首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is a summary of the present knowledge of the Tertiary stratigraphy of Western Australia. Also included is new information on the Cainozoic of the Carnarvon Basin, a result of petroleum exploration in the area.

Tertiary rocks formed during more than one cycle of deposition in three basins (Eucla, Perth, and Carnarvon), and also as thin units deposited in a single transgression along the south coast. The Tertiary stratigraphy of the Bonaparte Gulf Basin is not well known.

Drilling in the Eucla Basin has encountered up to 400 m of Tertiary in the south central part, with uniform thinning towards the margins. The section begins with a middle‐upper Eocene carbonate unit which represents the dominant event in the Tertiary sedimentation in this basin. More carbonates were deposited in the late Oligocene‐early Miocene and middle Miocene.

Along the south coast, the so‐called Bremer Basin, the Plantagenet Group (up to 100 m) of siltstone, sandstone, spongolite, and minor limestone, was deposited during the late Eocene.

The Perth Basin contains up to 700 m of Tertiary sediment, formed during at least two phases of sedimentation. The upper Paleocene‐lower Eocene Kings Park Formation consists of marine shale, sandstone, and minor limestone, with a thickness of up to 450 m. The Stark Bay Formation (200 m) includes limestone, dolomite, and chert formed during the early and middle Miocene. Events after deposition of the Stark Bay Formation are not well known.

The northern Carnarvon Basin and Northwest Shelf contain by far the most voluminous Tertiary sediment known from Western Australia: 3500 m is known from BOCAL's Scott Reef No. 1. A more usual maximum thickness is 2500 m. Most sediments were laid down in four episodes, separated by unconformities: late Paleocene‐early Eocene; middle‐late Eocene; late Oligocene‐middle Miocene; and late Miocene to Recent.

The Paleocene‐early Eocene cycle consists of about 100–200 m (up to 450 m in the north) of carbonate, shale, and marl of the Cardabia Group containing rich faunas of planktonic foraminifera.

The middle‐late Eocene sediments include diverse rock types. Marine and nonmarine sandstone formed in the Merlinleigh Trough. At the same time, the Giralia Calcarenite (fauna dominated by the large foraminifer Discocyclina) and unnamed, deeper water shale, marl, and carbonate (with rich planktonic foraminiferal faunas) formed in the ocean outside the embayment. Thickness is usually of the order of 100–200 m.

The main cycle of sedimentation is the late Oligocene‐middle Miocene, during which time the Cape Range Group of carbonates formed. This contains dominantly large foraminiferal faunas, of a wide variety of shallow‐water microfacies, but recent oil exploration farther offshore has recovered outer continental shelf facies with abundant planktonic foraminifera. A minor disconformity representing N7 and perhaps parts of N6 and N8 is now thought to be widespread within the Cape Range Group. The last part of this cycle resulted in sedimentation mainly of coarse calcareous marine sandstone (unnamed), and, in the Cape Range area, of the sandstone and calcareous conglomerate of the Pilgramunna Formation. Maximum thickness encountered in WAPET wells is 900 m.

After an unconformity representing almost all the late Miocene, sedimentation began again, forming an upper Miocene‐Recent carbonate unit which includes some excellent planktonic faunas. Thickness is up to 1100 m.

Thin marine sediments of the White Mountain Formation outcrop in the Bonaparte Gulf Basin. They contain some foraminifera and a Miocene age has been suggested.  相似文献   

2.
地震液化脉是地震作用引起的软沉积变形的重要构造之一,前人对脉体形态学和动力学做了大量的研究工作,但对其成因的微观地球化学行为研究较少。笔者采取开化裴岭脚剖面2期地震事件沉积的3套地震液化脉层样品21块,分别对其脉体和含脉体围岩做了微量元素分析。结果显示,液化脉中Cs、Ba、Th、Zr、Hf、Cr、Rb、Nb等反映陆源性质元素明显高于含脉体围岩,而Sr、Y、Ni反映海相沉积特征元素则表现为含脉体围岩高于脉体。通过对V、Mo富集度和微量元素特征参数Sr/Ba、Th/U等的综合研究,发现液化脉体表现为氧化环境,含脉体围岩为还原环境,且脉体和围岩均具有淡水作用特点。研究认为,早寒武世大陈岭期白云质灰岩沉积过程中有蚀源区陆源碎屑物的补入;在地震突发振动力作用下,富含水的软沉积层液化泄水,因化学沉积物和碎屑沉积物性质的差异,塑性碳酸盐沉积物随水部分流失,使得单位体积内碳酸盐沉积含量低于围岩,导致脉体中更富陆源物质;地震事件沉积层属潮上带,特别是地震液化泄水后期至成岩期,含地震液化脉沉积层曾暴露地表,受后期陆源物的再补给及大气降水淋滤蚀变作用影响,表现为古气候和古盐度异常,为浙西大陈岭组浅水沉积提供了地球化学的证据。  相似文献   

