首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complete natural drainage in 2008, 2011, and 2012 of Mountain Lake in Giles County, Virginia, allowed detailed observations of the only natural lake basin in the southern Appalachian Mountains. Here we use these observations to support geomorphic analysis and develop a model of basin evolution, which may advance the understanding of rare flow‐through lakes with subsurface drainage elsewhere. Key features included (a) an angle‐of‐repose slope with a smoothly concave planform across the entire 260 m width of the north end of the basin, (b) an arc of steep‐sided depressions along the deep northern margin of the basin floor, and (c) an abrupt transition between colluvial and finer‐grained sedimentary deposits on the floor. Our geomorphic analysis suggests that subsurface erosion has enabled long‐term northward scarp retreat in the basin by removing water and sediment. Mountain Lake formed on the northern limb of a breached anticline along the Eastern Continental Divide, where strong‐over‐weak stratigraphy and a small watershed have enabled the basin to evolve generally as follows. (1) Pond Drain, a first‐order tributary of the New River, incised north‐dipping sandstones and underlying shales on the northern limb of the anticline. The valley floor subsequently accumulated meters to tens of meters of mostly late Pleistocene colluvial fill. (2) Subsurface drainage developed likely along the contact between the sandstones and shales, facilitated by pre‐existing fractures. (3) Ongoing subsurface erosion has progressively undermined the sandstone, causing scarp retreat along the northern margin of the basin while a surface stream intermittently incised the shallow southern end. Sedimentary deposits indicate that only the deeper northern portion of the basin is usually flooded under Holocene conditions. Our basin evolution model suggests slow development of the basin over hundreds of thousands of years rather than sudden damming by a catastrophic landslide. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
Landslide erosion is a dominant hillslope process and the main source of stream sediment in tropical, tectonically active mountain belts. In this study, we quantified landslide erosion triggered by 24 rainfall events from 2001 to 2009 in three mountainous watersheds in Taiwan and investigated relationships between landslide erosion and rainfall variables. The results show positive power‐law relations between landslide erosion and rainfall intensity and cumulative rainfall, with scaling exponents ranging from 2·94 to 5·03. Additionally, landslide erosion caused by Typhoon Morakot is of comparable magnitude to landslide erosion caused by the Chi‐Chi Earthquake (MW = 7·6) or 22–24 years of basin‐averaged erosion. Comparison of the three watersheds indicates that deeper landslides that mobilize soil and bedrock are triggered by long‐duration rainfall, whereas shallow landslides are triggered by short‐duration rainfall. These results suggest that rainfall intensity and watershed characteristics are important controls on rainfall‐triggered landslide erosion and that severe typhoons, like high‐magnitude earthquakes, can generate high rates of landslide erosion in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The Slumgullion landslide in the San Juan Mountains of southwestern Colorado has been moving for at least the last few hundred years and has multiple ponds on its surface. We have studied eight ponds during 30 trips to the landslide between July 1998 and July 2007. During each trip, we have made observations on the variability in pond locations and water levels, taken ground‐based photographs to document pond water with respect to moving landslide material and vegetation, conducted Global Positioning System surveys of the elevations of water levels and mapped pond sediments on the landslide surface. Additionally, we have used stereo aerial photographs taken in October 1939, October 1940 and July 2000 to measure topographic profiles of the eight pond locations, as well as a longitudinal profile along the approximate centerline of the landslide, to examine topographic changes over a 60‐ to 61‐year period of time. Results from field observations, analyses of photographs, mapping and measurements indicate that all pond locations have remained spatially stationary for 60–300 years while landslide material moves through these locations. Water levels during the observation period were sensitive to changes in the local, spring‐fed, stream network, and to periodic filling of pond locations by sediment from floods, hyperconcentrated flows, mud flows and debris flows. For pond locations to remain stationary, the locations must mimic depressions along the basal surface of the landslide. The existence of such depressions indicates that the topography of the basal landslide surface is irregular. These results suggest that, for translational landslides that have moved distances larger than the dimensions of the largest basal topographic irregularities (about 200 m at Slumgullion), landslide surface morphology can be used as a guide to the morphology of the basal slip surface. Because basal slip surface morphology can affect landslide stability, kinematic models and stability analyses of translational landslides should attempt to incorporate irregular basal surface topography. Additional implications for moving landslides where basal topography controls surface morphology include the following: dateable sediments or organic material from basal layers of stationary ponds will yield ages that are younger than the date of landslide initiation, and it is probable that other landslide surface features such as faults, streams, springs and sinks are also controlled by basal topography. The longitudinal topographic profile indicated that the upper part of the Slumgullion landslide was depleted at a mean vertical lowering rate of 5.6 cm/yr between 1939 and 2000, while the toe advanced at an average rate of 1.5 m/yr during the same period. Therefore, during this 61‐year period, neither the depletion of material at the head of the landslide nor continued growth of the landslide toe has decreased the overall movement rate of the landslide. Continued depletion of the upper part of the landslide, and growth of the toe, should eventually result in stabilization of the landslide. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

4.
