时间、压实度、含水率对预崩解炭质泥岩竖向变形影响程度依次降低;预崩解炭质泥岩湿化变形过程中抗剪强度的变化主要源于粘聚力的变化,各因素对粘聚力的影响程度由强至弱依次为循环次数、浸水时间、竖向荷载、压实度及含水率;抗剪强度随竖向变形的增加先急剧降低后逐渐趋于稳定,拟合得到抗剪强度与竖向变形的函数关系式,可为炭质泥岩变形计算及工程实践提供一定参考依据。  相似文献   

8.
南京红山窑第三系红砂岩膨胀变形性质试验研究   总被引:8,自引:0,他引:8  
朱珍德  邢福东  刘汉龙  张勇 《岩土力学》2004,25(7):1041-1044
针对原状红砂岩具有自由膨胀率为3.5 %、而膨胀力高达270 kPa、干燥岩样峰值强度为5.85 MPa、饱和岩样抗压强度仅为0.20 MPa等这些特殊性质的膨胀岩,采用MTS815.02型岩石力学刚性伺服试验机与自行研制的岩石膨胀测量仪,进行了不同含水率红砂岩膨胀变形性质试验。结果表明:(1) 在低荷载状态下,红砂岩膨胀应变随着含水率增加而呈对数形增长;(2) 在高荷载作用下,红砂岩膨胀应变与吸水率之间存在着线性关系;(3) 红砂岩吸水膨胀应变在较短的时间内基本完成,随着时间的延长,膨胀变形将趋于稳定。在此基础上,提出了确定膨胀稳定时间的理想概化数学模型。研究成果对南京红山窑水利工程膨胀岩地基处理方案设计、施工具有重要的指导意义。  相似文献   

9.
红黏土浸水变形特性试验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
对广西桂林红黏土进行了浸水饱和引起的膨胀变形和压缩变形试验,在竖向压力25~800 k Pa范围下,研究了不同初始含水率和干密度对浸水变形特性的影响。结果表明:浸水饱和引起的压缩变形量主要取决于初始干密度,而初始含水率对其影响较小;在相同的含水率下,浸水压缩变形量随着干密度的增加而减小。把各组的固结状态线和浸水饱和稳定后状态线的交点称为分界点。初始含水率对分界点的影响较小,而随着干密度的增加,分界点右移,即浸水膨胀区域增大,浸水压缩区域减小。由分界点可得出了介于浸水膨胀和浸水压缩的分界状态线,从而可以判定不同孔隙比、不同竖向压力下土样会产生浸水膨胀还是压缩。最后,基于浸水变形试验结果,可以计算压缩区红黏土试样在不同竖向压力下浸水压缩变形量。  相似文献   

10.
为分析红黏土地基及其强夯法加固后的水稳定性问题,对红黏土及其击实样在饱和前、饱和后的固结特性以及剪切特性进行了室内试验。研究表明,土样经过击实后,压缩稳定后的应变值比较小,压缩稳定再浸水后土样的变形只有少量增加;原状土样在剪切过程中一般呈现应变软化的特征;固结饱和后快剪试验强度明显要比固结未浸水试验强度要小。因此,浸水效应对红黏土强度的影响是很明显的。  相似文献   

11.
不同三轴应力途径下红砂岩力学特性试验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
针对大量地下工程(交通隧道、水电站地下厂房等)涉及的不同地应力环境对围岩稳定的控制作用,通过对四川盆地普遍分布的侏罗系红砂岩三轴试验研究,系统分析了红砂岩在三轴加载和卸载应力条件下的变形破坏特征以及强度特性,揭示了红砂岩在不同应力路径下所表现出来的破坏方式以及性质差异,表明加载应力环境下以剪切破坏为主、卸载应力环境下则以拉裂破坏为特点,且前者的破裂角要明显大于后者。同时还明显表现出相同岩石在加、卸载应力环境下强度参数的差异,从强度参数看,红砂岩内聚力C值表现为卸载比加载条件下小,而内摩擦角φ值则刚好相反,表现为卸载比加载条件下大。以高围压(20MPa)卸载下所得强度参数为例,表明卸荷破坏下C值比加载条件下降低22.8%,而φ值比加载条件下提高57.2%,上述数据说明应力环境不同岩石强度参数差异明显,卸荷所导致的岩石强度参数弱化效应非常显著。  相似文献   

12.
弱膨胀土浸水变形特性及其预测   总被引:1,自引:0,他引:1  
高游  孙德安  吕海波 《岩土力学》2015,36(3):755-761
对取自江苏省淮安市的膨胀土进行了浸水后的膨胀变形和压缩变形试验。在竖向压力25~800 k Pa范围下,研究了不同初始含水率和初始干密度对浸水膨胀变形特性的影响。结果表明:浸水饱和膨胀变形量主要取决于初始干密度,且初始含水率也有一些影响;在相同的含水率下,膨胀变形量随着干密度的增加而增大;在相同干密度条件下,含水率越大,浸水膨胀变形量略微减小。根据各组的固结状态线和浸水饱和膨胀后状态线的交点,得出了介于浸水膨胀和浸水压缩的分界状态线,此线基本上不受初始含水率的影响,进而可以判定不同孔隙比、不同竖向压力下土样处于浸水膨胀还是压缩。最后,基于浸水变形试验结果,提出了一种简便的预测弱膨胀土在不同竖向压力下膨胀变形量的方法。  相似文献   

