首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据近年来对过去2000a气候变化研究成果,通过遥感方法将罗布泊盐湖近2000a 气候变化记录与不同地区、不同类型的气候变化曲线进行对比分析,探索了现代盐湖对气候事件的响应机制,并证明了罗布泊盐湖沉积物的气候变化曲线具有明确的古气候意义。研究表明在公元1300~ 1500a 区间,罗布泊盐湖气候记录与北半球千年来地面空气温度变化的相关性大于0. 8;千年尺度变化与古利雅冰芯曲线较一致,气候变化趋势是缓慢上升; 600a 以来,与北京石花洞石笋微层记录曲线有较好的相关性;相对于北半球区域气候,在公元13世纪前后出现过滞后现象。   相似文献   

2.
Byshev  V. I.  Neiman  V. G.  Romanov  Yu. A.  Serykh  I. V. 《Doklady Earth Sciences》2011,438(2):887-892

Study of the variability of the present-day climate based on statistical analysis of a century-long sequence of experimental hydrometorological data has shown that its phase state is subdivided into three subsets. Each of these subsets is particular to its thermodynamic characteristics and should be considered as an individual climatic scenario. The basic result of the study was obtained by estimation of evolution of the phase trajectory of parameters of thermodynamic conditions of the Northern Atlantic climate system that directly influences a vast area of the Eurasia continent. The three climate scenarios were attributed to periods of 1905–1935 (relatively warm phase), 1940–1970 (cool phase), and 1980–2000 (warm phase). According to our analysis and some independent indications [1], we believe that, in the first decade of the current century in the Northern Atlantic, a transition to a new (relatively cool?) climate scenario began, which appears likely to continue until 2030–2035.

  相似文献   

3.
Demidova  T. A.  Morozov  E. G.  Neiman  V. G. 《Doklady Earth Sciences》2018,482(1):1229-1233

The velocity and structure of the Lomonosov Equatorial Undercurrent of the Atlantic Ocean are determined based on the data measured with a shipborne acoustic profiler from 2014 to 2017. The seasonal variability of this flow is estimated, and the cases of its outcropping to the surface in the spring of the Northern Hemisphere are revealed.

  相似文献   

4.
Proxy reconstructions of precipitation from central India, north-central China, and southern Vietnam reveal a series of monsoon droughts during the mid 14th–15th centuries that each lasted for several years to decades. These monsoon megadroughts have no analog during the instrumental period. They occurred in the context of widespread thermal and hydrologic climate anomalies marking the onset of the Little Ice Age (LIA) and appear to have played a major role in shaping significant regional societal changes at that time. New tree ring-width based reconstructions of monsoon variability suggest episodic and widespread reoccurrences of monsoon megadroughts continued throughout the LIA. Although the El-Niño Southern Oscillation (ENSO) plays an important role in monsoon variability, there is no conclusive evidence to suggest that these megadroughts were associated with anomalous sea surface temperature anomalies that were solely the result of ENSO-like variability in the tropical Pacific. Instead, the causative mechanisms of these megadroughts may reside in protracted changes in the synoptic-scale monsoon climatology of the Indian Ocean. Today, the intra-seasonal monsoon variability is dominated by ‘active’ and the ‘break’ spells – two distinct oscillatory modes of monsoon that have radically different synoptic scale circulation and precipitation patterns. We suggest that protracted locking of the monsoon into the “break-dominated” mode – a mode that favors reduced precipitation over the Indian sub-continent and SE Asia and enhanced precipitation over the equatorial Indian Ocean, may have caused these exceptional droughts. Impetus for periodic locking of the monsoon into this mode may have been provided by cooler temperatures at the extratropical latitudes in the Northern Hemisphere which forced the mean position of the Inter-Tropical Convergence Zone (ITCZ) further southward in the Indian Ocean.  相似文献   