3.
Augen gneisses, mica schists, and marbles of the Menderes Massif and its sedimentary cover rocks are exposed south of the Gediz graben. The augen gneisses form the structurally lowest part of the studied lithological sequence, and are overlain by a schist complex. The structurally highest part is formed by a series of marbles. The ages of this lithological sequence range from Precambrian to Early Paleocene. Furthermore, this sequence records the tectonic evolution since the Precambrian. The sedimentary cover of the Menderes Massif consists of two groups of sediments from Early Miocene to Quaternary. The lower group, the Alayehir group, consists of Early- to mid-Miocene-aged fluvial and limnic sediments which form the lower and the upper parts, respectively. The Alayehir group is overlain by mainly fluvial sediments of the Gediz group. Both the Alayehir and the Gediz groups are separated by an angular unconformity. Six deformational phases could be distinguished within the metamorphic rocks of the Menderes Massif and its Tertiary cover. The structures which were interpreted to belong to deformational events predating the Paleocene are summarized as deformational phase D1. D1 structures were nearly completely overprinted by the subsequent deformation events. The second deformational phase D2 occurred between Early Eocene and Early Oligocene. D2 occurred contemporaneously with a Barrovian-type regional metamorphism. The third deformational phase D3 is characterized by folding of the axial planes which formed at the end of Early Oligocene. The deformational event D4 occurred during the Late Oligocene and is related to an extensional period. The deposition of the sedimentary rocks which belong to the Tertiary cover of the Menderes Massif that started in the Early Miocene was interrupted by a compressional phase (D5) during the Late Miocene. Sediments which were deposited since the Early Pliocene record structures which were related to a young extensional phase (D6). This extensional phase has continued to the Present.  相似文献   

4.
全球整个地史时期,特别是震旦纪以来沉积的沉积岩序列,不论是稳定地区,还是活动地区,几乎都是由大小不等的碎屑岩-碳酸盐岩旋回组成。碎屑岩-碳酸盐岩巨旋回主要受地外因素控制。较小的碎屑岩-碳酸盐岩旋回则主要受地球本身因素控制。稳定地区浅水沉积的碎屑岩-碳酸盐岩巨旋回主要受地外因素控制。活动地区或深水地区沉积的碎屑岩-碳酸盐岩巨旋回除受地外因素控制外,还与构造活动等地球本身因素有关。本文着重讨论碎屑岩-碳酸盐岩巨旋回是如何受地外因素控制的,希图能抛砖引玉。由于笔者水平和掌握的资料有限,谬误之处难免,敬希读者批评指正。  相似文献   

5.
Sedimentary rocks of the Solomon Islands-Bougainville Arc are described in terms of nine widespread facies. Four facies associations are recognised by grouping facies which developed in broadly similar sedimentary environments.A marine pelagic association of Early Cretaceous to Miocene rocks comprises three facies. Facies Al: Early Cretaceous siliceous mudstone, found only on Malaita, is interpreted as deep marine siliceous ooze. Facies A2: Early Cretaceous to Eocene limestone with chert, overlies the siliceous mudstone facies, and is widespread in the central and eastern Solomons. It represents lithified calcareous ooze. Facies A3: Oligocene to Miocene calcisiltite with thin tuffaceous beds, overlies Facies A2 in most areas, and also occurs in the western Solomons. This represents similar, but less lithified calcareous ooze, and the deposits of periodic andesitic volcanism.An open marine detrital association of Oligocene to Recent age occurs throughout the Solomons. This comprises two facies. Facies B1 is variably calcareous siltstone, of hemipelagic origin; and Facies B2 consists of volcanogenic clastic deposits, laid down from submarine mass flows.A third association, of shallow marine carbonates, ranges in age from Late Oligocene to Recent. Facies C1 is biohermal limestone, and Facies C2 is biostromal calcarenite.The fourth association comprises areally restricted Pliocene to Recent paralic detrital deposits. Facies D1 includes nearshore clastic sediments, and Facies D2 comprises alluvial sands and gravels.Pre-Oligocene pelagic sediments were deposited contemporaneously with, and subsequent to, the extrusion of oceanic tholeiite. Island arc volcanism commenced along the length of the Solomons during the Oligocene, and greatly influenced sedimentation. Thick volcaniclastic sequences were deposited from submarine mass flows, and shallow marine carbonates accumulated locally. Fine grained graded tuffaceous beds within the marine pelagic association are interpreted as products of this volcanism, suggesting that the Santa Isabel-Malaita-Ulawa area, where these beds are prevalent, was relatively close to the main Solomons chain at this time. A subduction zone may have dipped towards the northeast beneath this volcanic chain. Pliocene to Pleistocene calcalkaline volcanism and tectonism resulted in the emergence of all large islands and led to deposition of clastic and carbonate facies in paralic, shallow and deep marine environments.  相似文献   