13.
风化千枚岩填筑路基湿化变形现场试验分析   总被引:5,自引:1,他引:4  
毛雪松  郑小忠  马骉  梁杰  周雷刚 《岩土力学》2011,32(8):2300-2306
为了分析千枚岩填筑路基浸水后的稳定性,对十堰至天水高速公路安康东段路基的湿化变形及回弹模量进行现场测试。在对风化千枚岩填料物理力学性质分析的基础上,提出路基填筑方案:加州承载比CBR>3%的风化千枚岩填料直接填筑路基;CBR<3%的风化千枚岩填料外掺3%水泥改良后填筑路基。通过对现场试验路进行浸水前后的承载板测试,分析浸水量、浸水时间对湿化变形、变形率及路基回弹模量的影响;结合不同深度含水率的测试,分析了测试点含水率和渗水深度与湿化变形的相关性。研究结果表明:浸水量和浸水时间是影响路基渗透深度和含水率的关键因素,未改良路基湿化变形受浸水影响比改良路基要明显;浸水量和浸水时间都相同的情况下,未改良路基浸水后回弹模量衰减比改良路基大  相似文献   

14.
红砂岩修筑浆砌石坝的岩土工程研究   总被引:9,自引:0,他引:9  
红砂岩为中低强度岩层、岩相复杂多变,较易风化、软化。本文通过工程实践阐述了在红砂岩分布地区利用当地材料建造浆砌块石坝的岩土工程研究,开创了红砂岩筑坝的先例。  相似文献   

15.
金刚石钻进过程中,因多种原因而需要磨孔的事是常有的,钻孔越深,地层越复杂、或操作技术上的过失越多,则需要磨孔的次数也越多。因此,磨孔技术掌握的好劣,对打好钻孔有一定的影响。本文将对几种不同情况下的磨孔方法、磨孔工具、技术参数和注意事项等,作一粗浅的论述。  相似文献   

16.
袁从华  吴振君 《岩土力学》2012,33(3):805-811
以沪渝高速公路湖北段平缓反倾红砂岩为研究对象,在平缓反倾红砂岩高陡边坡中岩体易软化崩解。自然冲侵蚀形成的高陡山体卸荷变形可达几十毫米至近百毫米,卸荷变形破裂方向与构造节理重叠,使节理裂隙变宽,贯通性提高,为高陡坡体提供了顺坡向陡直破裂面。加之公路切坡卸荷变形和坡体软化变形,岩体软化后的变形模量下降约80%,卸荷变形和软化变形各有数毫米的变形量,与自然坡体卸荷重叠,使坡体变形进一步加大,使红砂岩坡体潜在不稳定性增大。同时地下水作用使卸荷裂隙充填一定高度的静水压力,还使岩体产生软化,岩块软化系数一般在0.3~0.7,导致岩体强度显著下降,30~40 m高的静水压力可使边坡的稳定性系数从开挖前的5.56降至1.96,开挖后从2.77降至1.07,这两方面的作用可使切坡后较稳定的反倾坡体变化到极限平衡状态,甚至失稳状态。因此,施工中要特别注意切坡后的即时加固,并采取措施防止卸荷裂隙中地下水聚积,减少地下水对坡体的软化。  相似文献   

17.
本文根据大量凿岩实验数据,并且通过理论分析,对片状硬质合金钎头修磨的重要性、原理方法,以及修磨参数选择等,作了较详细的论述.对于延长钎头的使用寿命,提高凿岩速度和降低掘进成本具有一定指导意义.  相似文献   

18.
高速公路红砂岩的路用性能及施工工艺研究   总被引:6,自引:1,他引:6  
已有高速公路路堤工程实践表明 ,红砂岩在大气环境或干湿循环作用下 ,岩块易崩解碎裂、颗粒软化、强度降低 ,是一种不良的路基填料。但红砂岩在我国分布较广泛 ,尤其在山区公路建设中大量存在。为此 ,结合大量的试验研究 ,对红砂岩的物理力学性质和路用性能进行了探讨 ,提出了以“预崩解耙压碾压”为核心的红砂岩路基填筑施工工艺和处理技术  相似文献   

19.
为分析降雨入渗条件下排土场堆石料浸水湿化变形特性,采用粗粒土压缩试验机对排土物料开展单线法浸水湿化试验,研究堆石料在不同应力水平条件下的湿化变形特征,揭示其湿化变形发生机制,建立堆石料湿化蠕变模型。结果表明:排土场堆石料浸水湿化变形显著且不可忽略,随竖向压应力的不断增加,湿化变形量也显著增大。结合堆石料湿化变形速率发展特征,可将湿化变形分为瞬时变形和流变变形两部分,且流变变形大于瞬时变形。基于堆石料湿化变形时程曲线,建立了堆石料四参数双曲线型湿化蠕变模型,模型计算结果较为准确,能够客观反映排土场堆石料浸水湿化变形发展规律。  相似文献   

20.
海拉尔盆地乌尔逊凹陷油气主要聚集在南屯组和大磨拐河组,大磨拐河组油气藏的纵向分布和油气藏的形成在乌尔逊凹陷南部和北部表现出差异性:乌尔逊凹陷南部大磨拐河组油藏主要分布在大磨拐河组二段顶部,而北部油藏则分布在大磨拐河组一段底部;乌尔逊凹陷北部的大磨拐河组油藏形成于伊敏组末期的张扭性变形,而南部的大磨拐河组油藏则形成于青元岗组沉积末期的反转变形。乌尔逊凹陷晚期构造控制了大磨拐河组油气运移与聚集。通过对油气显示、储层含油包裹体颗粒指数(GOI)特征、油气成藏时期以及原油成熟度变化等方面的研究,认为乌尔逊凹陷北部的大磨拐河组油藏为南屯组烃源岩的原生油藏,而南部的大磨拐河组油藏为南屯组油藏的次生油藏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号