首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 202 毫秒
1.
1973-2018年青海湖岸线动态变化   总被引:2,自引:2,他引:0  
青海湖独特的地理位置使得其不仅对环湖周边区域气候起着天然调节器的作用,而且还拥有丰富的湖岸线资源,准确、及时地掌握青海湖岸线动态变化对保护沿湖生态环境有重要意义.因此本文基于1973-2018年Landsat MSS/TM/OLI遥感影像和1961-2017年实测水位资料,对青海湖岸线动态变化及对鸟类栖息地的影响进行研究,同时结合面积、水位及气象数据讨论了影响岸线变化的主要因素.研究表明:1)近45年来青海湖岸线发生变化最大的区域是东岸的沙岛,西岸的鸟岛、铁布卡湾及北岸沙柳河入口区域.尤其自2004年以来,鸟岛地区岸线后退距离最大(5.52 km),鸟类栖息地扩张约97.94 km2,为鸟类提供了较好的栖息环境.(2)1973-2018年青海湖岸线长度以0.88 km/a的速率逐渐延长.1997年之前岸线长度呈较为平稳的上升趋势,1997-2004年呈波动下降趋势,2004年之后呈剧烈波动增加趋势,岸线曲折性也表现出相同的变化趋势.(3)总体上岸线长度和曲折性受水位和面积的影响并不显著,但在不同的水位情况下,二者对青海湖动态变化做出不同的响应.尤其当水位小于3193.3 m或面积小于4249.3 km2时,岸线曲折性会随着水位和面积变化呈现相同的变化趋势,而水位高于3193.3 m时,岸线曲折性一直在增加,且水位上升速率越大则曲折性年际变化越大.(4)1973-2004年间青海湖水位下降和土地沙漠化是造成湖岸线变化的直接成因,人类活动及草场退化加速了湖泊岸线的变迁.2004年之后,随着青海湖水位回升与面积扩张,岸线逐渐后退,尤其在2017-2018年岸线后退距离最大.  相似文献   

2.
青藏高原大部分湖泊近年来持续扩张,湖泊水位和水量明显增加.冰川消融是流域水量平衡和水循环的重要影响因素,直接导致湖泊水量变化.由于缺乏大范围的冰川质量平衡观测结果,青藏高原冰川消融对湖泊水量变化的影响仍存在较大争议.本文选择青藏高原内流区的色林错流域区(水系编号5Z2)作为研究对象,利用SRTM DEM和TanDEM-X双站InSAR数据,精确估算该流域三个主要冰川区(普若岗日、格拉丹东和西念青唐古拉)2000—2012年的冰川质量平衡,依次为:-0.020±0.030、-0.128±0.049、-0.143±0.032m·w.e.·a-1.并据此采用面积加权法准确推估出5Z2流域的冰川质量变化为:-0.166±0.021Gt·a-1.综合ICESat和Cryosat-2卫星测高数据,计算该流域2003—2012年湖泊水量变化速率(3.006±0.202Gt·a-1),并定量评估冰川质量变化对5Z2流域湖泊水量增加的贡献为:5.52%±1.07%,因此在青藏高原色林错流域区,冰川消融不是导致21世纪初期湖泊水位上升的主要因素.  相似文献   

3.
基于水热平衡模型的青海湖水位变化趋势预测   总被引:3,自引:0,他引:3  
近几十年来,随着气候干暖化,以青海湖为代表的我国内陆湖泊水位持续下降,生态环境问题日益突出,备受世人关注.运用改进的水热平衡模型预测了2050年以前青海湖逐年的湖面蒸发量,并运用多元线性回归的方法估算出流域未来径流量的变化,最终通过水量平衡的方式对2050年以前青海湖水位的变化趋势进行了定量预测.预测表明未来几十年内,青海湖水位会经历先相对稳定再继续下降的过程,2020年以前青海湖水位会相对稳定在3192.7m,之后会继续下降,到2050年约下降到3191.22m,总体上2010-2050年青海湖水位下降趋势将有所缓和.  相似文献   

