首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed gravity data integrated with geological data and mining well data are analysed to constrain the shape of the Triassic evaporitic body at Jebel El Mourra (northern Tunisian Atlas) and the mechanism of its emplacement at the surface. The gravity data analysis included the construction of a gravity anomaly maps, and synthetic and forward 2.5D gravity models. The complete Bouguer and residual gravity anomaly maps indicate a positive amplitude gravity anomaly over the Triassic evaporitic outcrops and prominent NE–SW‐trending features associated with the boundary of the Triassic rocks and surrounded layers. A NW–SE‐trending gravity model that crosses the Triassic evaporitic outcrop at Jebel El Mourra shows that the positive gravity anomaly can be explained by a deep‐rooted salt diapir. Conventional models of salt dome formation suggest that they produce negative gravity anomalies; however, this study shows that this model is not universal. The studied area is an example of a diapir expressed by positive gravity anomaly and this result is supported by synthetic gravity models at different stages of salt piercing.  相似文献   

2.
Detailed gravity data were analyzed to constrain two controversial geological models of evaporitic structures within the Triassic diapiric zone (Triassic massifs of Jebel Debadib and Ben Gasseur) of the northern Tunisian Atlas. Based on surface observations, two geological models have been used to explain the origin of the Triassic evaporitic bodies: (1) salt dome/diapiric structure or (2) a “salt glacier”. The gravity analysis included the construction of a complete Bouguer gravity anomaly map, horizontal gravity gradient (HGG) map and two and a half-dimensional (2.5D) forward models. The complete Bouguer gravity anomaly map shows a prominent negative anomaly over the Triassic evaporite outcrops. The HGG map showed the location of the lateral density changes along northeast structural trends caused by Triassic/Cretaceous lithological differences. The modeling of the complete Bouguer gravity anomaly data favored the diapiric structure as the origin of the evaporitic bodies. The final gravity model constructed over Jebel Debadib indicates that the Triassic evaporitic bodies are thick and deeply rooted involving a dome/diapiric structure and that the Triassic material has pulled upward the younger sediment cover by halokinesis. Taking in account kinematic models and the regional tectonic events affecting the northern margin of Africa, the above diapirs formed during the reactive to active to passive stages of continental margin evolution with development of sinks. Otherwise, this study shows that modeling of detailed gravity data adds useful constraints on the evolution of salt structures that may have an important impact on petroleum exploration models.  相似文献   

3.
Understanding the formation and the development of salt structures is very important especially because they are of significant economical interest. Detailed understanding of this process will help reservoir prediction and hydrocarbon recovery. In this work, we use a combination of geological observations along with the interpretation of geophysical data (seismic and Bouguer anomaly data) to better constrain the geology of the Jbel Cheid structure. The shape of Triassic body of Jbel Cheid (Northern Tunisian Atlas) structure and its geodynamic evolution have been determined by gravity analyses and 2.5D modeling, correlated with others geophysical data (seismic) and geological observations. Semi-automatic structural analysis was performed before modeling, to identify lateral gravity discontinuities. The complete Bouguer and residual gravity anomaly maps indicate a positive amplitude gravity anomaly over the Triassic evaporitic outcrop (Jbel Cheid) and prominent NE–SW-trending features associated with the boundary of the Triassic rocks and surrounded layers. The seismic profile shows a thickness variation of post-salt layers. Taking into account the 2.5D gravity model, seismic profile and surface data, geodynamic evolution of Jbel Cheid can be subdivided on three stages (reactive, active, and passive) which well correlated to the model proposed by Vendeville (2002).  相似文献   

4.
A gravity and seismic analysis was conducted over and around Jebel Es Souda-Hmaeima, located on the eastern border of the Tunisian Mountains between the Atlasic block to the west and the Pelagian Block to the east, as part of a study to investigate the subsurface structures. These data, together with outcrop geology, well data, and measurements of physical properties of rock samples, were integrated with a new interpretation of the tectonic model of Jebel Es Souda-Hmaeima anticline. This structure represents a backfolded anticline associated with a steep east-vergent thrust above a blind thrust fault along the base of Triassic formations. The proposed model emphasizes the role of transpressional deformation along deep-seated basement faults and has implications for petroleum generation, migration, and entrapment in central Tunisia.  相似文献   