6.
The Pb-Zn-ores of Minas de Cartes, Sierra de Cartagena, Spain, occur in a zon along the lower boundary of a Miocene sequence and along post-Miocene faults. Pebbly mudstone beds in the Miocene are slump sediments, which by their lithological properties form preferred horizons for the spreading of the mineralization. Faulting and flexuring have caused cavernous fault breccias in the relatively competent pebbly mudstones, while dissolution of carbonate pebbles and carbonates in the matrix of these rocks has resulted in solution cavities. The brecciated cavernous pebbly mudstones form channelways for ore solutions and sites of deposition of ore streaks with marcasite, pyrite, galena, sphalerite and quartz. The mineralization is of typical cavity-filling nature and so-called “ore pebbles” are fillings of pebble-shaped voids resulting from selective dissolution of carbonate pebbles. The ores were formed by near-surface subvolcanic-hydrothermal processes in relation with Late Tertiary trachyandesitic volcanism in the region.  相似文献   

7.
在建立苏北盆地层序地层格架的同时,研究了碳酸盐岩在其中的作用,提出了碳酸盐岩结核和团块的分布是识别层序地层界面和体系域标志;粒屑碳酸盐岩的沉积迁移也可作为识别不同体系域的重要标志;碳酸盐岩的序列变化是识别准层序,准层序组的标志;稳定分布的暗色细粒碳酸盐岩与泥岩的互层是识别凝缩层和最大湖泛面的标志,认为今后在层序地层分析中应充分发挥湖相碳酸盐岩特有的作用。  相似文献   

8.
During the Early Tertiary epoch a basin of deposition covered almost all the present Himalayan foot hill zone. Large quantities of detrital sediments were transported from the northern source area to the depositional basin. The rivers carrying the sediment load formed large delta complexes. In the area studied at least two such delta complexes, one around Kalka and the other around Nahan, were formed; of these the one around Kalka contains the greatest volume of sediments.

The recognition of the deltas is based on: (a) greater abundance of stream deposits than deposits of other environments; (b) lithologic criteria, particularly sedimentary structures, repetitive lithologic associations; (c) the general coarsening-upward nature of the sediments; (d) strong unimodal current direction; (e) the typical lenticular lithogenetic model, common in recent deltas.

The rocks of the Nahan Group are divisible into three formations at Kalka and two formations at Nahan where central formation did not develop. Himalayan tectonism has largely controlled both delta formation and stratigraphy.

The differential rates of sedimentation greatly influenced the rates of subsidence within the Nahan basin. The sediments of the Nahan Group are roughly bounded between two major phases of Himalayan uplift, namely Eocene and middle Miocene tectonic movements. The effects of intermittent tectonic pulses are well depicted in rocks of the Nahan Group. The intensity of the tectonism that controlled both the source-area rise and basin subsidence during deposition of the Nahan Group of sediments was nonuniform, both in vertical and lateral directions. Because of a generally higher rate of deposition compared to the rate of subsidence, the rocks of the Nahan group represent a normal regressive basin-filling sedimentation, forming thick detrital deposits due to progradation of younger deltas beyond the distal end of older deltas.  相似文献   


9.
近年来,混合沉积显示的沉积环境和油气地质意义越来越受到学界的重视。羌塘盆地是目前国内油气勘探最重要的战略选区之一,具有良好的油气勘探远景。研究区侏罗系广泛发育陆源碎屑与碳酸盐的混合沉积。综合前人研究成果、区域地质资料和室内样品分析,笔者对研究区广泛分布混合沉积的岩石学特征、沉积环境、成岩作用进行了详细地研究。研究发现:区内中侏罗统混合沉积表现为混积岩、混积层系两种形式;对岩性、层系及组合特征进行观察发现,它们主要形成于滨岸、碳酸盐岩缓坡、潮坪沉积环境,把混合沉积划分为4个三级地层层序,提高了地层划分的精度,建立了研究区中侏罗世雀莫错期、布曲期、夏里期的岩相古地理格局;混积岩中最显著的成岩作用类型有压实-压溶、胶结、破裂和溶蚀作用,其中以破裂作用、溶蚀作用最为发育,有利于形成优质储层,可为沉积储层预测及研究区的石油普查评价提供重要参考。  相似文献   

