首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Fault kinematic analysis and inversion of focal mechanisms of shallow earthquakes reveal significant evolution of the regional stress regime in the northeastern most corner of the Eastern Mediterranean region since the Mio-Pliocene to the present time. This study was carried out in the interaction area between the Arabian/African plates and the Anatolian block. The evolution of stress regimes consists of a change from older transpression to younger transtension. Both strike-slip stress regimes having a NNW- to northwest-trending σHmax (σ1) and ENE- to northeast-trending σHmin (σ3) axes induce a sinistral component of displacement on the major intra-continental Karatas–Osmaniye and Misis–Ceyhan faults elongated with the northeast-trending Misis Range between Adana and Osmaniye provinces (sub-area i) and by a NNE-trending plate boundary Amanos fault running along Amanos Range between Antakya and Kahramanmaras provinces (sub-area ii). The inversion results show that the transtensional stress regime is dominantly strike-slip to extension, with an ENE- to northeast-trending σHmin (σ3) axis for sub-areas (i) and (ii), respectively. The inversions of earthquake focal mechanisms indicate that the transtensional stress regime is still active in the whole study area since probably recent Quaternary time. To cite this article: S. Over et al., C. R. Geoscience 336 (2004).  相似文献   

2.
Klaus-G. Hinzen   《Tectonophysics》2003,377(3-4):325-356
Fault plane solutions (FPS) from 110 earthquakes in the northern Rhine area with local magnitudes, ranging from 1.0 to 6.1, and occurring between 1976 and 2002 are determined. FPS are retrieved from P-wave first motions using a grid search approach allowing a detailed exploration of the parameter space. The influence of the 1D velocity model on take-off angles and resulting FPS is examined. All events were relocated with a recently developed minimum 1D model of the velocity structure [J. Geophys. Res. (2003)]. Rose diagrams of the orientation of P, T and B axes show a clear preference of trends of P and T axes at N292°E and N27°E, respectively. The majority of B axes trend in northerly directions. Plunges of P and T axes are mostly around 45° while most B axes are subhorizontal. The main direction of the maximum horizontal stress directly inferred from the fault plane solutions is N118°E.To calculate the orientations of the principal stress axes and the shape of the stress tensor, the inversion method of Gephard and Forsyth [J. Geophys. Res. 89 (1984) 9305] was applied to the whole data set and to several subsets of data. The subsets were formed by grouping events from various geological and tectonic areas and by grouping events into different depth ranges. The subset areas include the Lower Rhine Embayment, the Rhenish Massif, the middle Rhine area, the Neuwied Basin and the area known as the Stavelot–Venn Massif. Inversion of the entire data set shows some ambiguity between a strike-slip and extensional stress regime, with a vertical axis for the medium principal stress and a trend of N305°E and N35°E for the σ1 and σ3 axis, respectively, as the best fitting tensor. Earthquakes from the Lower Rhine Embayment and, to some degree, from the middle Rhine area indicate an extensional stress regime. In the Lower Rhine Embayment, plunge and trend of the σ1 axis are 76° and N162°E and for the σ3 axis 7° and N42°E. The best fitting solution for the area of the Stavelot–Venn Massif is a strike-slip regime with subhorizontal σ1 and σ3 axes with a trend of N316°E and N225°E, respectively. Stress orientations found here agree overall with the results from earlier studies based on smaller data sets. The directions of the maximum and minimum horizontal stresses inverted from focal mechanisms agree well with the stress field predicted by the European Stress Map. This confirms earlier interpretations that the stress field of the Rhine Graben system is controlled by plate driving forces acting on the plate boundaries. However, amplitudes of the stresses change on a local scale and with depth. Estimates of the absolute magnitude of principal stresses favor a normal faulting regime in the shallow crust (above 12-km depth) and a strike-slip regime in the lower crust.  相似文献   

3.
Kinematic analysis of fault slip data for stress determination was carried out on Late Miocene to Quaternary rocks from the fore arc and intra-arc regions of the Chilean Andes, between 33° and 46° south latitudes. Studies of Neogene and Quaternary infilling (the Central Depression), as well as plutonic rocks of the North Patagonian Batholith along the Liquiñe–Ofqui Fault Zone, have revealed various compressional and/or transpressional states of stress. In the Pliocene, the maximum compressional stress (σ1) was generally oriented east–west. During the Quaternary, the deformation was partitioned into two coeval distinctive states of stress. In the fore arc zone, the state of stress was compressional, with σ1 oriented in a N–S to NNE–SSW direction. In the intra-arc zone the state of stress was transpressional with σ1 striking NE–SW. Along the coast, in one site (37°30′S) the Quaternary strain deformation is extensional, with an E–W direction, which can be explained by a co-seismic crustal bending readjustment.  相似文献   