5.
Gravity data were integrated with seismic refraction/reflection data, well data and geological investigations to determine a general crustal structure of Tunisia. The gravity data analysis included the construction of a complete Bouguer gravity anomaly map, residual gravity anomaly maps, horizontal gravity gradient maps and a 2.5-D gravity model. Residual gravity anomaly maps illustrate crustal anomalies associated with various structural domains within Tunisia including the Sahel Block, Saharian Flexure, Erg Oriental Basin, Algerian Anticlinorium, Gafsa Trough, Tunisian Trough, Kasserine Platform and the Tell Mountains. Gravity anomalies associated with these features are interpreted to be caused either by thickening or thinning of Palæozoic and younger sediments or by crustal thinning. Analysis of the residual gravity anomaly and horizontal gravity gradient maps also determined a number of anomalies that may be associated with previously unknown structures. A north-south trending gravity model in general indicated similar subsurface bodies as a coincident seismic model. However, thinner Mesozoic sediments within the Tunisian Trough, thinner Palæozoic sediments in the Gafsa Trough, and a greater offset on the Saharian Flexure were required by the gravity data. Additionally, basement uplifts under the Kasserine Platform and Gafsa Trough, not imaged by seismic data, were required by the gravity data. The gravity model revealed two previously unknown basins north and south of the Algerian Anticlinorium (5 km), while the Erg Oriental Basin is composed of at least two sub-basins, each with a depth of 5 km.  相似文献   

6.
Satellite altimetry can be used to infer subsurface geological structures analogous to gravity anomaly maps generated through ship-borne survey. The Eastern offshore was taken up for analysis using Geosat Exact Repeat Mission (ERM) altimeter data. A methodology is developed to use altimeter data as an aid to offshore hydrocarbon exploration. Processing of altimeter data involves corrections for various atmospheric and oceanographic effects, stacking and averaging of repeat passes, cross-over correction, removal of deeper earth and bathymetric effects, spectral analysis and conversion into free-air gravity anomaly. The final processed results were derived for Eastern offshore in the form of prospecting geoid and gravity anomaly maps and their spectral components. The highs and lows observed in those maps were derived in terms of a number of prominent megastructures e.g., gravity linears, 85°E and 90°E ridges, the Andaman trench complex etc. Satellite-derived gravity profiles along 12°N latitude match well with the existing structures.  相似文献   

7.
The present geophysical study deals with the ores and crustal demonstration of southeastern Hazara and its adjoining areas of Azad Jammu and Kashmir, Pakistan, on the basis of terrestrial gravity and magnetic data. Tectonically, the study area lies in the Lesser Himalayas as well as to an extent in the sub-Himalaya, more specifically in the western limb of Hazara Kashmir Syntaxis. In this study, 567 gravity and 508 magnetic stations have been measured with CG-5 gravimeter and proton precession magnetometer, respectively. The collected data have been processed by applying standard corrections and then different types of maps were prepared. The ores in the area have been delineated by the qualitative interpretation of residual Bouguer anomaly and reduction to pole total magnetic intensity maps, whereas regional structures are demarcated by the Bouguer anomaly and regional Bouguer anomaly maps. The positive contour closures on the residual Bouguer anomaly map indicate the iron ore and phosphate, whereas negative contour closures are the effects of low-density material which consists of gypsum and soapstone. The pole-reduced total intensity map also shows the negative and positive contour closures almost in the same localities and confirms the residual Bouguer anomaly map. The geological model computed on the basis of Bouguer anomaly demarcated a series of faults between different rock units in the study area. The Kashmir Boundary Thrust cuts the western limb of Hazara Kashmir Syntaxis near the apex in the north of Muzaffarabad and marks the boundary between Murree Formation and carbonates of Abbottabad Formation. The gravity model also suggests that the thickness of the crust increases towards the northeast.  相似文献   

