首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
In this article, we propose an investigation of the modifications of the hydrological response of two Peruvian Amazonas–Andes basins in relationship with the modifications of the precipitation and evapotranspiration rates inferred by the IPCC. These two basins integrate around 10% of the total area of the Amazonian basin. These estimations are based on the application of two monthly hydrological models, GR2M and MWB3, and the climatic projections come from BCM2, CSMK3 and MIHR models for A1B and B1 emission scenarios (SCE A1B and SCE B1). Projections are approximated by two simple scenarios (anomalies and horizon) and annual rainfall rates, evapotranspiration rates and discharge were estimated for the 2020s (2008–2040), 2050s (2041–2070) and 2080s (2071–2099). Annual discharge shows increasing trend over Requena basin (Ucayali river), Puerto Inca basin (Pachitea river), Tambo basin (Tambo river) and Mejorada basin (Mantaro river) while discharge shows decreasing trend over the Chazuta basin (Huallaga river), the Maldonadillo basin (Urubamba river) and the Pisac basin (Vilcanota river). Monthly discharge at the outlet of Puerto Inca, Tambo and Mejorada basins shows increasing trends for all seasons. Trends to decrease are estimated in autumn discharge over the Requena basin and spring discharge over Pisac basin as well as summer and autumn discharges over both the Chazuta and the Maldonadillo basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
共和盆地恰卜恰地热区现今地热特征   总被引:1,自引:0,他引:1       下载免费PDF全文
恰卜恰地热区位于青海共和盆地的东北部,是我国重要的具有干热岩地热资源勘探开发潜力的地区之一.自2013年起,不同的研究者针对该区开展了大量地球物理探测工作,然而现今地热场的研究相对较少.本文基于4口干热岩钻孔的稳态测温资料和81块岩芯样品的热导率测试数据,计算了研究区4个大地热流值.研究结果表明:研究区基底花岗岩层现今地温梯度为39.0~45.2℃·km-1,平均值为41.3℃·km-1,大地热流值介于93.3~111.0 mW·m-2之间,平均值为102.2 mW·m-2,与我国主要的克拉通型盆地(如柴达木盆地、四川盆地和鄂尔多斯盆地)和新生代裂谷型盆地(如渤海湾盆地)相比,该区属于青藏高原高热流背景下的局部异常高地温梯度和高大地热流区.分析认为,研究区高地热异常可能暗示共和盆地浅部(20 km以浅)存在局部异常热源体(岩浆囊).  相似文献   

4.
The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi‐distributed rainfall–runoff model for a gauged basin, including the flood‐prone area, and that furnishes the inlet flow conditions for a two‐dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built‐up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall–runoff model was adapted and calibrated through three flood events without over‐bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of −58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ‘shock‐capturing’ one‐dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built‐up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Detention basins are used to capture postdevelopment runoff and control the peak discharge of the outflow using orifices and weirs. The use of detention basins is typical practice in the construction of new developments on the fringe of existing urban areas, such as the Ulsan–Hwabong district in the city of Ulsan, South Korea. In this study, the required volume and flooding area of a detention basin was determined to control development outflow peaks for 2‐year, 10‐year, and 100‐year design storms with type II rainfall distributions as characterized by the US Department of Agriculture's Soil Conservation Service method. The rainfall–runoff simulation model used was the US Environmental Protection Agency's Storm Water Management Model (EPA‐SWMM) 5, which is the latest version of the software, updated for Windows. We designed three cases of detention basins multi‐staged by 2‐year, 10‐year, and 100‐year design storms and verified the designs with the application of 49 years (1961–2009) of hourly historical rainfall data. The three detention basin designs were compared in terms of the total construction and land costs as well as the benefits associated with recreational facilities or parking lot use. As a result, the design sizes of the detention basins are slightly greater than the actual sizes needed based on the historical rainfall application. Multi‐use detention basins (MDBs) based on 2‐year and 10‐year design storms were found to yield 37.4% and 22.8% benefits, respectively, for recreational facility use compared with detention basins without multi‐use space, and the results also indicate that benefits accrue after 6.5 years for parking lot use. The results of this study suggest that an MDB based on a 2‐year design storm is the most cost‐effective design among the three cases considered for Ulsan, South Korea. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Recession flows of a basin provide valuable information about its storage–discharge relationship as during recession periods discharge occurs due to depletion of storage. Storage–discharge analysis is generally performed by plotting ?dQ/dt against Q , where Q is discharge at time t . For most real world catchments, ?dQ/dt versus Q show a power‐law relationship of the type: ?dQ/dt = kQα . Because the coefficient k varies across recession events significantly, the exponent α needs to be computed separately for individual recession events. The median α can then be considered as the representative α for the basin. The question that arises here is what are the basin characteristics that influence the value of α ? Studies based on a small number of basins (up to 50 basins) reveal that α has good relationship with several basin characteristics. However, whether such a relationship is universal remains an important question, because a universal relationship would allow prediction of the value of α for any ungauged basin. To test this hypothesis, here, we study data collected from a relatively large number of basins (358 basins) in USA and examine the influence of 35 different physio‐climatic characteristics on α . We divide the basins into 2 groups based on their longitudes and test the relationship between α and basin characteristics separately for the two groups. The results indicate that α is not identically influenced by different basin characteristics for the two datasets. This may suggest that the power‐law exponent α of a region is determined by the way local physio‐climatic forces have shaped the landscape.  相似文献   