4.
The east–west-trending North Anatolian Fault makes a 17° bend in the western Marmara region from a mildly transpressional segment to a strongly transtensional one. We have studied the changes in the morphology and structure around this fault bend using digital elevation models, field structural geology, and multi-channel seismic reflection profiles. The transpression is reflected in the morphology as the Ganos Mountain, a major zone of uplift, 10 km wide and 35 km long, elongated parallel to the transpressional Ganos Fault segment west of this bend. Flat-lying Eocene turbidites of the Thrace Basin are folded upwards against this Ganos Fault, forming a monocline with the Ganos Mountain at its steep southern limb and the flat-lying hinterland farther north at the flat limb. The sharp northern margin of the Ganos Mountain coincides closely with the monoclinal axis. The strike of the bedding, and the minor and regional fold axes in the Eocene turbidites in Ganos Mountain are parallel to the trace of the Ganos Fault indicating that these structures, as well as the morphology, have formed by shortening perpendicular to the North Anatolian Fault. The monoclinal structure of Ganos Mountain implies that the North Anatolian Fault dips under this mountain at 50°, and this ramp terminates at a decollement at a calculated depth of 8 km. East of this fault bend, the northward dip of the North Anatolian Fault is maintained but it has a normal dip-slip component. This has led to the formation of an asymmetric half-graben, the Tekirdağ Basin in the western Sea of Marmara, containing a thickness of up to 2.5 km of Pliocene to Recent syn-transform sediments. As the Ganos uplift is translated eastwards from the transpressional to the transtensional zone, it undergoes subsidence by southward tilting. However, a morphological relic of the Ganos uplift is maintained as the steep northern submarine slope of the Tekirdağ Basin. The minimum of 3.5 km of fault-normal shortening in the Ganos Mountain, and the minimum of 40 km eastward translation of the Ganos uplift indicate that the present fault geometry has existed for at least the last 2 million years.  相似文献   

5.
The Iberian Peninsula and the Maghreb experience moderate earthquake activity and oblique,  NW–SE convergence between Africa and Eurasia at a rate of  5 mm/yr. Coeval extension in the Alboran Basin and a N35°E trending band of active, left-lateral shear deformation in the Alboran–Betic region are not straightforward to understand in the context of regional shortening, and evidence complexity of deformation at the plate contact. We estimate 86 seismic moment tensors (MW 3.3 to 6.9) from time domain inversion of near-regional waveforms in an intermediate period band. Those and previous moment tensors are used to describe regional faulting style and calculate average stress tensors. The solutions associated to the Trans-Alboran shear zone show predominantly strike-slip faulting, and indicate a clockwise rotation of the largest principal stress orientation compared to the regional convergence direction (σ1 at N350°E). At the N-Algerian and SW-Iberian margins, reverse faulting solutions dominate, corresponding to N350°E and N310°E compression, respectively. Over most of the Betic range and intraplate Iberia, we observe predominately normal faulting, and WSW–ENE extension (σ3 at N240°E). From GPS observations we estimate that more than 3 mm/yr of African (Nubian)–Eurasian plate convergence are currently accommodated at the N-Algerian margin,  2 mm/yr in the Moroccan Atlas, and  2 mm/yr at the SW-Iberian margin. 2 mm/yr is a reasonable estimate for convergence within the Alboran region, while Alboran extension can be quantified as  2.5 mm/yr along the stretching direction (N240°E). Superposition of both motions explains the observed left-lateral transtensional regime in the Trans-Alboran shear zone. Two potential driving mechanisms of differential motion of the Alboran–Betic–Gibraltar domain may coexist in the region: a secondary stress source other than plate convergence, related to regional-scale dynamic processes in the upper mantle of the Alboran region, as well as drag from the continental-scale motion of the Nubian plate along the southern limit of the region. In the Atlantic Ocean, the  3.5 mm/yr, westward motion of the Gibraltar Arc relative to intraplate Iberia can be accommodated at the transpressive SW-Iberian margin, while available GPS observations do not support an active subduction process in this area.  相似文献   