The duration of the soil‐depth recovery needed for reoccurrence of shallow colluvial landslides at a given site in humid regions is much longer than the return period of rainfall needed to generate sufficient pore water pressure to initiate a landslide. Knowledge of the rate of change in soil depth in landslide scars is therefore necessary to evaluate return intervals of landslides. Spatial variation in sediment transport at the Kumanodaira landslide scar in central Japan was investigated by field observations. Spatial distribution of the rate of change in soil depth was estimated using sediment transport data and geographic information system (GIS) analysis. Observations revealed that the timing of sediment transport differed for shallow and deep soil layers. Near‐surface sediment transport (mostly dry ravel and some shallow soil creep at depths ≤0·05 m) measured in sediment traps was active in winter and early spring and was affected by freezing–thawing; soil creep of subsoil (i.e. >0·05 m), monitored by strain probes, was active in summer and autumn when precipitation was abundant. Near‐surface sediment flux was estimated by a power law function of slope gradient. Deeper soil creep was more affected by relative location to the landslide scar, which influences soil depth, than by slope gradient. Our study indicated that the rate of soil‐depth recovery is high just below the head scarp of the landslide. Abrupt changes in the longitudinal slope topography immediately above, within and just below the head scarp became smoother with time due to degradation proximate to the landslide head scarp and flanks, as well as aggradation just below the head scarp. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The sediment saturation recovery process (i.e. the adaptation of suspended sediment concentration [SSC] to local forcing) is the main feature of the non‐equilibrium suspended sediment transport (SST) frequently occurring in fluvial, estuarine and coastal waters. In order to quantitatively describe this phenomenon, a series solution is analytically derived, including the evolution of both vertical SSC profile and near‐bed sediment flux (NBSF), and is verified by net erosion and net deposition experiments, respectively. The results suggest that the sediment saturation recovery process involves vertically varying fluxes that are not represented correctly by depth‐averaging. Consequently, a vertical two‐dimensional (2D) combined scheme is established and applied respectively in to a dredged trench and to a sand wave feature to demonstrate this argument. By analyzing the variations of the calculated depth‐averaged SSC and NBSF we reveal that the equilibrium state presented by the sediment carrying capacity (SCC) form of the NBSF, which is usually applied in depth‐integrated SST models, lags behind the actual dynamic bed equilibrium state. Moreover, the key factor α, the so‐called saturation recovery coefficient within this form, is not only a function of local Rouse number but also is influenced by the local SSC profile. Finally, a three‐dimensional (3D) non‐orthogonal curvilinear body‐fitted SST model is developed and validated in the Yangtze estuary, China, combined with the in situ hourly hydrographic data from August 14–15, 2007 during spring tide in the wet season. Model results confirm that the vertically varying sediment saturation recovery process, the discrepancies between the actual and SCC form of NBSF and non‐constant value of α are significant in actual real geomorphic cases. The quantitative morphological change resulting from variations in environmental conditions may not be correctly represented by uncorrected depth‐integrated SST models if they do not treat the effects of vertical motion on the sediment saturation recovery process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Understanding water infiltration and transfer in soft‐clay shales slopes is an important scientific issue, especially for landsliding. Geochemical investigations are carried out at the Super‐Sauze and Draix‐Laval landslides, both developed in the Callovo‐Oxfordian black marls, with the objective to define the origin of the groundwater. In situ investigations, soil leaching experiments and geochemical modeling are combined to identify the boundaries of the hydrological systems. At Super‐Sauze, the observations indicate that an external water flow occurs in the upper part of the landslide at the contact between the weathered black marls and the overlying formations, or at the landslide basement through a fault network. Such external origin of water is not observed at the local scale of the Draix‐Laval landslide but is detected at the catchment scale with the influence of deep waters in the streamwater quality of low river flows. Hydrogeological conceptual models are proposed emphasizing the role of the interactions between local (slope) and regional (catchment) flow systems. The observations suggest that this situation is a common case in the Alpine area. Expected consequences of the regional flows on slope stability are discussed in term of rise of pore water pressures and physicochemical weathering of the clay shales.  相似文献   

7.