5.
The evolution of the Northern Hemisphere oceanic gateways has facilitated ocean circulation changes and may have influenced climatic variations in the Cenozoic time (66 Ma–0 Ma). However, the timing of these oceanic gateway events is poorly constrained and is often neglected in global paleobathymetric reconstructions. We have therefore re-evaluated the evolution of the Northern hemisphere oceanic gateways (i.e. the Fram Strait, Greenland–Scotland Ridge, the Central American Seaway, and the Tethys Seaway) and embedded their tectonic histories in a new global paleobathymetry and topography model for the Cenozoic time. Our new paleobathymetry model incorporates Northeast Atlantic paleobathymetric variations due to Iceland mantle plume activity, updated regional plate kinematics, and models for the oceanic lithospheric age, sediment thickness, and reconstructed oceanic plateaus and microcontinents. We also provide a global paleotopography model based on new and previously published regional models. In particular, the new model documents important bathymetric changes in the Northeast Atlantic and in the Tethys Seaway near the Eocene–Oligocene transition (~34 Ma), the time of the first glaciations of Antarctica, believed to be triggered by the opening of the Southern Ocean gateways (i.e. the Drake Passage and the Tasman Gateway) and subsequent Antarctic Circumpolar Current initiation. Our new model can be used to test whether the Northern Hemisphere gateways could have also played an important role modulating ocean circulation and climate at that time. In addition, we provide a set of realistic global bathymetric and topographic reconstructions for the Cenozoic time at one million-year interval for further use in paleo-ocean circulation and climate models.  相似文献   

6.
Analysis of a Miocene-Pleistocene ice-rafted debris (IRD) record from the western Irminger Basin provides evidence for the initiation and long-term behavior of the SE portion of the Greenland Ice Sheet. In the late Miocene (~7.3 Ma), IRD supply to Ocean Drilling Program site 918 increased significantly indicating that glaciers large enough to reach sea level were present in SE Greenland long before the onset of widespread Northern Hemisphere glaciation. IRD accumulated at this site throughout the Pliocene and Pleistocene, supporting the hypothesis that SE Greenland was a key nucleation area for the formation of the Greenland Ice Sheet. Since glacial onset, the western Irminger Basin IRD record is characterized by a succession of episodes with high IRD mass accumulation rates (MARs). The site 918 IRD record indicates that greatest iceberg production in SE Greenland occurred during major climatic transitions (e.g. widespread Northern Hemisphere glacial expansion at 2.7 Ma and the mid-Pleistocene climate shift at 0.9 Ma), and that SE Greenland sometimes also led the northern North Atlantic region in glacial response to climatic forcing (e.g. glacial intensification at ~4.8 and, along with NE Greenland, at ~3.5 Ma).  相似文献   

7.
The sand–loess transition zone in north China is sensitive to climate change, and is an ideal place to investigate past environmental changes. However, past climate change at millennial–centennial timescales in this region has not been well reconstructed because of limited numerical dating. Alternations of sandy loam soils with aeolian sand layers in the Mu Us and Otindag sand fields, which lie along the sand–loess transition zone, indicate multiple intervals of dune activity and stability. This change is probably a response to variations of the East Asian monsoon climate during the late Quaternary. The single aliquot regeneration (SAR) optically stimulated luminescence (OSL) dating protocol, which has been successfully applied to aeolian deposits worldwide, is applied to these two sand fields in this study. The OSL ages provide reliable constraints for reconstruction of past climate changes at suborbital timescale. Sections in both sand fields contain aeolian sand beds recording millennial‐scale episodes of dry climate and widespread dune activation, including episodes at about the same time as Heinrich Event 5 and the Younger Dryas in the North Atlantic region. These results demonstrate the potential of aeolian sediments in semi‐arid north China to record millennial‐scale climatic events, and also suggest that dry–wet climate variation at the desert margin in China may be linked to climatic change elsewhere in the Northern Hemisphere, through atmospheric circulation. This article was published online on 27 November 2008. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected (16 December 2008). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
《Quaternary Research》1986,26(1):3-26
Denton and Hughes (1983, Quaternary Research 20, 125–144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results (Manabe and Broccoli, 1985, Journal of Geophysical Research 90, 2167–2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate (Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In “The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present” (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303–318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This permitted renewed formation of North Atlantic Deep Water, which could well have controlled atmospheric carbon dioxide (W. S. Broecker, D. M. Peteet, and D. Rind, 1985, Nature (London) 315, 21–26). Combined melting and consequent sea-level rise from the three warming factors initiated irreversible collapse of the interlocked global ice-sheet system, which was at its largest but most vulnerable configuration.  相似文献   