6.
In southern Turkey ongoing differential impingement of Arabia into the weak Anatolian collisional collage resulting from subduction of the Neotethyan Ocean has produced one of the most complex crustal interactions along the Alpine–Himalayan Orogen. Several major transforms with disputed motions, including the northward extension of the Dead Sea Fault Zone (DSFZ), meet in this region. To evaluate neotectonic motion on the Amanos and East Hatay fault zones considered to be northward extensions of the DSFZ, the palaeomagnetism of volcanic fields in the Karasu Rift between these faults has been studied. Remanence carriers are low-Ti magnetites and all except 5 of 51 basalt lavas have normal polarity. Morphological, polarity and K–Ar evidence show that rift formation occurred largely during the Brunhes chron with volcanism concentrated at 0.66–0.35 Ma and a subsidiary episode at 0.25–0.05. Forty-four units of normal polarity yield a mean of D/I=8.8°/54.7° with inclination identical to the present-day field and declination rotated clockwise by 8.8±4.0°. Within the 15-km-wide Hassa sector of the Karasu Rift, the volcanic activity is concentrated between the Amanos and East Hatay faults, both with left lateral motions, which have rotated blocks bounded by NW–SE cross faults in a clockwise sense as the Arabian Block has moved northwestwards. An average lava age of 0.5 Ma yields a minimum cumulative slip rate on the system bounding faults of 0.46 cm/year according with the rate deduced from the Africa–Arabia Euler vector and reduced rates of slip on the southern extension of the DSFZ during Plio-Quaternary times. Estimates deduced from offsets of dated lavas flows and morphological features on the Amanos Fault Zone [Tectonophysics 344 (2002) 207] are lower (0.09–0.18 cm/year) probably because they are limited to surface fault breaks and do not embrace the seismogenic crust.Results of this study suggest that most strike slip on the DSFZ is taken up by the Amanos–East Hatay–Afrin fault array in southern Turkey. Comparable estimates of Quaternary slip rate are identified on other faults meeting at an unstable FFF junction (DSFZ, East Anatolian Fault Zone, Karatas Fault Zone). A deceleration in slip rate across the DSFZ and its northward continuation during Plio-Quaternary times correlates with reorganization of the tectonic regime during the last 1–3 Ma including tectonic escape within Anatolia, establishment of the North and East Anatolian Fault Zones bounding the Anatolian collage in mid–late Pliocene times, a contemporaneous transition from transpression to transtension and concentration of all basaltic magmatism in this region within the last 1 Ma.  相似文献   

7.
The phreatic activity and the subsequent dacitic dome growth in 1998–1999 at Guagua Pichincha volcano, Ecuador, were associated with two seismic swarms: one located in the northern part of Quito (population: 1,500,000) and another one, just below the active volcano, about 15–20 km SW from the first one. Quito swarm tectonic events have high frequencies (from 1 to 10–15 Hz). We registered more than 3200 events (among which 2354 events of 1.4≤ML≤4.2) between June 1998 and December 1999 at the −2- and −17-km depth. The volcanic events below the Guagua Pichincha caldera have high (from 1 to 10–15 Hz) and low (less than 3 Hz) frequencies. Approximately, 130,000 events were registered between September 1998 and December 1999 at the +2.4- and −3.5-km depth. Here, we study the stress tensors of these two swarms deduced from the polarities of P first motions and compare them to the regional stress tensor deduced from CMT Harvard focal mechanisms. The Quito swarm stress tensor is relatively close to the regional stress tensor (the σ1 axis was oriented N117°E close to the N102°E direction of the plate motion found by the GPS measurement, and σ3 is nearly vertical). The difference may be due to the action of the closely active Guagua Pichincha volcano. The Guagua Pichincha stress tensor is very different from the regional tectonic one. The σ1 axis of the volcano is oriented N214°E, almost perpendicular to the σ1 of the swarm of Quito and σ3 is almost horizontal. Even if these two tensors are different, they can be explained in a more general tectonic scheme. The almost horizontal direction of σ3 just below the volcano is compatible with an extensional horizontal direction that may be expected in the shallow extrados part of a compressional region and consistent with an opening of the top of the Guagua Pichincha volcano. The movement of the fluids (magma, gas and/or groundwater) produced by the closely active Guagua Pichincha volcano seems to have an influence in the acceleration of the generation of seismic events.  相似文献   