Lake sediments are valuable natural archives to reconstruct paleoclimate and paleoenvironmental changes which consist of inorganic and organic sediment compounds of allochthonous origin from the catchment and of autochthonous production in the lake. However, for robust paleo-reconstructions it is important to develop a better understanding about sedimentation processes, the origin of inorganic and organic sediment compounds and their distribution within the lake. In this context, modern process studies provide important insights, although environmental and anthropological changes can affect the spatial distribution of sediment compounds through time. Therefore, in this study the spatial distribution of grain size and geochemical proxies in 52 surface sediment samples from Lake Khar Nuur, a small high-altitude lake in the Mongolian Altai with a small and anthropogenically used hydrological catchment, is investigated. The results show a distinct sediment focussing in the two deep basins of the lake, which therefore act as accumulation zones. In those accumulation zones, total organic carbon (TOC), total nitrogen (N) and their isotopic composition (δ13CTOC, δ15N) as well as n-alkanes indicate that organic sediment compounds are a mixture of both allochthonous and autochthonous origin. While the recent catchment vegetation consists of grasses/herbs and the shrub Betula nana (L.) with distinct differences in their n-alkane homologue patterns, those differences are not reflected in the sediment surface samples which rather indicates that grass-derived n-alkanes become preferentially incorporated in the lake. Extensive anthropogenic activity such as grazing and housing in the southern part of the catchment causes soil erosion which is well reflected by high TOC, N and sulphur (S) contents and 15N depleted δ15N values at the central southern shore, i.e. increased allochthonous sediment input by anthropogenically-induced soil erosion. Overall, the surface sediments of Lake Khar Nuur origin from allochthonous and autochthonous sources and are focussed in the accumulation zones of the lake, while their distribution is both environmentally and anthropogenically driven.  相似文献   

8.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

9.
洞庭湖冲淤变化分析(1956-1995年)   总被引:23,自引:1,他引:22  
施修端  夏薇  杨彬 《湖泊科学》1999,11(3):199-205
根据1956-1995年洞庭湖水文泥沙原型观测和地形测绘等翔实资料,运用输沙量法和地形法对洞庭湖冲瘀变化进行了认真的统计分析,分析结果表明,洞庭湖来水量以四水为主,占57.8%,来沙量以四口为主,多年平均沉积率为74.0%,出湖仅占26.0%;淤积量及湖水沙量随着四分流分沙比的减少而减少。  相似文献   

10.