9.
By comparison with the Northern Hemisphere, there is a paucity of high-resolution, continuous records extending into the Last Glacial Maximum from the Southern Hemisphere. With specific reference to coastal eastern Australia, there are long records of paleoclimatic and paleoenvironmental variability available from the tropical north and temperate south. However, there are significant spatial gaps between such records: in particular, until relatively recently, little attention had been paid to the subtropics. This review paper summarises understanding of regional paleoenvironmental and paleoclimatic variability in coastal eastern Australia during the termination of the Last Glacial Stage, with the aim of highlighting gaps in the current state of knowledge. Recommendations for future research are prioritised to answer knowledge gaps in understanding climate variability in eastern Australia between ca 33–18 kyr BP.  相似文献   

10.
Here, we review an ensemble of observations that point towards a global increase of erosion rates in regions of elevated mountain belts, or otherwise high relief, since the onset of Northern Hemisphere Glaciation about 2–3 Ma. During that period of Earth's history, atmospheric CO2 concentrations may have dropped, and global climate cooled and evolved towards high‐amplitude oscillating conditions that are associated with the waxing and waning of continental ice sheets in the Northern Hemisphere. We argue for a correlation between climate change and increased erosion rates and relief production, which we attribute to some combination of the observed cooling, onset of glaciation, and climatic oscillation at orbital timescales. In our view, glacial erosion played a major role and is driven by the global cooling. Furthermore, analyses of the sedimentary fluxes of many mountain belts show peaks of erosion during the transitions between glacial and inter‐glacial periods, suggesting that the variable climatic conditions have also played a role.  相似文献   

11.
《Quaternary Science Reviews》2007,26(3-4):312-321
Based on a radiocarbon and paleomagnetically dated sediment record from the northern Red Sea and the exceptional sensitivity of the regional changes in the oxygen isotope composition of sea water to the sea-level-dependent water exchange with the Indian Ocean, we provide a new global sea-level reconstruction spanning the last glacial period. The sea-level record has been extracted from the temperature-corrected benthic stable oxygen isotopes using coral-based sea-level data as constraints for the sea-level/oxygen isotope relationship. Although, the general features of this millennial-scale sea-level records have strong similarities to the rather symmetric and gradual Southern Hemisphere climate patterns, we observe, in constrast to previous findings, pronounced sea level rises of up to 25 m to generally correspond with Northern Hemisphere warmings as recorded in Greenland ice-core interstadial intervals whereas sea-level lowstands mostly occur during cold phases. Corroborated by CLIMBER-2 model results, the close connection of millennial-scale sea-level changes to Northern Hemisphere temperature variations indicates a primary climatic control on the mass balance of the major Northern Hemisphere ice sheets and does not require a considerable Antarctic contribution.  相似文献   

12.
According to the spectroscopy data on the HCl content analyzed in Peterhof in 2009–2016 and in a number of NDACC stations in the Northern Hemisphere, growth in the HCl content observed since 2007 and caused by changes in the stratospheric circulation stopped in 2010–2011. As follows from the experimental data, a decrease in the HCl content estimated in Peterhof at 4.4 × 1013 cm–2/year or ~1.0%/year started again.  相似文献   

13.
Zeng  Yongyao  Gao  Lei  Zhao  Wenqing 《中国地球化学学报》2021,40(2):199-211

Global climate during the Jurassic has been commonly described as a uniform greenhouse climate for a long time. However, the climate scenario of a cool episode during the Callovian–Oxfordian transition following by a warming trend during the Oxfordian (163.53 to 157.4 Ma) is documented in many localities of the western Tethys. It is still unclear if a correlatable climate scenario also occurred in the eastern Tethys during the same time interval. In this study, a detailed geochemical analysis on the 1060 m thick successions (the Xiali and Suowa formations) from the Yanshiping section of the Qiangtang Basin, located in the eastern Tethys margin during the Callovian–Oxfordian periods, was performed. To reveal the climate evolution of the basin, carbonate content and soluble salt concentrations (SO42−, Cl) were chosen as climatic indices. The results show that the overall climate patterns during the deposition of the Xiali and Suowa formations can be divided into three stages: relatively humid (~ 164.0 to 160.9 Ma), dry (~ 160.9 to 159.6 Ma), semi-dry (~ 159.6 to 156.8 Ma). A similar warming climate scenario also occurred in eastern Tethys during the Callovian–Oxfordian transition (~ 160.9 to 159.6 Ma). Besides, we clarify that the Jurassic True polar wander (TPW), the motion of the lithosphere and mantle with respect to Earth’s spin axis, inducing climatic shifts were responsible for the aridification of the Qiangtang Basin during the Callovian–Oxfordian transition with a review of the paleolatitude of the Xiali formation (19.7 + 2.8/−2.6° N) and the Suowa formation (20.7 + 4.1/−3.7° N). It is because the TPW rotations shifted the East Asia blocks (the North and South China, Qiangtang, and Qaidam blocks) from the humid zone to the tropical/subtropical arid zone and triggered the remarkable aridification during the Middle-Late Jurassic (ca. 165–155 Ma).