8.
L. Faenza  S. Pierdominici   《Tectonophysics》2007,439(1-4):13-31
We present two examples of statistical analysis of seismicity conducted by integrating geological, geophysical and seismological data with the aim to characterize the active stress field and to define the spatio-temporal distribution of large earthquakes. Moreover, our data will help to improve the knowledge of the “seismogenic behavior” of the areas and to provide useful information for seismic hazard evaluation.The earthquakes are described by two non-parametric statistical procedures integrating also tectonic-physical parameters to study the spatio-temporal variability.The results show that the areas are characterized by: 1) a stress regime with mainly extensional kinematics; 2) tectonic structures mainly oriented with the active stress field (Shmin = N44° ± 18° in the southern Apennines and Shmin = N50° ± 17° in the central Apennines); 3) cluster distribution of seismicity and 4) a high probability of earthquake occurrence (M > 5.5) in the next 10 years.  相似文献   

9.
The Zagros fold-and-thrust belt of SW-Iran is among the youngest continental collision zones on Earth. Collision is thought to have occurred in the late Oligocene–early Miocene, followed by continental shortening. The High Zagros Belt (HZB) presents a Neogene imbricate structure that has affected the thick sedimentary cover of the former Arabian continental passive margin. The HZB of interior Fars marks the innermost part of SE-Zagros, trending NW–SE, that is characterised by higher elevation, lack of seismicity, and no evident active crustal shortening with respect to the outer (SW) parts. This study examines the brittle structures that developed during the mountain building process to decipher the history of polyphase deformation and variations in compressive tectonic fields since the onset of collision. Analytic inversion techniques enabled us to determine and separate different brittle tectonic regimes in terms of stress tensors. Various strike–slip, compressional, and tensional stress regimes are thus identified with different stress fields. Brittle tectonic analyses were carried out to reconstruct possible geometrical relationships between different structures and to establish relative chronologies of corresponding stress fields, considering the folding process. Results indicate that in the studied area, the main fold and thrust structure developed in a general compressional stress regime with an average N032° direction of σ1 stress axis during the Miocene. Strike–slip structures were generated under three successive strike–slip stress regimes with different σ1 directions in the early Miocene (N053°), late Miocene–early Pliocene (N026°), and post-Pliocene (N002°), evolving from pre-fold to post-fold faulting. Tensional structures also developed as a function of the evolving stress regimes. Our reconstruction of stress fields suggests an anticlockwise reorientation of the horizontal σ1 axis since the onset of collision and a significant change in vertical stress from σ3 to σ2 since the late stage of folding and thrusting. A late right-lateral reactivation was also observed on some pre-existing belt-parallel brittle structures, especially along the reverse fault systems, consistent with the recent N–S plate convergence. However, this feature was not reflected by large structures in the HZB of interior Fars. The results should not be extrapolated to the entire Zagros belt, where the deformation front has propagated from inner to outer zones during the younger events.  相似文献   

10.
Khalil Sarkarinejad   《Tectonophysics》2007,442(1-4):49-65
The Ghouri area in southwest Iran exposes a cross section through the Zagros orogenic belt. The area provides an opportunity to investigate quantitative finite strain (Rs), kinematic vorticity number (Wk), proportions of pure shear and simple shear components, sense of shear indicators, steeply plunging lineations, and other moderate to steeply plunging stretching lineations in a transpressional zone. Based on a classical strain analysis of deformed microfossils with oblate strain ellipsoid shape, the Zagros orogenic belt is classified as a pure-shear dominated zone of transpression, but asymmetry of shear-sense indicators suggests that a significant component of simple shear was involved along the deformation zone boundaries. The long axes of the microfossils and stretched pebbles of a deformed conglomerate were used to indicate the stretching direction in this zone. The stretching lineations have a steep to moderate plunge but a constant strain magnitude. Characteristics of dextral inclined transpressional kinematics in the Zagros continental collision zone were quantified and indicate an estimated k-value < 1, an angle between the maximum horizontal axis of the instantaneous strain ellipsoid and the zone boundary (θ = 32°), asymmetrical dextral shear-sense indicators, and an angle of relative plate motion (α = 25°).  相似文献   