10.
巴西坎波斯(Campos)盆地石油地质特征与勘探有利区分析   总被引:1,自引:0,他引:1  
巴西坎波斯(Campos)盆地是南美洲大陆东缘的一个典型大西洋型被动大陆边缘型盆地。盆地经历了前裂谷→同裂谷→过渡→后裂谷(漂移)等4个演化阶段。盆地裂谷期发育的Lagoa Feia湖相黑色页岩为盆地主要的烃源岩,在始新世(52 Ma)时达到生油窗开始生油,在中新世(22~8 Ma)达到生油高峰。盆地主要发育上白垩统和第三系Carapebus浊积砂岩、下白垩统Macae组碳酸盐岩和Lagoa Feia组鲕粒灰岩以及前寒武系的Cabiunas组裂缝玄武岩等4套储集层。盆地过渡期发育的Alagoas组盐岩层是盆地良好的区域性盖层,第三系层间泥页岩为盆地局部层间盖层。以主要含油气储集层为核心,盆地可以划分出下部、中下部、中上部和上部等4套主要的油气成藏组合,其中上部Carapebus浊积砂岩体成藏组合内已发现的可采储量占盆地总可采储量的80%以上,是盆地最重要的成藏组合。未来盆地最具潜力的勘探领域为Campos断层以东的Carapebus成藏组合的浊积砂岩体和Lagoa Feia成藏组合渗透性的鲕粒灰岩。  相似文献   

11.
Integrated geoscientific datasets have contributed to an understanding of the Tertiary palaeovalleys once draining the Gawler Craton. Systematic investigations of both the shape and depth of the channels are based on interpretations from field exposures, a compendium of geological and drilling data, computer modelling of ancient landscapes, topographic and evaluated digital elevation models, remote sensing imagery, magnetics, seismic, gravity, airborne and transient electromagnetics, and radiometrics. Physical property contrasts that exist between the channel sediments and the underlying bedrock, for example, can be differentiated by geophysical methods to locate the incised‐valley thalweg. Evidence from sedimentology is combined with evidence from other geological and geophysical characteristics to arrive at a general reconstruction of palaeovalley architecture and history. The palaeovalleys were originally incised into the weathered pre‐Tertiary landscape of mostly weathered basement, and Tertiary fluvial, lacustrine, estuarine and even marine sediments accumulated during the Eocene and Miocene. Marine influence extended at least 100 km up the palaeovalleys during at least three major transgressions in the Eocene and Miocene intervals. Major sedimentary phases occurred in the Paleocene to Early Eocene, Middle to Late Eocene, Oligocene to Early Miocene, and Middle Miocene to Early Pliocene times.  相似文献   

12.
The Pre-Betic is the most northerly of the Alpine zones forming the Betic Cordilleras of southern Spain. It consists of strongly folded and faulted Mesozoic and Tertiary rocks, the oldest of which are ferruginous and gypsiferous Triassic mudstones, followed by a predominantly carbonate facies of Cretaceous, Palaeogene and Miocene age. Although this sequence is interrupted by a number of minor unconformities, the major structures were formed during the middle or late Miocene. The highly incompetent Triassic rocks are the most strongly deformed, and form diapiric intrusions discordant to regional structural trends in the younger rocks. The latter are essentially of two facies: massive competent limestones which are deformed by relatively simple folds of large wavelength, and highly incompetent marl-limestone interbeds with complex disharmonic folds and crush belts. Faults include low-angle and high-angle thrusts, gravity slides and wrench faults. The regional tectonic strike is ENE to NE, but the diapiric intrusions mostly follow WNW and N directions. These intrusions have pushed the younger rocks aside, the result being polyphase structures of several trends.Less intense post-Miocene tectonics are mostly associated with continued diapirism and have resulted in the folding and tilting of the late Miocene to Quaternary elastic sediments.  相似文献   