7.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The stream gauge rating curve for a drainage basin can be transformed into a drainage basin peak discharge rating curve that is more stable than the rating curve from which it is derived. The resulting drainage basin peak discharge rating curve can be used to predict peak discharge, identify anomalous discharges caused by channel obstructions or other causes, evaluate the effect of flood retarding structures, and evaluate historical records. The drainage basin peak discharge rating curve is valid for drainage basins of any size, for any discharge up to the time of concentration, and for snowmelt.  相似文献   

9.
10.
Abstract

Water discharge and suspended and dissolved sediment data from three rivers (Napo, Pastaza and Santiago) in the Ecuadorian Amazon basin and a river in the Pacific basin (Esmeraldas) over a 9-year period, are presented. This data set allows us to present: (a) the chemical weathering rates; (b) the erosion rates, calculated from the suspended sediment from the Andean basin; (c) the spatio-temporal variability of the two regions; and (d) the relationship between this variability and the precipitation, topography, lithology and seismic activity of the area. The dissolved solids load from the Esmeraldas basin was 2 × 106 t year-1, whereas for the Napo, Pastaza and Santiago basins, it was 4, 2 and 3 × 106 t year-1, respectively. For stations in the Andean piedmont of Ecuador, the relationship between surface sediment and the total sediment concentration was found to be close to one. This is due to minimal stratification of the suspended sediment in the vertical profile, which is attributed to turbulence and high vertical water speeds. However, during the dry season, when the water speed decreases, sediment stratification appears, but this effect can be neglected in the sediment flux calculations due to low concentration rates. The suspended sediment load in the Pacific basin was 6 × 106 t year-1, and the total for the three Amazon basins was 47 × 106 t year-1. The difference between these contributions of the suspended sediment load is likely due to the tectonic uplift and the seismic and volcanic dynamics that occur on the Amazon side.

Editor Z.W. Kundzewicz

Citation Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C., Lagane, C., Magat, P., Moquet, J.-S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A., and Guyot, J.L., 2013. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrological Sciences Journal, 58 (7), 1478–1494.  相似文献   

11.
The relationship between El Niño–Southern Oscillation (ENSO) events versus precipitation anomalies, and the response of seasonal precipitation to El Niño and La Niña events were investigated for 30 basins that represent a range of climatic types throughout South‐east Asia and the Pacific region. The teleconnection between ENSO and the hydroclimate is tested using both parametric and non‐parametric approaches, and the lag correlations between precipitation anomalies versus the Southern Oscillation Index (SOI) several months earlier, as well as the coherence between SOI and precipitation anomalies are estimated. The analysis shows that dry conditions tend to be associated with El Niño in the southern zone, and part of the middle zone in the study area. The link between precipitation anomalies and ENSO is statistically significant in the southern zone and part of the middle zone of the study area, but significant correlation was not observed in the northern zone. Patterns of precipitation response may differ widely among basins, and even the response of a given river basin to individual ENSO events also may be changeable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The geological relationship between the Okcheon and Taebaeksan basins of the Okcheon belt on the Korean peninsula is a key issue in reconstructing the tectonic evolution of the peninsula. The boundary between the two basin sequences has been variously interpreted as a conformable, unconformable, or thrust contact, without clear evidence being provided for any of these hypotheses. Detailed examination of structures and microfabrics of deformed rocks adjacent to the contact in the Bonghwajae area suggests that the boundary between the two basin sequences is a thrust. Based on the U–Pb ages of detrital zircons from metasedimentary rocks and pre‐existing geologic data from the Okcheon belt, the thrust is a relay structure between two segments of a continental transform fault along which the Okcheon Basin was juxtaposed against the Taebaeksan Basin during the Permian–Triassic suturing of the North and South China Cratons.  相似文献   