8.
Gravity data were analyzed in conjunction with available geological data to determine the origin of observed gravity anomalies and their possible relationship to metallic ore deposits. The gravity data analysis included the construction of a Bouguer gravity anomaly, isostatic residual gravity anomaly and enhanced horizontal gravity gradient maps, and two and one-half dimensional gravity models. The isostatic residual gravity anomaly field could be broken down into five distinct regions based on anomaly amplitude, trend and wavelength. The analysis of these regions showed that both the Birimian and granitoid provinces consist mainly of a series of short wavelength gravity maxima and minima with a few large scale anomalies which suggests that the subsurface geology is more complicated than is currently known. Two gravity models roughly oriented north-south also implied this complicated subsurface geology and showed that most source bodies have depths up to 5 km. The known base metal deposits occur on the edge of small-scale gravity maxima within the Birimian province with the exceptions of the deposits within the Bouroum-Yalogo belt which occur next to a large amplitude gravity maximum related to an ultramafic complex.  相似文献   

9.
Processing of data from regional geophysical surveys completed in the northern Barents Sea has provided updates to gravity and magnetic databases, structural maps of seismic interfaces, and positions of anomaly sources, which made a basis for 3D density and magnetic models of the crust. The new geological and geophysical results placed constraints on the boundaries between basement blocks formed in different settings and on the contours of deposition zones of different ages in the northeastern Barents Sea. The estimated thicknesses of sedimentary sequences that formed within certain time spans record the deposition history of the region. There is a 20-50 km wide deep suture between two basins of Mesozoic and Paleozoic ages in the eastern part of the region, where pre-Late Triassic reflectors have no clear correlation. The suture slopes eastward at a low angle and corresponds to a paleothrust according to seismic and modeling data. In the basement model, the suture is approximated by a zone of low magnetization and density, which is common to active fault systems. The discovery of the suture has important geological and exploration implications.  相似文献   

10.
The Jebel Ressas Pb–Zn deposits in North‐Eastern Tunisia occur mainly as open‐space fillings (lodes, tectonic breccia cements) in bioclastic limestones of the Upper Jurassic Ressas Formation and along the contact of this formation with Triassic rocks. The galena–sphalerite association and their alteration products (cerussite, hemimorphite, hydrozincite) are set within a calcite gangue. The Triassic rocks exhibit enrichments in trace metals, namely Pb, Co and Cd enrichment in clays and Pb, Zn, Cd, Co and Cr enrichment in carbonates, suggesting that the Triassic rocks have interacted with the ore‐bearing fluids associated with the Jebel Ressas Pb–Zn deposits. The δ18O content of calcite associated with the Pb–Zn mineralization suggests that it is likely to have precipitated from a fluid that was in equilibrium with the Triassic dolostones. The δ34S values in galenas from the Pb–Zn deposits range from ?1.5 to +11.4‰, with an average of 5.9‰ and standard deviation of 3.9‰. These data imply mixing of thermochemically‐reduced heavy sulfur carried in geothermal‐ and fault‐stress‐driven deep‐seated source fluid with bacterially‐reduced light sulfur carried in topography‐driven meteoric fluid. Lead isotope ratios in galenas from the Pb–Zn deposits are homogenous and indicate a single upper crustal source of base‐metals for these deposits. Synthesis of the geochemical data with geological data suggests that the base‐metal mineralization at Jebel Ressas was formed during the Serravallian–Tortonian (or Middle–Late Miocene) Alpine compressional tectonics.  相似文献   

11.
基于经验模态分解的重力异常分离   总被引:1,自引:0,他引:1  
根据重力异常水平梯度特性,建立了基于经验模态分解的新型重力异常分离方法。通过不同模型实验对比,发现该方法分离所得异常和模型理论异常能很好地吻合,可进行异常定量划分。实测数据处理中,将该方法与平均对数功率谱分析相结合,所分离出的区域异常可以有效描述研究区的区域地质特征。模型试验和实测数据处理都充分表明该方法所分离出的重力异常基本没有畸变和虚假信息产生,具有良好的实际应用价值。  相似文献   