Lake sediment volume calculation is a challenging task, namely in cases when detailed drilling is complicated, expensive, or impossible, information on the pre-sedimentation surface unavailable, and record of siltation rate non-existent or too short. This study shows how waterborne, non-invasive geophysical survey, such as electrical resistivity tomography (ERT) can be very effective in acquiring the missing data, namely when combined with sound navigation ranging (SONAR) water depth measurements and supported by information from auxiliary sources. However, ERT surveying in water environment requires specific approaches, as we illustrate on the case of the Mladotice lake study. The lake was created after a landslide in May 1872, and since its formation, the depth has gradually decreased due to sedimentation. We have reconstructed the original surface, calculated the sediment volume, and compiled information on sedimentation to estimate its remaining life span. To achieve this, we measured nine waterborne ERT profiles across the lake. To reach the necessary depth, all ERT profiles were extended on land and crossed the lake using custom-built flotation pads. ERT profiling was combined with SONAR depth measurements, historical bathymetric surveys, borehole core analysis, sediment flux measurements, volumetric calculations, and water conductivity probing. The study has achieved three main results. First, practical applicability and advantages of stationary waterborne ERT profiling in combination with bathymetric sounding were demonstrated. Second, the original lake volume and accumulated sediment was calculated. We estimate that the volume of lake sediment is 187 000 m3, two-thirds of the original lake volume (over 275 000 m3). Finally, based on three volumetric data sets from 1972, 2003, and 2017, and recent monitoring of the sediment inflow, we propose scenarios of lake filling and its future development. Most interestingly, the sedimentation rate has decreased significantly in the last 20 years, suggesting that the lake may survive much longer than hitherto expected. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
Study of interactions between surface-water and pore-water in lakes is complicated due to spatio-temporal heterogeneities in flow condition across the sediment–water interface. In this study, seasonal hypersaline Maharlu Lake was investigated by collecting surface-water and pore-water samples from four nests of multilevel piezometers installed at different distances from the inflow of rivers to the lake. The hydraulic heads in the piezometers as well as vertical profiles of Mg+2, Na/Cl, and Br/Cl were used to investigate both hydraulic and geochemical interactions between surface-water and pore-water in the lake. Depletion of lake surface water and pore water with respect to B, Br, Li+, K+, Mg2+ and the absence of Mg-K chlorides and sulphates in the lake bed sediments is probably due to leakage of highly evaporated residual brine from the lake. Hydraulic gradients in the multilevel piezometric nests indicate that a general downward flow from surface-water to pore-water occurs across sediment–water interface. Vertical profiles of Br/Cl, Mg2+, and Na/Cl showed that the maximum flow rate was more than 1 m/yr close to the mouth of the inflowing rivers. The downward vertical flow was limited in the area far from the inflowing rivers due to the presence of an impermeable confining halite layer which interrupts the hydraulic connection between shallow pore water (less than 50 cm deep) and deeper zones. The hydraulic and geochemical interactions between surface-water and pore-water across sediment–water interface in the Maharlu Lake are of interest to find out the fate of pollutants and their distribution in the lake.  相似文献   

12.
Between 1989 and 1998 the small eutrophic stratified Lake Belau was investigated intensively and multidisciplinarily. This article is a short, comprehensive summary and re‐evaluation of the hydrochemistry of the lake, with focus on nitrogen and phosphorus. In several aspects the lake can be regarded as a typical example of the glacial north German lakes. The 1960's and 1970's are characterised by heavy nutrient inputs and fast eutrophication. During the last two decades the external nutrient load, especially the phosphorus load into Lake Belau was significantly reduced. But phosphorus‐rich sediments and large areas with summerly anoxic sediment surface conditions cause intensive release of phosphorus from older deeper sediment layers. Annual budgets reveal that despite an average sediment accumulation of 3 mm a?1 the lake has lost its function as net phosphorus sink and it is very likely that internal eutrophication by the sediments will keep the lake in its eutrophic state during the next decades. Despite that, monthly budgets of five vertical layers show that the main phosphorus supplier for the phosphorus depleted epilimnion during summer is the creek Alte Schwentine. The annual nitrogen budget indicates groundwater and interflow water as well as atmospheric input as additional important nitrogen sources. 36% (98 μmol m ?2 h?1 N) of all nitrogen input is lost to atmosphere mainly due to denitrification. The example of a heavy storm shows that about 10% of the annual nitrogen loss to the atmosphere can take place during a single day and in form of ammonia. The storm further made obvious that these unpredictable events can have strong impact on nutrient cycling and ecology in Lake Belau and the lake can become an unexpected nutrient source for downstream systems.  相似文献   

13.