13.
The impact of warmer climate on melt and evaporation was studied for rainfed, snowfed and glacierfed basins located in the western Himalayan region. Hydrological processes were simulated under current climatic conditions using a conceptual hydrological model, which accounts for the rainfall–runoff, evaporation losses, snow and glacier melt. After simulations of daily observed streamflow (R2=0.90) for 6 years, the model was used to study the impact of warmer climate on melt and evaporation. Based on the future projected climatic scenarios in the study region, three temperature scenarios (T+1, T+2 and T+3 °C) were adopted for quantifying the effect of warmer climate. The comparison of the effect of warmer climate on different types of basins indicated that the increase in evaporation was the maximum for snowfed basins. For a T+2 °C scenario, the annual evaporation for the rainfed basins increased by about 12%, whereas for the snowfed basins it increased by about 24%. The high increase of the evaporation losses would reduce the runoff. It was found that under a warmer climate, melt was reduced from snowfed basins, but increased from glacierfed basins. For a T+2 °C scenario, annual melt was reduced by about 18% for the studied snowfed basin, while it increased by about 33% for the glacierfed basin. Thus, impact of warmer climate on the melt from the snowfed and glacierfed basins was opposite to each other. The study suggests that out of three types of basins, snowfed basins are more sensitive in terms of reduction in water availability due to a compound effect of increase in evaporation and decrease in melt. For a complex type of basin, the decrease in melt from seasonal snow may be counterbalanced by increase in melt from glaciers. However, on long-term basis, when the areal extent of glaciers will decrease due to higher melt rate, the water availability from the complex basins will be reduced.  相似文献   

14.
Abstract

This study was carried out in the framework of the Surface Water and Ocean Topography (SWOT) programme of the French National Centre of Space Studies (CNES). Based on discharge measurements and Gravity Recovery and Climate Experiment (GRACE) determination of total water storage (TWS), we have investigated the hydrological variability of the main French drainage basins (Seine, Loire, Garonne and Rhône) using a wavelet approach (continuous wavelet analyses and wavelet coherence analyses). The results of this analysis have shown a coherence ranging between 82% and 90% for TWS and discharge, thus demonstrating the potential use of TWS for characterization of the hydrological variability of French rivers. Strong coherence between the four basin discharges (between 73% and 92%) and between their associated TWS data (from 82% to 98%) suggested a common external influence on hydrological variability. To determine this influence, we investigated the relationship between hydrological variability and the North Atlantic Oscillation (NAO), considered as an index of prevailing climate in Europe. Basin discharges show strong coherence with NAO, ranging between 64% and 72% over the period 1959–2010. The coherence between NAO and TWS was 62% to 67% for 2003–2009. This is similar to the coherence between NAO and basin discharges detected for the same period. According to these results, strong influence of the NAO was clearly observed on the TWS and discharges of the major French river basins.
Editor Z.W. Kundzewicz  相似文献   

15.
Parabolic density function in sedimentary basin modelling   总被引:1,自引:0,他引:1  
For modelling sedimentary basins of large thickness from their gravity anomalies, the concept of parabolic density function which explains the variation of true density contrast of the sediments with depth in such basins is introduced inBott's (1960) procedure. The analytical expression the gravity anomaly of a two-dimensional vertical prism with parabolic density contrast needed to estimate the gravity effect of the basin in modelling procedure is derived in a closed form. Two profiles of gravity anomalies, one across San Jacinto Graben, California and the other across Tucson basin, Arizona where the density of sediments is found to vary with depth are interpreted.  相似文献   

16.
Most of petroliferous sedimentary basins in China have experienced multiple phases of tectonic evolution and deposition, and are characterized by tectonic and depositional superimposition. The term "superimposed basin" is suggested to describe those basins which consist of two or more simple prototype basins superimposing vertically and/or coalescing laterally. The characteristics of petroliferous superimposed basins are "multiple stages of basin forming and reworking, multiple layers of source rocks, multiple periods of hydrocarbon generation and expulsion, multiple periods of petroleum migration-accumulation-escape". Therefore,applying the wave process analysis method to studying the process of basin formation, hydrocarbon generation, and reservoir formation, and then establishing theory of "petroleum accumulation system" is helpful to enhancing petroleum exploration efficiency in superimposed basins.This paper will, based on case study in the Tarim basin, report the major developments in studying basin formation, hydrocarbon generation and petroleum accumulation. In study of basin formation, (1) geophysical comprehensive profiles reveal that the Tarim plate has been subducted beneath the Tianshan orogenic belt with an interfinger structure and that the deep structure in the eastern section of the Tianshan orogenic belt is different from that in the western section. (2) The vertical variation in debris and geochemical composition reveals the nature and Mesozoic-Cenozoic evolution history of the Kuqa Depression. (3) Field investigation and paleostress reconstruction show that the Kuqa Depression has undergone gravity-driven extension in sedimentary cover when the Tianshan uplifted vertically. In hydrocarbon generation study, new developments include (1) setting environmental index to judge high grade source rocks in marine carbonates, and (2) establishing the lower limit of the organic carbon content for effective carbonate source rocks. In petroleum accumulation study, (1) methods of determining paleopressure and paleotemperature of forming fluid inclusions have been established. (2) The petroleum source analysis has indicated that the crude oil in the Lunnan and Tahe oilfields are derived from the source rocks of the Middle and Upper Ordovician. (3) Three generations of oil inclusions from the Lunnan oilfield have been recognized and dated.  相似文献   