11.
The Mascot–Jefferson City (M-JC) Mississippi Valley-type (MVT) deposits are in the Valley and Ridge province of the Appalachian orogen in East Tennessee. They have been a major source of zinc for the USA but their age is uncertain and thus their genesis controversial. About 10 specimens from each of 37 sites have been analysed paleomagnetically using alternating field and thermal step demagnetisation methods and saturation isothermal remanence methods. The sites sample limestones, dolostones, breccia clasts and sphalerite–dolomite MVT mineralisation from mines in the Lower Ordovician Kingsport and Mascot formations of the Knox Group. The characteristic remanent magnetisation (ChRM) is carried by magnetite in the limestones, by both magnetite and pyrrhotite in the dolostones and by pyrrhotite preferentially to magnetite in the mineralisation. Mineralized sites have a more intense ChRM than non-mineralised, indicating that the mineralising and magnetisation event are coeval. Paleomagnetic breccia tests on clasts at the three sites are negative, indicating that their ChRM is post-depositional remagnetisation, and a paleomagnetic fold test is negative, indicating that the ChRM is a remagnetisation, and a post-dates peak Alleghanian deformation. The unit mean ChRM direction for the: (a) limestones gives a paleopole at 129°E, 12°N (dp=18°, dm=26°, N=3), indicating diagenesis formed a secondary chemical remanent magnetisation during the Late Ordovician–Early Silurian; (b) dolomitic limestones and dolostone host rocks gives a paleopole at 125.3°E, 31.9°N (dp=5.3°, dm=9.4°, N=7), recording regional dolomitisation at 334±14 Ma (1σ); and (c) MVT mineralisation gives a paleopole at 128.7°E, 34.0°N (dp=2.4°, dm=4.4°, N=25), showing that it acquired its primary chemical remanence at 316±8 Ma (1σ). The mineralisation is interpreted to have formed from hydrothermal fluid flow, either gravity or tectonically driven, after peak Alleghanian deformation in eastern Tennessee with regional dolomitisation of the host rocks occurring as part of a continuum during the 20 Ma prior to and during peak deformation.  相似文献   

12.
Katsuyuki Abe   《Tectonophysics》1975,27(3):223-238
The source mechanism of the Saitama earthquake (36.07°N,139.40°E, Ms = 5.4) of July 1, 1968, is studied on the basis of P-wave first motion, aftershock, long-period surface-wave data and low-magnification long-period seismograms recorded in the nearfield. A precise location of the aftershocks is made using P and S—P time data obtained by a micro-earthquake observatory network. The synthetic near-field seismograms based on the Haskell model are directly compared with the observed near-field seismograms for wave form and amplitude to determine the dynamic fault parameters. The results obtained are as follows: source geometry, reverse dip slip with considerable right-lateral strike-slip component; dip direction, N6°E; dip angle 30°; fault dimension, 10 × 6 km2; rupture velocity, 3.4 km/sec in the direction S30°E; average dislocation, 92 cm; average dislocation velocity, 92 cm/sec; seismic moment, 1.9 · 1025 dyn-cm; stress drop, 100 bar. The effective stress is about the same as the stress drop. For major earthquakes in the Japanese Islands, the dislocation velocity, .D, is found to be proportional to the stress drop, σ. This relation can be expressed by .D - (β/μ)σ, where β is the shear velocity and μ is the rigidity. This result has an importance in engineering seismology because the stress drop scales the seismic motion in the vicinity of an earthquake fault.  相似文献   

13.
We estimated the stress fields of the aftershocks of the 2000 western Tottori earthquake (Mw 6.6) and the northern Hyogo swarm (max Mw 5.2) by a stress tensor inversion of moment tensor solutions reported from the National Research Institute for Earth Science and Disaster Prevention (Japan). The maximum principal stress direction of the western Tottori sequence was estimated as N107°E with a strike–slip regime. In the northern Hyogo swarm, the orientations of the principal stress directions could not be well constrained by the observed data, but after examining the detailed characteristics of the solution, we obtained a most probable solution of N113°E for the σ1 direction. These solutions are consistent with the maximum horizontal directions roughly estimated from the strike directions of large earthquakes occurring geographically between these two seismic activities. We measured the angle between each fault–slip direction and maximum principal stress direction to investigate the frictional properties of earthquakes. The distribution of the angles was forward modeled to estimate the coefficient of friction and the stress ratio, assuming uniformly distributed fault orientations. For the western Tottori sequence, a homogeneous stress field with a coefficient of friction less than 0.4 was estimated. A high stress level was also suggested because very little change occurred in the stress field during the mainshock. For the northern Hyogo sequence, the coefficient of friction was estimated to be between 0.5 and 1.0.  相似文献   