13.
The Tertiary volcanic rocks are widely exposed in the Sharab area of Taiz Governorate, southwestern Yemen. The Jurassic calcareous shale and black limestone deposits collected closely to theTertiary volcanic rocks were investigated to provide information regarding the thermal effects of Tertiary volcanic rocks on organic materials. The bulk geochemical results indicate that the analysed Jurassic deposits are organically lean with present-day TOC values less than 0.95% and very low HI values (< 50 mg HC/g TOC), with a predominantly Type IV kerogen (inert carbon). This is attributed to thermal effect on the original organic matter as indicated by high thermal maturity data, consistent with post-mature to metagenesis stage. The present study also suggests that the high thermal maturity of the Jurassic marine deposits is due to the presence of the alkali basalts which have invaded the Jurassic rocks during late Oligocene to early Miocene (~10 Ma). Thus, the heat flow caused by Tertiary basaltic rocks further increased the temperature level and led to metamorphosis of organic matter and converted it to graphitic materials (inert carbon).  相似文献   

14.
The Arunta Inlier is a 200 000 km2 region of mainly Precambrian metamorphosed sedimentary and igneous rock in central Australia. To the N it merges with similar rocks of lower metamorphic grade in the Tennant Creek Inlier, and to the NW it merges with schist and gneiss of The Granites‐Tanami Province. It is characterized by mafic and felsic meta‐igneous rocks, abundant silicic and aluminous metasediments and carbonate, and low‐ to medium‐pressure metamorphism. Hence, the Arunta Inlier is interpreted as a Proterozoic ensialic mobile belt floored by continental crust. The belt evolved over about 1500 Ma, and began with mafic and felsic volcanism and mafic intrusion in a latitudinal rift, followed by shale and limestone deposition, deformation, metamorphism and emergence. Flysch sedimentation and volcanism then continued in geosynclinal troughs flanking the ridge of meta‐igneous rocks, and were followed by platform deposition of thin shallow‐marine sediments, further deformation, and episodes of metamorphism and granite intrusion.  相似文献   

15.
Recent field mapping has refined our understanding of the stratigraphy and geology of southeastern Bohol, which is composed of a Cretaceous basement complex subdivided into three distinct formations. The basal unit, a metamorphic complex named the Alicia Schist, is overthrust by the Cansiwang mélange, which is, in turn, structurally overlain by the Southeast Bohol Ophiolite Complex. The entire basement complex is overlain unconformably by a ~2000 m thick sequence of Lower Miocene to Pleistocene carbonate and clastic sedimentary rocks and igneous units. Newly identified lithostratigraphic units in the area include the Cansiwang mélange, a tectonic mélange interpreted as an accretionary prism, and the Lumbog Volcaniclastic Member of the Lower Miocene Carmen Formation. The Cansiwang mélange is sandwiched between the ophiolite and the metamorphic complex, suggesting that the Alicia Schist was not formed in response to emplacement of the Southeast Bohol Ophiolite Complex. The accretionary prism beneath the ophiolite complex and the presence of boninites suggest that the Southeast Bohol Ophiolite Complex was emplaced in a forearc setting. The Southeast Bohol Ophiolite Complex formed during the Early Cretaceous in a suprasubduction zone environment related to a southeast‐facing arc (using present‐day geographical references). The accretion of this ophiolite complex was followed by a period of erosion and then later by extensive clastic and carbonate rock deposition (Carmen Formation, Sierra Bullones Limestone and Maribojoc Limestone). The Lumbog Volcaniclastic Member and Jagna Andesite document intermittent Tertiary volcanism in southeastern Bohol.  相似文献   

16.
Eastern Venezuela is divided into three geologic-geographic provinces: The Guayana shield in the south; the Eastern Venezuelan basin in the central part; and the mountains of the Serranía del Interior and Cordillera de la Costa (Caribbean Cordillera) in the northern part. The stratigraphy and geological history are discussed, as reflected by rocks of presumably pre-Cambrian, ? Triassic-Jurassic, Cretaceous, Tertiary and Quaternary ages. From the Cretaceous onward, Eastern Venezuela north of the Guayana shield and east of the El BaÚl swell, forms part of a geosyncline, the axis of which shifted southward during its history. The position of this axis governed deposition and character of the sediments, which become more marine from south to north and from west to east. Orogenic and epeirogenic movements, particularly during Miocene and Pliocene time, transformed the Eastern Venezuelan sedimentary basin into two structural basins, namely the Maturín basin on the east and the Guárico basin on the west.  相似文献   