12.
The study reports new aeromagnetic and gravity data for the northern part of the Timok Magmatic Complex (TMC), East Serbia. The TMC is part of the Tethyan Eurasian metallogenic zone well known for hosting large copper and gold deposits. The complex formed by continuous volcanic activity 90–78 Ma ago, that developed in roughly three phases: Turonian andesites, Santonian–Campanian andesites/basaltic andesites (both mostly volcanic) and Campanian latites/monzonites (mostly shallow intrusive). The aeromagnetic measurements included acquiring total magnetic intensity data that were corrected for diurnal variations, leveling, microleveling, calculated normal field values, calculated anomaly values of total magnetic field intensity and reduction to the pole. The gravity measurements were carried out in an irregular grid with relative gravity values obtained using a Worden gravity meter. 2D modeling reveals that the subsurface extension of the Campanian Valja Str? pluton is ten times larger than it is indicated by its surface outcrops. This implies that the area south and southeast from the pluton can be interesting in terms of finding new porphyry systems. The model indicates that this intrusive body should not be considered as a deeply dissected pluton. This sheds new light onto its potential with respect to epithermal gold mineralization, as well. The model also suggests that there are larger non-exposed bodies of Santonian–Campanian volcanics and near-surface hydrothermally altered rocks than it is inferred from geological maps. The results of our study suggest that further interdisciplinary investigations in the TMC, in particular those integrating geophysics and geology, may have potential of advancing the existing exploration models.  相似文献   

13.
由于断裂两侧的磁性、密度的纵横向差异在重力、磁力异常上有所表现,因此所获得的重力、磁力数据为深入研究关键的地质课题提供了科学基础,如郯庐断裂带的基底性质、断裂形成特征和岩浆岩分布。利用最新的高精度航空重力和磁力数据以及地面重力数据,绘制了郯庐断裂带地区的1∶50 000重力和磁力异常图,并结合区域地质数据分析了重力和磁力异常特征。分析结果认为:存在连体的郯庐—大别古老构造带,郯庐断裂带南段是元古宙和燕山中期岩浆活动的复合反映带;郯庐断裂带为中元古—新元古代时期南华北陆块与下扬子陆块的界限;磁力、重力异常图对比说明,合肥盆地范围由老到新向东扩展。  相似文献   

14.
New generation high resolution gravity models derived from space-borne gravity data, integrated with land based surveys, have enabled understanding of regional gravity field over regions, which are till date considered to be inaccessible for land surveys, especially in mountainous terrains. In this study, we evaluate two high resolution gravity models EIGEN-6C4 and GO_CONS_GCF_2_TIM_R5 in order to understand its usability in identification of meso-scale regional geological features and lithological boundaries around the Karakoram shear zone, in Leh, India. The EIGEN-6C4 is a “hybrid” model integrating data from space-borne sensors and terrestrial data, whereas GO_CONS_GCF_2_TIM_R5 is a model derived from the latest space-borne GOCE sensor. Bouguer gravity anomaly has been derived for both the models and compared. It is seen that, the GOCE derived model pertains to the regional gravity field of the region and compares well with the regional derivative of the EIGEN-6C4 model. Further, the EIGEN-6C4 has been analyzed using horizontal derivatives (dx, dy), analytical signal (ANS) and tilt derivative (TDR) techniques. These, derived maps are then overlain on published geological map of the area to understand the correlation between sub-surface geology vis a vis gravitational signal. The major and distinct geological signatures as derived from the various derivative maps correlate well with the existing geological map. The source boundaries derived from the TDR map agrees reasonably well with the lithological boundaries. Further, the anomaly and derivative maps from EIGEN-6C4 indicates towards a possible continuation of the Shyok suture zone in the region. Therefore, for the given spatial extent of the area under consideration, the GOCE derived model represents the regional field, whereas the EIGEN-6C4 data and derivatives are of sufficient resolution for understanding the geological variability in and around the Karakoram shear zone.  相似文献   