  相似文献   

14.
Earth surface processes—such as landslides, floods, erosion, siltation, subsidence, and soil collapse-are the main geological hazards responsible for social and economic damage in Brazil. Seismic events also occur, although at low intensities and with little damage. This paper addresses selected aspects of landslide and coastal-erosion disaster countermeasures in Brazil. Landslides cause the greatest number of accidents involving loss of life, and they occur chiefly in mountainous areas of the southeastern coast and in the more gentle terrain of the northeast coast. Local natural conditions related to topographic, geological, and climatic aspects, as well as manmade situations, are the main factors responsible for landslide disasters in Brazil.

Coastal erosion today represents a serious problem as a result of the substantial property damage it causes, chiefly along the northeast coast of Brazil, where it is most intense and frequent. The causes of coastal erosion in Brazil have been ascribed chiefly to human activity and to short- and medium-term natural causes. Elevation of sea level does not appear to have the same impact along the Brazilian coast as in the Northern Hemisphere, inasmuch as the Brazilian coast has been rising during the last 5000 years or more.  相似文献   

15.
Abstract

We investigate the left-lateral slip on the 240-km- long, NE-SW-trending, Malatya-Ovacik fault zone in eastern Turkey. This fault zone splays southwestward from the North Anatolian fault zone near Erzincan, then follows the WSW-trending Ovacik valley between the Munzur and Yilan mountain ranges. It bends back to a SW orientation near Arapkir, from where we trace its main strand SSW beneath the Plio-Quaternary sediment of the Malatya basin. We propose that this fault zone was active during ~5–3 Ma, when it took up 29 km of relative motion between the Turkish and Arabian plates; it ceased to be active when the East Anatolian fault zone formed at ~3 Ma. The geometry of the former Erzincan triple junction, which differs from the modem Karliova triple junction, where the North and East Anatolian fault zones intersect, suggests a possible explanation for why slip on the Malatya- Ovacik fault zone was unable to continue. We interpret the SW- and SSW-trending segments of the Malatya-Ovacik fault zone as transform faults, which define an Euler pole ~1 400 km to the southeast. Its central part along the Ovacik valley, which is ~30° oblique to the adjoining transform faults, is interpreted as the internal fault of a stepover. The adjoining mountain ranges, which now rise up to ~3 300 m, ~2 000 m above the surrounding land surface, are largely the result of the surface uplift which accompanied the components of shortening and thickening of the upper crustal brittle layer that occurred around this stepover while the left-lateral faulting was active. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

16.
Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. ‘Semi-arid’ (500–800 mm of mean annual rainfall), ‘sub-humid’ (800–1,200 mm/year) and ‘humid’ (1,200–1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<±5 %), EC versus TZ+ (~0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is ‘hard’ to ‘very hard’ in terms of Ca–Mg hardness. Polluted wells are identified (>40 % of pollution) and eliminated for the characterization. Piper’s diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl ~14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration–depth profiles are in support of the geological stratification i.e., ~18 m of saprolite and ~25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into ‘deep’ and ‘shallow’ based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using ‘recharge–discharge’ concept based on rainfall intensity instead of traditional monsoon–non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge–discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.  相似文献   