考虑采砂影响的鄱阳湖丰水期悬浮泥沙浓度模拟   总被引:4,自引:1,他引:3  
针对受采砂活动影响显著的鄱阳湖高浑浊水体,结合数值模拟和遥感技术,利用已有的鄱阳湖采砂区遥感监测结果,在构建的鄱阳湖水动力-悬浮泥沙输移模型中添加泥沙点源,对2011年7月1-31日采砂影响下的鄱阳湖丰水期悬浮泥沙浓度进行数值模拟.利用悬浮泥沙浓度实测数据和MODIS影像反演结果对模拟结果的有效验证表明,考虑采砂影响后,悬浮泥沙浓度模拟值与实测值具有强相关关系,确定性系数为0.831,均方根误差为15.5 mg/L,悬浮泥沙浓度空间分布趋势与遥感反演结果基本一致.模拟结果显示,采砂活动对鄱阳湖南部主湖区、河流入湖口影响较小,其主要影响由南向北,经棠荫以西和松门山岛以北航道、入江水道延伸到湖口区域,是鄱阳湖北湖区高浑浊水体形成的重要原因.  相似文献   

14.
Point of the Mountain spit and Fingerpoint spit are two of the largest geomorphic features of Pleistocene Lake Bonneville of the western Great Basin, USA. The spits and their associated shorelines show distinctly different geomorphic expression and genesis; this is a function of their positions within the lake and the dynamics of the waves and storms that formed them. Mapping of geomorphic features, geometry of erosional features, and detailed lithologic analysis of shoreline deposits are used to determine dominant modes of sediment erosion and deposition. The Point of the Mountain spit, located in the eastern portion of the basin, was formed as a result of highly fractured bedrock in a salient of the Wasatch Front being exposed to wave trains that approached from the north‐northwest causing north‐to‐south longshore sediment transport. Shoreline development and sediment transport on the southern portion of the spit were minimal. The Fingerpoint spit, located on an island in the northwest portion of the basin, was formed by bidirectional longshore sediment transport as the result of waves that approached from both the north‐northeast and the south‐southwest. Spit development is a function of surface wave energy and direction which in turn is the integrated result of wind direction, wind intensity, and fetch. Wave transport direction determined from ?eld measurements at Point of the Mountain spit corresponds very well to the direction of maximum fetch (c. 200 km). For the Fingerpoint spit, the hypothesized wave transport direction from the south corresponds with the direction of maximum fetch (c. 350 km). However, wave energy transport from the north had limited fetch (c. 100 km), implying that wind intensity from the north was relatively large. The geometry of the two large Bonneville spits suggests the predominant wind direction from storms during the Pleistocene was from the north and points the way for future studies that can aid in further understanding the nature of Pleistocene wind ?elds in the Great Basin. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
2018年金沙江上游白格滑坡造成了近百年来最为严重的干流堵江事件,堰塞湖的形成和溃决给下游金沙江干流河道的水沙条件及梯级水电站运行造成影响.本文依据堰塞湖附近临时观测和金沙江干流河道控制性水文站的相关资料,研究堰塞体泄流对下游河道水沙输移的影响,同时结合梯级水库调度情况,计算了梯级水库的拦沙量.结果表明,堰塞湖溃决在金沙江中游形成了超历史的水沙过程,金沙江中游梯级电站开展应急调度后,堰塞湖溃决造成的特大洪水被削减为一般洪水.金沙江中游梯级梨园、阿海和金安桥电站累积拦截泥沙约1400万t,龙开口、鲁地拉和观音岩电站共计拦截泥沙约43万t,滑坡体产生的泥沙仍有约74%滞留在堰塞体附近.若滑坡体泥沙全部输移至金沙江中游梯级水库内,梨园电站的有效库容极有可能不满足水库所需调节库容的要求.  相似文献   

17.
Recent sediments in lakes and gulfs are a sensi-tive recorder of the information about environmentalchanges in the catchment areas during recent geologi-cal history. Precise determination of the ages of sedi-ments is the key to deciphering the environmental re-cords. The 210Pb dating technique and the markertechnique based on fallout radionuclide 137Cs havefound wide applications in sedimentation rate on atime scale of several tens to one hundred years, as wellas the varve chron…  相似文献   

18.