15.
Structural analysis of Jebel Chemsi and Belkhir located in southern Tunisian Atlas lead to propose the fault-propagation fold as a model for these anticlines. Geometric analogy is settled after dip surveys and observation of several anticline kinks. Several, independent geomorphologic observations support the hinge migration kinematics characterizing this numerical model. The geomorphological hallmarks used matches to (1) alluvial fan progradation, (2) knick points on longitudinal profiles of channel streams and (3) anomalies on the drainage net in the eastern limits of the fold. These anomalies proved a centrifugal hinge migration of, at least, last folding stages in the direction prospected by the model. Results of numerical modelling using Ramp EM software showed detachment layer at 5.5 km that matches to Triassic series. Shortening amplitude is about 2 km for Jebel Chemsi and 1.5 km for Jebel Belkhir. Locally, we highlighted the role of inherited faults in locating and controlling the compressive deformation. In active tectonic region, the use of geomorphological approach is suitable to highlight the folding kinematics and thus to prove the deformation model. In our case study, many special conditions, such as excellent outcropping resulting of arid climate, constant base level and good lithological contrast, allow objective interpretations  相似文献   

16.
贺兰山深部构造及其对浅部构造的响应过程   总被引:1,自引:0,他引:1  
根椐实测贺兰山地区二叠系、三叠系和侏罗系含煤地层热解数据及石英脉中包裹体测温发现贺兰山地区热演化程度整体水平较高,相对邻区而言,明显具有异常地热场的特征。在分析航磁ΔT化极图、重力上延5km、10km等值线图后认为该区并不存在磁力高,前人设想贺兰山下2~5km处发育中酸性巨型岩基造成该区地热异常的说法缺乏足够证据。并且在贺兰山地区重力上延3km、5km等值线图上存在明显的重力高,剩余重力异常、莫霍面深度和地温梯度图也显示贺兰山地区为一热异常的幔隆区,它明显有别于其他造山带区。因此,贺兰山地区的高热演化特征应是莫霍面的上隆引起的地温梯度升高所致。最后结合研究区玄武岩地质地球化学特征认为贺兰山及周邻地区莫霍面上隆是造成早中侏罗世以来的热事件的原因。  相似文献   

17.
郭小刚 《地质与勘探》2022,58(5):1057-1069
甘肃白银厂铜多金属硫化物矿田是受陆缘弧环境火山机构及其同生断裂控制的典型火山岩赋矿块状硫化物矿床(VHMS)。为了进一步探讨该矿床重磁场特征及与构造和矿床的关系,通过对区内的重磁场异常数据进行位场分离、小波分析和基于张量数据的三维欧拉反褶积自动确定地质体位置和埋藏深度的定量反演计算。结果表明,研究区布格重力场具有西部高、东部低的特征,其磁场可划分为4个磁场区;局部异常按一定分布规律呈圆形或似圆形正负相间分布,不同尺度的重磁细节异常图在一定程度上反映出引起重磁异常的地质异常体具有一定的延深且分布稳定,而且这些地质异常体具有向深部复合的趋势。经位场分离后正负相间的剩余重磁异常分布范围和分布特征大致反映了白银厂奥陶纪中酸性火山岩建造构造为一个继承性的火山穹窿构造,东、西部不同的重磁异常特征说明东西部的火山喷发具有不同的基底、源区和喷发方式。发育NW向、NE向、近NS向、NEE向等4组断裂构造,近NS向断裂F3、F4、F5、F6、F7形成时间稍晚于NEE向断裂,其与NEE向断裂F1、F2共同形成了研究区棋盘网格状的构造分布特征,这两组断裂为研究区内主要的控岩、控矿断裂。火山机构的分布明显受断裂构造控制,火山口集中分布在深大断裂、大断裂或两组断裂的交汇处。矿田内各矿床及成矿有利地段均处于研究区中部低缓重磁异常场内正负磁异常变化的梯度带内。本次研究为控矿要素研究和开展找矿预测工作提供了丰富、翔实的地球物理资料。  相似文献   