4.
王文种  黄对  刘九夫  刘宏伟  王欢 《湖泊科学》2020,32(5):1552-1563
湖泊变化是气候变化的指示器.为探索利用单一短时间尺度的卫星水位数据源估算长时间序列的湖泊水量变化的可行性,本文利用短时间尺度(2016—2018年) Sentinel-3A合成孔径雷达高度计(SRAL)作为唯一卫星水位数据源,以藏北高原内陆湖泊当惹雍错为例,结合基于Landsat光学遥感数据提取的1988—2018年的湖泊面积,综合分析2016—2018年间的非结冰期遥感湖泊面积与遥感湖泊水位变化,基于该时段范围的水位变化-面积变化关系和水量估算公式,估算1988—2018年湖泊水位水量变化与2001—2018年的年内变化,并结合GLDAS产品数据与雪线变化情况初步探讨湖泊变化的可能原因.结果表明:当惹雍错近30年湖泊面积扩张明显,湖泊水位、水量增加显著,相比1988年,2018年的湖泊面积、水位、水量分别增加21.1 km2、5.29 m、44.75亿m3.其中1988—1998年湖泊面积-水位-水量有所减少,2000—2018年间湖泊变化总体呈增加趋势.2001—2018年内湖泊面积、水位、水量变化呈现干湿季特征.1996—2014/2015年湖泊水量变化为38.3亿/35.5亿m3,水量变化趋势、变化量与以往对应时间段的研究结果具有较强的一致性.湖泊面积扩张主要发生在水下地形平缓的东南部和中西部区域.结合气候因素与雪线变化的分析表明,湖泊水量变化受降雨、气温影响复杂,长时间年际尺度上的湖泊水量增长与气温的一致性较降水量强,湖泊湿季受降水量与气温的影响都较大,其中2008—2018年的湿季降水量、气温与水量变化散点拟合的确定性系数R2分别为0.613、0.845.该研究表明Sentinel-3A合成孔径雷达数据在湖泊水量变化估算上的潜力,为利用单一且只具有短时段数据的卫星雷达数据估算长时间序列湖泊水量变化提供依据.  相似文献   

5.
青海湖水量平衡分析与水资源优化配置研究   总被引:18,自引:4,他引:14  
在充分收集有关资料的基础上研究青海湖1959-2000年间降水径流蒸发湖泊水位地下水补给量的动态变化建立水量平衡分析方程.青海湖水位在波动中持续下降42年来年平均水位累计下降了 3.32 m平均每年下降了0.079 m近年来下降的幅度减小. 同时青海湖储水量不断减少而湖区降水呈增加的趋势河川径流量地下水的入湖补给量 蒸发量呈现下降的趋势. 根据青海湖水平衡分析计算结果预测2010年青海湖流域耗水量将达1.27108m3为维护生态平衡和社会经济持续发展需要跨流域调水量引大济湖4.1108m3.  相似文献   

6.
虽然已有许多水指数被运用于咸海和咸海流域的水域面积分析,然而已有研究尚存在很大的不确定性.由于所使用水指数存在水体误识别的问题,导致不同研究得出的结论差异很大.此外,各种研究采用的咸海流域面积也差异很大,流域面积从约1百万km2到2百万km2不等.因此,我们首先界定咸海流域、锡尔河和阿姆河流域以及它们的上、中、下游的边界,然后提出可识别液态水和固态水的四波段指数(ILSW),以解决传统水指数的误别偏差问题. ILSW基于绿色、红色、近红外和热红外波段反射值,是归一化差异水指数(NDWI)和地表温度(LST)的合成.验证结果显示, ILSW水指数在咸海流域的准确性远远超过其他指数.研究结果表明,南咸海的水域面积平均每年缩小963km2,而北咸海几乎没有变化;由于气候变暖,咸海流域上游常年冰雪面积有大幅度退缩趋势,阿姆河上游和锡尔河上游常年冰雪的退缩速率分别为年均6233和384km2/a.气候变化和人类活动引起了严重的水亏问题.自20世纪90年代以来,水亏呈增长趋势,平均每年增长3.778亿m  相似文献   

7.
近50年来内蒙古查干淖尔湖水量变化及其成因分析   总被引:1,自引:1,他引:0  
刘美萍  哈斯  春喜 《湖泊科学》2015,27(1):141-149
内蒙古查干淖尔湖是位于季风边缘区干旱与半干旱过渡带的封闭湖泊,对气候变化响应极为敏感.利用1958-2010年的查干淖尔湖21期遥感影像以及湖泊流域1955-2010年的3个气象站点和1个水文站点的气温、降水、蒸发和径流等数据,分析查干淖尔湖近50余年的湖泊水量、面积/水位波动及其原因.结果表明,近50年来在区域气候暖干化的背景下,查干淖尔湖不断萎缩,流域生态环境退化.1958-2010年湖泊容积以2×106m3/a的速度锐减66.9%(从124.1×106m3降到41.1×106m3),湖泊面积缩小73.3%(从105.3 km2降到28.1 km2),平均缩减速度为1.8 km2/a;流域年均气温上升了2.5℃,年降水量下降了36.6 mm.湖泊水量与流域气温和蒸发量显著负相关.查干淖尔湖分为东西两部分,中间由天然堤坝相连,东湖在水闸的人为控制下水位波动范围不超过1 m.西湖水位波动则相对剧烈,湖面下降7.6 m,于2002年彻底干涸,湖盆裸露,已成为盐尘暴、沙尘暴源地.  相似文献   