Spatial variability of recent lacustrine sedimentary structures and sedimentation rates are examined for Green Lake, a morphologically complex lake basin of the southern Coast Mountains, British Columbia. A dense, 100 m grid sampling scheme was used for sediment coring within the 2 km2 lake basin. Deltaic, massive, weakly laminated, and varved sediment sequences are identified within the sediment record. Spatial patterns among these sedimentary deposits are related to within‐lake sediment transfer processes, morphometric controls, and the extent of post‐depositional mixing by bioturbation. Unconformities, turbidites, and cohesive slump failure deposits, observed within the contemporary varve sequences, could all be correlated with major flooding events in the catchment area and direct anthropogenic disturbances along the shoreline. There is an overall, non‐linear decrease in sedimentation rates with increasing distance from the lake inflows; however, this pattern is disrupted in deep water sites of intervening lake sub‐basins where locally higher accumulation rates are observed. Spatial sedimentation patterns are quantitatively described by an empirically‐derived model. Systematic variations in the model parameters are observed for different lake sub‐regions and are associated with changing sediment transfer dynamics between proximal and distal sub‐basin settings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Lakes are common in glaciated mountain regions and geomorphic principles suggest that lake modifications to water and sediment fluxes should affect downstream channels. Lakes in the Sawtooth Mountains, Idaho, USA, were created during glaciation and we sought to understand how and to what extent glacial morphology and lake disruption of fluxes control stream physical form and functions. First, we described downstream patterns in channel form including analyses of sediment entrainment and hydraulic geometry in one catchment with a lake. To expand on these observations and understand the role of glacial legacy, we collected data from 33 stream reaches throughout the region to compare channel form and functions among catchments with lakes, meadows (filled lakes), and no past or present lakes. Downstream hydraulic geometry relationships were weak for both the single catchment and regionally. Our data show that downstream patterns in sediment size, channel shape, sediment entrainment and channel hydraulic adjustment are explained by locations of sediment sources (hillslopes and tributaries) and sediment sinks (lakes). Stream reaches throughout the region are best differentiated by landscape position relative to lakes and meadows according to channel shape and sediment size, where outlets are wide and shallow with coarse sediment, and inlets are narrow and deep with finer sediment. Meadow outlets and lake outlets show similarities in the coarse‐sediment fraction and channel capacity, but meadow outlets have a smaller fine‐sediment fraction and nearly mobile sediment. Estimates of downstream recovery from lake effects on streams suggest 50 per cent recovery within 2–4 km downstream, but full recovery may not be reached within 20 km downstream. These results suggest that sediment sinks, such as lakes, in addition to sources, such as tributaries, are important local controls on mountain drainage networks. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A 487‐year annually laminated (varved) sediment record from Nicolay Lake, Cornwall Island, in the Canadian High Arctic was evaluated to determine the impact that years with high sediment yields had on sediment yields in subsequent years. All of the 40 largest years showed evidence for increased sediment yield in the subsequent 10–30 years. The positive anomalies in lagging years were approximately scaled according to the size of the initiating year, although many intermediate years (25‐ to 100‐year recurrence) showed weak or variable responses. The smallest events considered (10‐ to 25‐year recurrence) showed a consistent, but low‐amplitude response. Additionally the 10‐year events revealed frequent negative sediment yield anomalies in the preceding decade. This behaviour was interpreted as a frequent sediment activation cycle initiated by the modest year, and leading to sediment yield hysteresis lasting 15–25 years. The largest years (greater than 50‐year recurrence) showed consistently above‐average sediment yields in the preceding decade, in part due to the frequent occurrence of moderate (Q10) years. It is hypothesized that temporary storage of sediment and previous initiation of erosion sites resulted in extraordinary sediment yields during intense summer rainfall events. This study demonstrates the potential use of varved lake sediment records to improve our understanding of long‐term sediment dynamics. These records present an opportunity to further develop and test sediment dynamic and routing models to gain insight into the interaction of time and space in fluvial and sediment delivery processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号