18.
The Jiza' basin is located in the eastern part of Yemen, trending generally in the E–W direction. It is filled with Middle Jurassic to recent sediments, which increase in thickness approximately from 3,000 m to more than 9,000 m. In this study, block-35 of this sedimentary basin is selected to detect the major subsurface geological and structural features characterizing this basin and controlling its hydrocarbon potentials. To achieve these goals, the available detailed gravity and magnetic data, scale 1:100,000, were intensively subjected to different kinds of processing and interpretation steps. Also, the available seismic reflection sections and deep wells data were used to confirm the interpretation. The results indicated three average depth levels; 12.5, 2.4, and 0.65 km for the deep, intermediate, and shallow gravity sources and 5.1 and 0.65 km for the deep and shallow magnetic sources. Accordingly, the residual and regional anomaly maps were constructed. These maps revealed a number of high and low structures (horsts and grabens and half grabens), ranging in depth from 0.5 km to less than 4.5 km and trending mainly in the ENE, NW, and NE directions. However, the analytical signal for both gravity and magnetic data also showed locations, dimensions, and approximate depths of the shallow and near surface anomaly sources. The interpretation of the gravity and magnetic anomalies in the area indicated that the NW, NNW, ENE, and NE trends characterize the shallow to deep gravity anomaly sources; however, the NE, NW, and NNE trends characterize the magnetic anomaly sources, mainly the basement. Two-dimensional geologic models were also constructed for three long gravity anomaly profiles that confirmed and tied with the available deep wells data and previously interpreted seismic sections. These models show the basement surface and the overlying sedimentary section as well as the associated faults.  相似文献   

19.
The Dabashan nappe structural belt links the Hannan block to the west with the Huangling block to the east between Yangxian and Xiangfan. The Dabashan arc-shaped fold belt formed during late Jurassic and was superposed on earlier Triassic folds. To achieve an improved understanding of the deep tectonics of the Dabashan nappe structural belt, we processed and interpreted the gravity and magnetic data for this area using new deep reflection seismic and other geophysical data as constraints. The results show that the Sichuan basin and Daba Mountains lie between the Longmenshan and Wulingshan gravity gradient belts. The positive magnetic anomalies around Nanchong-Tongjiang-Wanyuan-Langao and around Shizhu result from the crystalline basement. Modeling of the gravity and magnetic anomalies in the Daba Mountains and the Sichuan basin shows that the crystalline basement around Nanchong-Tongjiang-Wanyuan-Langao extends to the northeast underneath the Wafangdian fault near Ziyang. The magnetic field boundary in the Zhenba-Wanyuan-Chengkou-Zhenping area is the major boundary of the Dabashan nappe thrusting above the Sichuan Basin. This boundary might be the demarcation between the south Dabashan and the north Dabashan structural elements. The low gravity anomaly between Tongjiang and Chengkou might be partly caused by thickened lower crust. The local low gravity anomaly to the south of Chengkou-Wanyuan might result from Mesozoic strata of low density in the Dabashan foreland depression area.  相似文献   

20.
基于三角元法计算三度体球冠模型的重力异常   总被引:1,自引:1,他引:0  
提出利用高斯公式将体积分变成包围该积分域的全表面积,应用一系列三角形拟合计算表面,然后通过格林公式把对每个三角形的面积分变成对三角形每边的线积分之和的三角元法来计算三度体球冠模型重力异常,同时给出了合理的计算方案。计算了均匀密度球冠模型和非均匀密度球冠模型在水平地表面的重力异常,得到了2种模型的平面异常图。最后通过选择均匀密度球体作为误差对比的对象进行误差分析,验证了该方法的可行性以及计算结果的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号