首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Kinematics and dynamics of the southeastern margin of the Tibetan Plateau   总被引:4,自引:0,他引:4  
On the southeastern margin of the Tibetan Plateau lies a large region which seismicity and GPS data show to be actively deforming. This paper describes the active faulting in the region, and how it relates to the velocity field observed with GPS. In places the velocity field is accommodated by rotations about vertical axes, and most or all of the strain at the surface in the region appears to be released seismically. GPS velocities are then compared to velocities calculated using a model for deformation driven by gravitational driving forces. Using rheologies estimated from experimentally derived mineral flow laws, the model provides velocities that are in good agreement with observed GPS velocities. It is not possible to uniquely determine the rheology or flow velocity at depth, and there are two forms of model solution which match the observed horizontal surface velocities. In one of these, vertical planes deform by pure shear, and in the other vertical gradients of horizontal velocity are present within the crust. Two distinct regions of normal-faulting earthquakes are present in the region, and have mechanisms which are most easily explained by gravity-driven deformation.  相似文献   

2.
The thermomechanic evolution of the lithosphere–upper mantle system during Calabrian subduction is analysed using a 2-D finite element approach, in which the lithosphere is compositionally stratified into crust and mantle. Gravity and topography predictions are cross-checked with observed gravity and topography patterns of the Calabrian region. Modelling results indicate that the gravity pattern in the arc-trench region is shaped by the sinking of light material, belonging to both the overriding and subduction plates. The sinking of light crustal material, up to depths of the order of 100–150 km is the ultimate responsible for the peculiar gravity signature of subduction, characterized by a minimum of gravity anomaly located at the trench, bounded by two highs located on the overriding and subducting plates, with a variation in magnitude of the order of 200 mGal along a wavelength of 200 km, in agreement with the isostatically compensated component of gravity anomaly observed along a transect crossing the Calabrian Arc, from the Tyrrhenian to the Ionian Seas. The striking agreement between the geodetic retrieved profiles and the modelled ones in the trench region confirms the crucial role of compositional stratification of the lithosphere in the subduction process and the correctness of the kinematic hypotheses considered in our modelling, that the present-day configuration of crust–mantle system below the Calabrian arc results from trench's retreat at a rate of about 3 cm yr−1, followed by gravitational sinking of the subducted slab in the last 5 Myr.  相似文献   

3.
4.
5.
In this study, based on a 2-D thermomechanical finite element model, the uplift of the Transantarctic Mountains (TAM) is discussed in relation to the flexural uplift of a rheologically layered lithosphere, which is described by Vening-Meinesz's cantilever kinematics. The general model behaviour shows that the thickness of the crust and the geothermal gradient in the lithosphere are the principal factors in controlling the effective elastic thickness ( T e). Although T e is also significantly dependent on the magnitude of the uplift and the wet or dry rheological condition of rocks, these two factors do not have a dominant influence on the half-wavelength of the TAM. The model with a plausible crustal structure beneath Antarctica shows that the thermal structure beneath East Antarctica is the critical factor, controlling the half-wavelength of the TAM. If there is a significant radiogenic heat source in the Antarctic lithosphere, T e beneath East Antarctica is estimated to be 50 km, at most, and the lithosphere has no potential to explain an exceptionally large-scale half-wavelength of the TAM. Even for the model without a heat source, if East Antarctica is significantly thermally influenced by West Antarctica, T e is estimated to be about 60 km, and it is difficult to reproduce the half-wavelength of the TAM. Contrarily, when a radiogenic heat source is absent and the thermal structure beneath East Antarctica is not significantly affected by that beneath West Antarctica, the rheological structure beneath East Antarctica has the potential to reproduce the half-wavelength of the TAM ( T e∼ 100 km). Thus, the presence of a radiogenic heat source in the crust and mantle and the thermal influence of West Antarctica on East Antarctica are crucial factors in the reproduction of the half-wavelength found in the TAM.  相似文献   

6.
7.
本文从地形地貌,构造,地层,古文化遗存等方面,阐述台北盆地的形成及环境演变,台北盆地为断陷成因,断陷年代为中更新世末晚更新世初,盆地的发育演变,环境变迁与构造运动、里斯-玉木间冰期及其后的海平面升降波动变化息息相关。  相似文献   

8.
The 2004 M = 9.2 Sumatra–Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ∼1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress–strain relation; an aspherical perturbation in viscoelastic structure; a 'static' mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra–Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation.  相似文献   