17.
Several high-resolution continental records have been reported recently in sites in South America, but the extent to which climatic variations were synchronous between the northern and southern hemispheres during the Late-glacial–Holocene transition, and the causes of the climatic changes, remain open questions. Previous investigations indicated that, east of the Andes, the middle and high latitudes of South America warmed uniformly and rapidly from 13 000 14C yr BP, with no indication of subsequent climate fluctuations, equivalent, for example, to the Younger Dryas cooling. Here we present a multiproxy continuous record, radiocarbon dated by accelerated mass spectroscopy, from proglacial Lake Mascardi in Argentina. The results show that unstable climatic conditions, comparable to those described from records obtained in the Northern Hemisphere, dominated the Late-glacial–Holocene transition in Argentina at this latitude. Furthermore, a significant advance of the Tronador ice-cap, which feeds Lake Mascardi, occurred during the Younger Dryas Chronozone. This instability suggests a step-wise climatic history reflecting a global, rather than regional, forcing mechanism. The Lake Mascardi record, therefore, provides strong support for the hypothesis that ocean–atmosphere interaction, rather than global ocean circulation alone, governed interhemispheric climate teleconnections during the last deglaciation. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Few well‐dated records of the deglacial dynamics of the large palaeo‐ice streams of the major Northern Hemisphere ice sheets are presently available, a prerequisite for an improved understanding of the ice‐sheet response to the climate warming of this period. Here we present a transect of gravity‐core samples through Trænadjupet and Vestfjorden, northern Norway, the location of the Trænadjupet – Vestfjorden palaeo‐ice stream of the NW sector of the Fennoscandian Ice Sheet. Initial ice recession from the shelf break to the coastal area (~400 km) occurred at an average rate of about 195 m a−1, followed by two ice re‐advances, at 16.6–16.4 ka BP (the Røst re‐advance) and at 15.8–15.6 ka BP (the Værøy re‐advance), the former at an estimated ice‐advance rate of 216 m a−1. The Røst re‐advance has been interpreted to be part of a climatically induced regional cold spell while the Værøy re‐advance was restricted to the Vestfjorden area and possibly formed as a consequence of internal ice‐sheet dynamics. Younger increases in IRD content have been correlated to the Skarpnes (Bølling – Older Dryas) and Tromsø – Lyngen (Younger Dryas) Events. Overall, the decaying Vestfjorden palaeo‐ice stream responded to the climatic fluctuations of this period but ice response due to internal reorganization is also suggested. Separating the two is important when evaluating the climatic response of the ice stream. As demonstrated here, the latter may be identified using a regional approach involving the study of several palaeo‐ice streams. The retreat rates reported here are of the same order of magnitude as rates reported for ice streams of the southern part of the Fennoscandian Ice Sheet, implying no latitudinal differences in ice response and retreat rate for this ~1000 km2 sector of the Fennoscandian Ice Sheet (~60–68°N) during the climate warming of this period.  相似文献   

19.
Since the 1970s it has been recognised that Southern Hemisphere samples have a lower radiocarbon content than contemporaneous material in the Northern Hemisphere. This interhemispheric radiocarbon offset has traditionally been considered to be the result of a greater surface area in the southern ocean and high-latitude deepwater formation. This is despite the fact that the El Niño-Southern Oscillation (ENSO) is known to play a significant role in controlling the interannual variability of atmospheric carbon dioxide by changing the flux of ‘old’ CO2 from the tropical Pacific. Here we demonstrate that over the past millennium, the Southern Hemisphere radiocarbon offset is characterised by a pervasive 80-yr cycle with a step shift in mean values coinciding with the transition from the Medieval Warm Period to the Little Ice Age. The observed changes suggest an ENSO-like role in influencing the interhemispheric radiocarbon difference, most probably modulated by the Interdecadal Pacific Oscillation, and supports a tropical role in forcing centennial-scale global climate change.  相似文献   

20.
罗布泊盐湖环状影像成因解释   总被引:14,自引:0,他引:14       下载免费PDF全文
根据遥感影像信息特征和盐湖气候变化模型,结合盐湖沉积特征和现代盐湖演化理论,通过对环状影像的成因进行解译和分析,将环状影像反映的1000年来盐湖气候变化的信息与北半球同期气候变化曲线对比,认为罗布泊盐湖是现代沉积形成的,是现代盐湖向干盐湖的演化历程中,由于气候冷暖交替变化而使盐湖沉积发生规律性变化的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号