14.
In the early morning hours on Wednesday November 08, 2006 at 04:32:10(GMT) a small earthquake of ML 4.1 has occurred at southeast Beni-Suef, approximately 160 km SEE of Cairo, northern Egypt. The quake has been felt as far as Cairo and its surroundings while no casualties were reported. The instrumental epicentre is located at 28.57°N and 31.55°E. Seismic moment is 1.76 E14 Nm, corresponding to a moment magnitude Mw 3.5. Following a Brune model, the source radius is 0.3 km with an average dislocation of 1.8 cm and a 2.4 MPa stress drop. The source mechanism from a first motion fault plane solution shows a left-lateral strike-slip mechanism with a minor dip-slip component along fault NNW striking at 161°, dipping 52° to the west and rake −5°. Trend and plunging of the maximum and minimum principle axes P/T are 125°, 28°, 21°, and 23°, respectively. A comparison with the mechanism of the October, 1999 event shows similarities in faulting type and orientation of nodal planes.Eight small earthquakes (3.0  ML < 5.0) were also recorded by the Egyptian National Seismological Network (ENSN) from the same region. We estimate the source parameters and fault mechanism solutions (FMS) for these earthquakes using displacement spectra and P-wave polarities, respectively. The obtained source parameters including seismic moments of 4.9 × 1012–5.04 × 1015 Nm, stress drops of 0.2–4.9 MPa and relative displacement of 0.1–9.1 cm. The azimuths of T-axes determined from FMS are oriented in NNE–SSW direction. This direction is consistent with the present-day stress field in Egypt and the last phase of stress field changes in the Late Pleistocene, as well as with recent GPS measurements.  相似文献   

15.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

16.
The northernmost Kamchatka Peninsula is located along the northwestern margin of the Bering Sea and consists of complexly deformed accreted terranes. Progressing inland from the northwestern Bering Sea, the Olyutorskiy, Ukelayat and Koryak superterranes (OLY, UKL and KOR) are crossed. These terranes were accreted to the backstop Okhotsk-Chukotsk volcanic-plutonic belt (OChVB) in northernmost Kamchatka. A sedimentary sequence of Albian to Maastrichtian age overlaps the terranes and units of the Koryak superterrane, and constrains their accretion time. A paleomagnetic study of blocks within the Kuyul (KUY) terrane of the Koryak superterrane was completed at two localities (Camp 2: λ=61.83°N, φ=165.83°E and Camp 3: λ=61.67°N, φ=164.75°E). At both localities, paleomagnetic samples were collected from Late Triassic (225–208 Ma) limestone blocks (2–10 m in outcrop height) within a melange zone. Although weak in remanent magnetization, two components of remanent magnetization were observed during stepwise thermal demagnetization at 32 sites. The A component of magnetization was observed between room temperature and approximately 250 °C. This magnetic component is always of downward directed inclination and shows the best grouping at relatively low degrees of unfolding. Using McFadden–Reid inclination-only statistics and averaging all site means, the resulting A component mean is Iopt=60.3°, I95=5.0° and n=36 (sites). The B magnetic component is observed up to 565 °C, at which temperature, most samples have no measurable remanent magnetization, or growth of magnetic minerals has disrupted the thermal demagnetization process. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, where bedding orientation differs within a block, most of these sites show the best grouping of B component directions at 100% unfolding, and two of the blocks display remanent magnetizations of both upward and downward directed magnetic inclination. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, the resulting overall B component paleolatitude and associated uncertainty are λobs=30.4°N or S, λ95=8.9° and n=19 (sites). When compared with the expected North America paleolatitude of λAPWP expected=57.9°N, our data support a model in which blocks within the Koryak superterrane are allochthonous and far travelled.  相似文献   