8.
水位变化影响湖泊水质、水量和生态系统功能,是研究湖泊演变的重要内容,但目前针对滇中高原湖群水位变化特征还少见系统报道.本文选择滇池、抚仙湖、阳宗海3个滇中高原湖泊作为研究对象,基于1988-2015年实测水位数据和Mann-Kendall趋势检验法评估了3个湖泊水位变化特征;运用RClimDex模型获得了流域极端降水指标,结合其他指标构建了基于极端气象因子的湖泊水位驱动力指标体系;采用主成分-多元回归模型,解析了极端降水、蒸发等气象因子对滇中高原湖泊水位变化的贡献.结果表明:①滇池、抚仙湖、阳宗海水位年际波动不突出.滇池的年平均水位总体略呈上升趋势,年均上升0.025 m.阳宗海和抚仙湖水位无明显变化.②滇中高原湖泊流域的极端降水指数年际变化趋势不明显.滇池的蒸发量呈明显减小趋势,年均减小21.05 mm.抚仙湖蒸发量呈明显增加趋势,平均每年增加5.52 mm.阳宗海蒸发量的变化不明显.③气象指标可解释滇池水位变化的49.7%,滇池水位变化受气候变化和人类活动的综合影响;阳宗海和抚仙湖水位变化主要受气象条件控制,蒸发量、综合降水指标和连续降水指标对阳宗海水位变化的解释率高达93.3%;综合降水指标和干旱状况指标可以解释抚仙湖水位变化的64.5%.极端降水指标对解释高原湖泊水位变化具有重要作用.  相似文献   

9.
人类活动对青海湖水位下降的影响   总被引:17,自引:6,他引:11  
青海湖是我国最大的内陆湖泊,位于青藏高原的东北隅。近三十年来由于自然要素和人为活动的影响,湖周生态环境急剧退化,湖水位下降达3.35m,湖面收缩约300多km~2。根据调查研究以及其他方面的资料。青海湖多年平均亏水量4.36×10~8m~3,而人为活动耗水量占亏水量的8.7%。仅占湖面蒸发量的1%。所以,人为耗水与湖水位波动无明显相关,湖水位下降虽然是综合效应,但主导因素是气候变化,并导致湖周生态环境的恶化。  相似文献   

10.
湖泊生态水位是维持湖泊生态系统健康的重要因素.基于洞庭湖城陵矶、杨柳潭、南咀3个水文站1959-2016年日平均水位序列进行分析,采用Mann-Kendall法、累积距平法和滑动T检验法综合确定洞庭湖水位变异时间节点,结合生态水位年内展布法以及IHA-RVA法,计算分析湖泊最小和适宜生态水位,并且采用Tennant法进行合理验证,在此基础上对水文变异前、后湖泊生态水位保障度进行研究.研究结果表明:(1)洞庭湖城陵矶和杨柳潭水文站年均水位呈上升趋势,而且城陵矶站水位上升趋势显著,南咀站年均水位呈显著下降趋势.(2)洞庭湖3个典型水文站水位年际变化突变年份为2003年,突变年份基本上与三峡工程蓄水时间相符.(3)城陵矶、南咀和杨柳潭年均最小生态水位分别为21.41、28.95和27.84 m,分别占多年平均水位的86.3%、95.9%和95.7%,城陵矶、南咀和杨柳潭年均适宜生态水位分别为23.29、29.51和28.36 m,分别占多年平均水位的93.9%、97.8%和97.5%,生态水位计算结果考虑了天然湖泊水位年内丰枯变化,满足了湖泊生态目标需求.(4)洞庭湖最低生态水位保障程度较高,基本能达到80%以上,但适宜生态水位保障程度相对较低,其中2003年以后洞庭湖10月和11月生态水位保障程度显著下降,与上游水利工程蓄水有关,建议在此期间采取调度措施适当增加洞庭湖水量,以保障湖泊生态系统的健康与生物多样性.  相似文献   