17.
Abstract

This study uses the Soil and Water Assessment Tool (SWAT) and downscaled climate projections from the ensemble of two global climate models (ECHAM4 and CSIRO) forced by the A1FI greenhouse-gas scenario to estimate the impact of climate change on streamflow in the White Volta and Pra river basins, Ghana. The SWAT model was calibrated for the two basins and subsequently driven by downscaled future climate projections to estimate the streamflow for the 2020s (2006–2035) and 2050s (2036–2075). Relative to the baseline, the mean annual streamflow estimated for the White Volta basin for the 2020s and 2050s showed a decrease of 22 and 50%, respectively. Similarly, the estimated streamflow for the 2020s and 2050s for the Pra basin showed a decrease of 22 and 46%, respectively. These results underscore the need to put in place appropriate adaptation measures to foster resilience to climate change in order to enhance water security within the two basins.

Citation Kankam-Yeboah, K., Obuobie, E., Amisigo, B., and Opoku-Ankomah, Y., 2013. Impact of climate change on streamflow in selected river basins in Ghana. Hydrological Sciences Journal, 58 (4), 773–788.  相似文献   

18.
Basin lag time varies not only between basins but also within a basin. To explain this variation, the basin lag time was hypothesized as a function of the ratio of the channel length from the centroid to the outlet of the basin, divided by the velocity of flow at the gauging site at the time of passage of peak discharge. The records of six basins were used to test this hypothesis. The results are not incompatible with this hypothesis.  相似文献   

19.
The Southern Tyrrhenian Sea is an extensional basins linked to the Neogene evolution of the Calabria subduction zone located in the western Mediterranean realm where controversial kinematic and geodynamical models have been proposed. Our study provides a key to unravel timing and mode of extension of the upper plate and the breakup of Calabria from Sardinia. By combining original stratigraphic analysis of wells and seismic profiles off Calabria with a stratigraphic correlation to onshore outcrops, we re-assess the tectonic evolution that controlled the sedimentation and basement deformation of the Southern Tyrrhenian basin during Serravallian–Tortonian times. We document the tectono-stratigraphic evolution of adjacent extensional basins characterized by 3rd order depositional sequences (Ser1, Tor1 and Tor2) and different modes of extension, subsidence and opposite dipping faults. Episodic basin development is recorded by a coarsening-up and fining-up trend of the sedimentary succession and by tectonically enhanced unconformities that reflect three episodes of fault activity. We reconstruct Serravallian–Tortonian paleogeographic maps and propose a block faulting model for the evolution of the Sardinia–Calabria area. Sardinia was disconnected from Calabria through N–S normal faults forming Tyrrhenian extensional basins that formed contemporaneously to the E–W opening of the Algerian basin. Unlike published Serravallian–Tortonian reconstructions of the western Mediterranean realm, our results support a geodynamic model characterized by rapid trench retreat, trench-normal extension in the entire overriding plate and very weak coupling between plates.  相似文献   

20.
Scattering of elastic waves by an orthotropic basin of arbitrary shape embedded in a half-space is investigated for the sagittal plane motion using an indirect boundary integral equation approach. Steady-state results were obtained for incident plane harmonic pseudo P-, S-, and Rayleigh waves. Detailed convergence analysis of the method is presented. Green's functions are evaluated by using adaptive Newton–Cotes or Filon quadratures. Surface ground motion is presented for semicircular and semielliptical basins with different material properties and various angles of incidence. The results show that surface motion strongly depends upon nature of incident wave, geometry and material properties of the basin, and location of the observation point. Comparison with isotropic basin response demonstrates that anisotropy is very important in amplification of surface ground motion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号