9.
10.
The use of the integral moments for interpreting magnetic data is based on a very elegant property of potential fields, but in the past it has not been completely exploited due to problems concerning real data. We describe a new 3-D development of previous 2-D results aimed at determining the magnetization direction, extending the calculation to second-order moments to recover the centre of mass of the magnetization distribution. The method is enhanced to reduce the effects of the regional field that often alters the first-order solutions. Moreover, we introduce an iterative correction to properly assess the errors coming from finite-size surveys or interaction with neighbouring anomalies, which are the most important causes of the failing of the method for real data. We test the method on some synthetic examples, and finally, we show the results obtained by analysing the aeromagnetic anomaly of the Monte Vulture volcano in Southern Italy.  相似文献   

11.
We developed an inversion method to estimate the stress fields related to earthquake generation (seismogenic stress fields) from the centroid moment tensors (CMT) of seismic events by using Akaike's Bayesian information criterion (ABIC). On the idea that the occurrence of an earthquake releases some part of the seismogenic stress field around its hypocentre, we define the CMT of a seismic event by a weighted volume integral of the true but unknown seismogenic stress field. Representing each component of the seismogenic stress field by the superposition of a finite number of 3-D basis functions (tri-cubic B-splines), we obtain a set of linear observation equations to be solved for the expansion coefficients (model parameters). We introduce prior constraint on the roughness of the seismogenic stress field and combine it with observed data to construct a Bayesian model with hierarchic, highly flexible structure controlled by hyper-parameters. The optimum values of the hyper-parameters are objectively determined form observed data by using ABIC. Given the optimum values of the hyper-parameters, we can obtain the best estimates of model parameters by using a maximum likelihood algorithm. We tested the validity of the inversion method through numerical experiments on two synthetic CMT data sets, assuming the distribution of fault orientations to be aligned with the maximum shear stress plane in one case and to be random in the other case. Then we applied the inversion method to actual CMT data in northeast Japan, and obtained the pattern of the seismogenic stress field consistent with geophysical and geological observations.  相似文献   

12.
The Gulf of Corinth is one of the most active extensional regions in the Mediterranean area characterized by a high rate of seismicity. However, there are still open questions concerning the role and the geometry of the numerous active faults bordering the basin, as well as the mechanisms governing the seismicity. In this paper, we use a 2-D plane strain finite element analysis to constrain the upper crust rheology by modelling the available deformation data (GPS and geomorphology). We consider a SSW–NNE cross-section of the rift cutting the main active normal faults (Aigion, West Eliki and Off-Shore faults). The models run for 650 Kyr assuming an elasto-viscoplastic rheology and 1.3 cm yr−1 horizontal extension as boundary condition (resulting from GPS data). We model the horizontal and vertical deformation rates and the accumulation of plastic strain at depth, and we compare them with GPS data, with long term uplift rates inferred from geomorphology and with the distribution of seismicity, respectively. Our modelling results demonstrate that dislocation on high-angle normal faults in a plastic crustal layer plays a key role in explaining the extremely localized strain within the Gulf of Corinth. Conversely, the contribution of structures such as the antithetic Trizonia fault or the buried hypothetical subhorizontal discontinuity are not necessary to model observed data.  相似文献   

13.
We investigated time dependent piezomagnetic fields due to volcanic sources embedded in a viscoelastic, homogeneous half-space. Especially in volcanic areas, the presence of inhomogeneous materials and high temperatures produce a lower effective viscosity of the Earth's crust that calls for considering anelastic properties of the medium. Piezomagnetic properties are carried by grains of titano-magnetite, which occupy only a small fraction of ordinary rock volume and are supposed to be elastic, while the non-magnetic surrounding matrix is assumed to be viscoelastic. From all the possible rheological models, we investigated two cases in which the bulk modulus is purely elastic and the shear modulus relaxes as: (i) a Maxwell solid and (ii) a standard linear solid (SLS). We applied the Correspondence Principle to the analytical elastic solutions for pressurized spherical sources and dislocation sources in order to determine the time dependent piezomagnetic fields in a viscoelastic medium. The piezomagnetic field completely vanishes after the relaxation process for a Maxwell rheology, whereas it is found to decrease over time and reach some finite offset value for a SLS rheology. These different behaviours provide helpful hints in understanding the temporal evolution of piezomagnetic anomalies in volcanic regions.  相似文献   