11.
青海湖最近25年变化的遥感调查与研究   总被引:29,自引:6,他引:23  
沈芳  匡定波 《湖泊科学》2003,15(4):289-296
青海湖是我国最大的内陆水体,它及其流域的生态环境近来一直倍受广泛关注.其水位下降、湖水面积缩小、湖体分离等更是研究的热点问题.本文针对这些问题展开遥感调查与研究,收集了多时相、多种信息源的影像数据;分析了1975年至2000年25年以来湖泊的变迁及成因,湖岸变化及湖体分离状况;用遥感方法反推25年以来湖水位的变化;计算了1975、2000年两个年份的湖水面积,并遥感分析了湖水面积萎缩的原因.此外,对青海湖进行了实地调查与水深测量,建立了该湖泊水深反演模型.  相似文献   

12.
1974-2016年青海湖水面面积变化遥感监测   总被引:6,自引:2,他引:4  
位于青藏高原东北部的青海湖是我国最大的咸水湖和内陆湖,也是青藏高原东北部的重要水汽源,青海湖面积的动态变化是气候和周围生态环境状况的重要体现.本研究利用长时间序列中分辨率遥感影像数据,通过人工提取湖岸水涯线信息对青海湖水面面积进行监测.结果显示:1974-2016年期间,青海湖面积总体上呈先减后增的变化趋势.2004年水面积最小,为4223.73 km2,比1974年减少253.80 km2.其中1974-1987年期间面积骤减;2000 2009年期间青海湖水面面积变化幅度相对较小,平均变化幅度为6.85 km2.2009-2016年7 a间,水面面积增加了128.27 km2.2012年青海湖面积骤增,比2011年8月同期增加65.12 km2;同年6月和9月的面积变化为2002-2016年最大,达到59.18 km2.湖东岸沙岛的湖岸线变化最为显著,1974-2004年岸线后退最大距离达4.59 km,2012年的年内最大变化距离为0.39 km.青海湖流域内降水补给增加,生态环境治理措施促使入湖河流径流量增大,是近年来湖水面积增加的主要原因.  相似文献   

13.
生态需水是湖泊生态系统的重要指标,维持着湖泊生态系统的良性循环.以内蒙古中部半干旱湖泊岱海为研究对象,对湖泊动态生态需水进行分析.本研究在遥感和气象数据的基础上,获得1975-2020年长时间序列高精度水文要素数据,分析岱海水文要素时空演变规律;通过天然生态水深分析法、水深经验频率分析法和湖泊形态分析法分析岱海的水深随面积变化的关键水深;构建基于生态耗水规律的湖泊生态需水模型,计算自然状态下岱海生态需水动态变化范围.研究结果如下:岱海地区6-9月为丰水期,10月至次年5月为枯水期;45 a以来岱海水面面积呈显著下降趋势,近年来下降速率减缓;枯水期岱海适宜生态水深为8.72~9.92 m,丰水期为9.40~10.69 m,适宜生态需水量为5.62亿~7.71亿m3,适宜湖面面积为70.92~84.77 km2.本文构建了长时间序列气候水文数据库,确定岱海动态生态需水范围可以实现对湖泊生态健康的实时监测,为相关规划与管理提供科学依据及可操作性指导,从而为岱海湖泊治理提供理论参考.  相似文献   

14.
青海湖水量平衡及水位变化预测   总被引:17,自引:5,他引:12  
曲耀光 《湖泊科学》1994,6(4):298-307
青海湖是我国最大的内陆湖泊,流域面积29661km~(2),水面高程超过3000m,受人为活动影响相对较少,基本上还处于半自然状态。水量平衡计算结果表明,有观测资料的近30年来,青海湖处于负平蘅状态,水位下降了2.96m,平均每年下降10.2cm。如果未来湖区的气候大体保持过去的情况,水位将再下降5.8m,经过57年才能平衡。如果考虑“温室效应”所引起的西北地区未来气候变化,水位亦将下降,每年平均下降10.1cm。  相似文献   