17.
Anomalously saline waters in Ocean Drilling Program Holes 1127, 1129, 1130, 1131 and 1132, which penetrate southern Australian slope sediments, and isotopic analyses of large benthic foraminifera from southern Australian continental shelf sediments, indicate that Pleistocene–Holocene meso‐haline salinity reflux is occurring along the southern Australian margin. Ongoing dolomite formation is observed in slope sediments associated with marine waters commonly exceeding 50‰ salinity. A well‐flushed zone at the top of all holes contains pore waters with normal marine trace element contents, alkalinities and pH values. Dolomite precipitation occurs directly below the well‐flushed zone in two phases. Phase 1 is a nucleation stage associated with waters of relatively low pH (ca 7) caused by oxidation of H2S diffusing upward from below. This dolomite precipitates in sediments < 80 m below the sea floor and has δ13C values consistent with having formed from normal sea water (? 1‰ to + 1‰ Vienna Pee Dee Belemnite). The Sr content of Phase 1 dolomite indicates that precipitation can occur prior to substantial metastable carbonate dissolution (< 300 ppm in Holes 1129 and 1127). Dolomite nucleation is interpreted to occur because the system is undersaturated with respect to the less stable minerals aragonite and Mg‐calcite, which form more readily in normal ocean water. Phase 2 is a growth stage associated with the dissolution of metastable carbonate in the acidified sea water. Analysis of large dolomite rhombs demonstrates that at depths > 80 m below the sea floor, Phase 2 dolomite grows on dolomite cores precipitated during Phase 1. Phase 2 dolomite has δ13C values similar to those of the surrounding bulk carbonate and high Sr values relative to Phase 1 dolomite, consistent with having formed in waters affected by aragonite and calcite dissolution. The nucleation stage in this model (Phase 1) challenges the more commonly accepted paradigm that inhibition of dolomitization by sea water is overcome by effectively increasing the saturation state of dolomite in sea water.  相似文献   

18.
“源热共控”中国近海盆地油气田“内油外气”有序分布   总被引:4,自引:0,他引:4  
源热共控油气形成,烃源岩是油气形成的内因,热是油气形成的外因,内因和外因缺一不可,二者耦合作用控制了含油气区内油气的形成、资源潜力与分布模式。中国近海沉积盆地主要属于新生代伸展盆地或张扭盆地,古近纪发生裂陷,早—中中新世发生区域性热沉降,晚中新世以来新构造活动在多数盆地比较活跃。中国近海新生代盆地烃源岩主要形成于古近纪...  相似文献   

19.
The Middle to Late Eocene Mangahewa Formation of Taranaki Basin, New Zealand, has been evaluated in terms of organic matter abundance, type, thermal maturity, burial history, and hydrocarbon generation potential. Mangahewa Formation reflects the deposition of marine, marginal marine, shallow marine, and terrestrial strata due to alternative transgressive and regressive episodes in Taranaki Basin. The sediments of the Mangahewa Formation contain type II (oil prone), types II–III (oil-gas prone), and type III kerogens (gas prone), with hydrogen index values ranging from 58 to 490 mg HC/g total organic content (TOC). Vitrinite reflectance data ranging between 0.55 and 0.8 %Ro shows that the Mangahewa Formation is ranging from immature to mostly mature stages for hydrocarbon generation. Burial history and hydrocarbon generation modeling have been applied for two wells in the study area. The models have been interpreted that Mangahewa Formation generated oil in the Mid Miocene and gas during Middle to Late Miocene times. Interpretations of the burial models confirm that hydrocarbons of Mangahewa Formation have not yet attained peak generation and are still being expelled from the source rock to present.  相似文献   

20.
库泰盆地是印度尼西亚最大、最深的第三系含油气盆地,也是该国最主要的产油气盆地。盆地经历了断陷期、拗陷期和反转期三个发育阶段,充填的第三系沉积物厚度达14 km。盆地发育四套烃源岩,其中,中中新统三角洲平原煤和三角洲前缘碳质泥岩是滨浅海区有效烃源岩,上中新统富含碳质碎屑浊积岩是深水区有效烃源岩;油气纵向上主要富集于中中新统、上中新统及上新统,平面上主要富集于背斜构造中。综合分析认为,深海平原区上中新统斜坡扇、盆底扇砂岩是下库泰盆地潜在勘探领域,渐新统—下中新统是三马林达复背斜带有利勘探领域,始新统盆地边缘上超尖灭砂体是上库泰盆地潜在勘探领域,始新统—中新统台地生物礁是库泰盆地深层潜在勘探领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号