14.
The magnetic structure of convection-driven numerical dynamos   总被引:1,自引:1,他引:0  
The generation of a magnetic field in numerical simulations of the geodynamo is an intrinsically 3-D and time-dependent phenomenon. The concept of magnetic field lines and the frozen-flux approximation can provide insight into such systems, but a suitable visualization method is required. This paper presents results obtained using the Dynamical Magnetic Field line Imaging (DMFI) technique, which is a representation of magnetic field lines accounting for their local magnetic energy, together with an algorithm for the time evolution of their anchor points. The DMFI illustrations are consistent with previously published dynamo mechanisms, and allow further investigation of spatially and temporally complex systems. We highlight three types of magnetic structures: (i) magnetic cyclones and (ii) magnetic anticyclones are expelled by, but corotate with axial flow vortices; (iii) magnetic upwellings are amplified by stretching and advection within flow upwellings, and show structural similarity with helical plumes found in rotating hydrodynamic experiments. While magnetic anticyclones are responsible for the regeneration of a stable axial dipole, here we show that excursions and reversals of the dipole axis are caused by the emergence of magnetic upwellings, which amplify and transport a generally multipolar magnetic field from the inner to the outer boundary of the models. Geomagnetic observations suggest the presence of magnetic structures similar to those found in our models; thus, we discuss how our results may pertain to Earth's core dynamo processes. In order to make DMFI a standard tool for numerical dynamo studies, a public software package is available upon request to the authors (supplementary material is available at: http://www.ipgp.jussieu.fr/~aubert/DMFI.html ).  相似文献   

15.
16.
应用沃尔什函数讨论我国旱涝时空变化   总被引:1,自引:0,他引:1  
唐佑民 《地理学报》1989,44(4):420-428
本文在文献基础上,应用沃尔什函数理论中的沃氏变化系数物理意义,讨论了我国东部(100°E以东)旱涝的时、空变化,得出了8种旱涝型和1470-1981年全国旱涝型年表。在这基础上,比较了沃氏功率谱与付氏功率谱的计算结果。研究表明:沃尔付函数在分析矩形数字波气象问题时,比傅氏函数有着更好的适用性和优越性。  相似文献   

17.
试论曹娥江上游低山丘陵区的水土流失及其治理   总被引:4,自引:0,他引:4  
何小平  毛发新 《地理学报》1989,44(2):214-220
曹娥江上游地区,由于受自然条件和人类活动的影响,导致严重的水土流失,成为浙江省水土流失最为严重的河流。水土流失破坏了生态平衡,威胁着流域内人民的生产和生活安全,极需治理。  相似文献   

18.
Geological studies show evidence for temporal clustering of large earthquakes on individual fault systems. Since post-seismic deformation due to the inelastic rheology of the lithosphere may result in a variable loading rate on a fault throughout the interseismic period, it is reasonable to expect that the rheology of the non-seismogenic lower crust and mantle lithosphere may play a role in controlling earthquake recurrence times. We study this phenomenon using a 2-D, finite element method continuum model of the lithosphere containing a single strike-slip fault. This model builds on a previous study using a 1-D spring-dashpot-slider analogue of a single fault system to study the role of Maxwell viscoelastic relaxation in producing non-periodic earthquakes. In our 2-D model, the seismogenic portion of the fault slips when a predetermined yield stress is exceeded; stress accumulated on the seismogenic fault is shed to the viscoelastic layers below and recycled back to the seismogenic fault through viscoelastic relaxation. We find that random variation of the fault yield stress from one earthquake to the next can cause the earthquake sequence to be clustered; the amount of clustering depends on a non-dimensional number, W , called the Wallace number defined as the standard deviation of the randomly varied fault yield stress divided by the effective viscosity of the system times the tectonic loading rate. A new clustering metric based on the bimodal distribution of interseismic intervals allows us to investigate clustering behaviour of systems over a wide range of model parameters and those with multiple viscoelastic layers. For models with   W ≥ 1  clustering increases with increasing W , while those with   W ≤ 1  are unclustered, or quasi-periodic.  相似文献   

19.
A decadal polar motion with an amplitude of approximately 25 milliarcsecs (mas) is observed over the last century, a motion known as the Markowitz wobble. The origin of this motion remains unknown. In this paper, we investigate the possibility that a time-dependent axial misalignment between the density structures of the inner core and mantle can explain this signal. The longitudinal displacement of the inner core density structure leads to a change in the global moment of inertia of the Earth. In addition, as a result of the density misalignment, a gravitational equatorial torque leads to a tilt of the oblate geometric figure of the inner core, causing a further change in the global moment of inertia. To conserve angular momentum, an adjustment of the rotation vector must occur, leading to a polar motion. We develop theoretical expressions for the change in the moment of inertia and the gravitational torque in terms of the angle of longitudinal misalignment and the density structure of the mantle. A model to compute the polar motion in response to time-dependent axial inner core rotations is also presented. We show that the polar motion produced by this mechanism can be polarized about a longitudinal axis and is expected to have decadal periodicities, two general characteristics of the Markowitz wobble. The amplitude of the polar motion depends primarily on the Y 12 spherical harmonic component of mantle density, on the longitudinal misalignment between the inner core and mantle, and on the bulk viscosity of the inner core. We establish constraints on the first two of these quantities from considerations of the axial component of this gravitational torque and from observed changes in length of day. These constraints suggest that the maximum polar motion from this mechanism is smaller than 1 mas, and too small to explain the Markowitz wobble.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号