15.
Otoliths are biogenic carbonate minerals in the inner ear of teleost fish, whose compositions can record the physical and chemical conditions of the ambient water environment inhabited by individual fish. In this research, the fishbones and otoliths of naked carp sampled near the Bird Island, offshore Lake Qinghai, were dated and analyzed for mineralogy and microchemical compositions. Comparing the microchemical compositions of ancient otoliths with those of modern otoliths, we conclude that the ancient naked carps inhabited a relict lake formed when the lake shrank from a high lake level, by combining with the AMS-14 C ages of fishbones and otoliths, the stratigraphy and surrounding topography of the sample site. AMS-14 C dating results of ancient fishbones and otoliths show that these naked carps lived from 680 to 300 years ago, i.e. during the Ming Dynasty of China. The X-ray diffraction(XRD) patterns demonstrate that the ancient lapillus is composed of pure aragonite, identical to modern one, indicating that the mineral of lapillus didn't change after a long time burial and that the ancient lapillus is suitable for comparative analysis thereafter. Microchemical results show that both ratios of Mg/Ca((70.12±18.50)×10?5) and ? 18O((1.76±1.03)‰) of ancient lapilli are significantly higher than those of modern lapilli(average Mg/Ca=(3.11±0.41)× 10?5 and ? 18O=(?4.82±0.96)‰). This reflects that the relict water body in which the ancient naked carp lived during the Ming Dynasty was characterized by higher Mg/Ca and ? 18 O ratios than modern Lake Qinghai, resulting from strong evaporation after being isolated from the main lake, similar to today's Lake Gahai. Based upon the stratigraphy and altitude of naked carp remains, it can be inferred that the altitude of lake level of Lake Qinghai reached at least 3202 m with a lake area of 4480 km2 during the Ming Dynasty, approximately ~5% larger than it is today.  相似文献   

16.
The reeds of Lake Peipsi (surface area 3555 km2, mean depth 7.1 m, max. depth 15.3 m, not-regulated) have increased through the last 30 years. The most significant increase has taken place in the larger formerly mesotrophic northern part where the mean air-dry biomass of reed shoots has increased from 20 g m−2 in 1970 through 789 g m−2 in 1989 to 1563 g m−2 in 2002. The data of 34 transects for 2001–2002 along the Estonian coast and aerophotos made in 2001 showed that in places reeds reach a water depth of 1 m (mean 0.64 m) and a width of more than 200 m (mean 89.5 m). Their area of 9.3 km2 accounts for about 0.6% of the Estonian territory of the lake. The longer and thicker shoots grew in the lakeward and intermediate zones of reeds. Near villages the shoots were weaker and their biomass lower. Phosphorus content of shoots, being higher near settlements, was generally low; in some cases content of phosphorus was ≤0.001%. The monotonous reed belt occupies the growth area of shallow-water submergent and shorter emergent species and favours the accumulation of organic sediments. The frequency of several species demanding light and sandy bottom has decreased, as well has the overall diversity of the macrovegetation. The main reasons for expansion of the reed could be eutrophication, combined with low-water periods, and the decline of cattle breeding in the shore areas. Some suppressed species have reappeared on stretches cleaned from reeds.  相似文献   

17.
A model was developed for estimating the delay between a change in climatic conditions and the corresponding fall of water level in large lakes. The input data include: rainfall, temperature, extraterrestrial radiation and astronomical mid‐month daylight hours. The model uses two empirical coefficients for computing the potential evaporation and one parameter for the soil capacity. The case studies are two subcatchments of the Altiplano (196 000 km2), in which the central low points are Lake Titicaca and a salar corresponding to the desiccation of the Tauca palaeolake. During the Holocene, the two catchments experienced a 100 m fall in water level corresponding to a decrease in water surface area of 3586 km2 and 55 000 km2, respectively. Under modern climatic conditions with a marked rainy season, the model allows simulation of water levels in good agreement with the observations: 3810 m a.s.l. for Lake Titicaca and lack of permanent wide ponds in the southern subcatchment. Simulations were carried out under different climatic conditions that might explain the Holocene fall in water level. Computed results show quite different behaviour for the two subcatchments. For the northern subcatchment, the time required for the 100 m fall in lake‐level ranges between 200 and 2000 years when, compared with the present conditions, (i) the rainfall is decreased by 15% (640 mm/year), or (ii) the temperature is increased by 5·5 °C, or (iii) rainfall is distributed equally over the year. For the southern subcatchment (Tauca palaeolake), the time required for a 100 m decrease in water level ranges between 50 and 100 years. This decrease requires precipitation values lower than 330 mm/year. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
苏州金鸡湖水环境治理工程的环境经济分析   总被引:1,自引:0,他引:1  
逄勇  丁玲  陈燕羽 《湖泊科学》2002,14(3):253-258
对苏州金鸡湖水环境综合治理的环境效益和经济费用进行了综合分析,得出:工程建成运行后的金鸡湖及周边河道的水质基本可达国家地面水Ⅲ类水标准。金湖鸡水环境治理工程建成运行后费用约为0.92元/m^3-1.62元/m^3之间,若考虑金鸡湖水环境改善后地价的价值、旅游收入的增加,金鸡湖水环境治理的经济费用还会降低。总体来看,该项工程环境及社会效益比较明显,经济费用也在比较合理的范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号