17.
The Bou Madine ore deposit is located SW of Jbel Ougnat, the easternmost inlier of the Anti-Atlas Pan-African belt in Morocco. The host rocks are high-K calc-alkaline volcanic rocks, that are part of the Neoproterozoic Tamerzaga-Timrachine Formation (TTF, lower PIII). The TTF consists of ignimbrites of rhyolitic to dacitic compositions, andesite flows and hypovolcanic bodies (andesite dykes and rhyolite chonoliths) emplaced along N160°E tension gashes associated with a regional N30°E sinistral fault system. The mineralization is related to a high enthalpy geothermal system, eventually evolving into a low temperature epithermal system. A regional propylitisation (T around 260 °C) overprinted the TTF rocks prior to the emplacement of the mineralization. There were two main hydrothermal stages. During the first stage, massive veins with pyrite, arsenopyrite and minor pyrrhotite and cassiterite were formed. The veins were emplaced along N160°E-trending en echelon joints related to N120°E dextral arrays. A quartz-sericite-pyrite alteration overprinted the propylites around the veins (“bleached haloes”), at temperatures up to 300–310 °C. The second stage of mineralization was coeval with dextral re-activation of the N160°E veins, in relation with a NE-ward shift of the shortening direction. First, polymetallic sulphides (sphalerite, chalcopyrite, stannite, galena) were deposited at temperatures 260 °C. Younger quartz veinlets contain arsenopyrite and minor micrometre-size sulphides and sulpho-salts, hosting the precious metals. This was the low temperature epithermal stage (≈150 °C), in relation with invading meteoric water.  相似文献   

18.
Based on studies of images obtained from LANDSAT-1 and 2, several seemingly active movement zones have been delineated in a section of the eastern Alps and are being reported in the present paper for the first time. These zones, trending W—E to NW—SE, cut across all earlier Alpine boundaries and contacts and on either side along their length, are marked with drag effects, indicating their post-Alpine neotectonic nature. Their relation with the present-day central European stress field, as determined from fault-plane studies and in-situ stress measurements, has been sought. In conjunction with the evidence from neighbouring areas, a dextral shear tendency of the present-day Mediterranean is indicated. Further, a number of extensive lineaments have been observed in the Alpine section. Statistically, there are three major lineation sets trending N45°, N15°, N345°. They appear to have developed cogenetically as a result of shear and tensile failures due to a stress field with maximum principal stress oriented averagely at N15°. This direction of the maximum principal stress, deduced from the above lineation analysis of the eastern Alps, is in striking conformity with the one believed to have been in existence for the development of the Rhinegraben (N20°). It appears that the Rhinegraben and the Alpide belt have evolved cogenetically and concurrently under the same dominant stress field (P1 = NNNE, P2 = vertical and P3 = EESE) and hence the two geotectonic features are really not antagonistic and mutually incompatible as usually believed on the grounds that one involves tension (taphrogenesis — Rhinegraben) and the other compression (orogenesis — Alpide belt) but are different manifestations of the same stress field. Besides, some additional light has been thrown on the possible controls of development of the Giudicaria Line and cause of predominance of NE—SW trending sinistral faults.  相似文献   

19.
C.T. Klootwijk   《Tectonophysics》1974,21(3):181-195
From alternating-field and thermal demagnetization studies on two dolerite “Traps” in the Gwalior Series (Central India), dated at 1830 ±200 m.y., three different palaeomagnetic directions could be distinguished. The characteristic magnetization component, which is considered as the primary magnetization, has a mean direction: D=78°, I=+34.5°, α95=5°, k=369, N=4 (Pole): 155.5°E19°N, dp=3°, dm=5.5°.A comparison of the presented data with other Precambrian and Phanerozoic data from the Indian subcontinent might suggest that the Indian subcontinent underwent a continuous anticlockwise rotational movement during the last 1800 m.y.  相似文献   

20.
The Curitiba Basin, Paraná, lies parallel to the west side of the Serra do Mar range and is part of a continental rift near the Atlantic coast of southeastern Brazil. It bears unconsolidated and poorly consolidated sediments divided in two formations: the lower Guabirotuba Formation and the overlying Tinguis Formation, both developed over Precambrian basement. Field observations, water well drill cores, and interpretations of satellite images lead to the inference that regional tectonic processes were responsible for the origin of the Basin in the continental rift context and for morphotecatonic evolution through block tilting, dissection, and erosion. The structural framework of the sediments and the basement is characterized by NE–SW-trending normal faults (extensional tectonic D1 event) reactivated by NE–SW-trending strike–slip and reverse oblique faults (younger transtensional tectonic D2′ to transpressional tectonic D2″ event). This tectonic event, which started in the Paleogene and controlled the basin geometry, began as a halfgraben and was later reactivated as a pull-apart basin. D2 is a neotectonic event that controls the current morphostructures. The Basin is connected to the structural rearrangement of the South American platform, which underwent a generalized extensional or trantensional process and, in late Oligocene, changed to a compressional to transpressional regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号