首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An algorithm that synthesizes apertures in the beam domain using FFT transformations and performs coherent processing of subaperture signals at successive time intervals is presented. Experimental tests of the algorithm show that for ocean environments with spatial coherence longer than the synthetic aperture length and for signals with temporal coherence longer than the required acquisition time, a synthetic array gain is achieved which roughly corresponds to the length of an equivalent fully populated array. In the experiments, transducer generated CW with phase stability and pseudorandom signals were used. Limitations on the spatial and temporal coherence were introduced only by the medium, the temporal coherence of the pseudorandom signal, and the shape and stability of the line array used  相似文献   

2.
This paper deals with the development of a processing technique that improves the signal-to-noise ratio (SNR) at the single sensor for a received signal that is embedded in a partially correlated noise field. The approach of this study is unique in that the noise is treated as being non-white and partially correlated. The concept of the proposed development is based on the time interval over which the temporal coherence or correlation properties of a noise field are defined. For narrowband signals, the associated temporal coherence period is much longer than the correlation time interval of the anisotropic noise field. Thus, a coherent integration of discontinuous segments of received signals will enhance the SNR at the single sensor by lowering the correlation properties of the associated non-white noise. Reconstruction of the narrow-band signal time series, with improved SNR at the sensor will allow the use of the existing high resolution techniques to be utilized more effectively by lowering their threshold values in order to detect very weak signals. The intention here is to integrate the characteristics of the real anisotropic noise field during the preliminary processing stages of the received signals by an array of sensors. Simulations show that the proposed method can be integrated in the signal processing functionality of sonar and radar systems  相似文献   

3.
This paper presents the result of a first attempt to achieve a vertical synthetic aperture in the ocean for SOFAR multipath identification. The experiment was conducted during the deployment of a tomographic array in the Mediterranean Sea. Drifting the hydrophone up or down from a ship while listening to the transmitted signal created a powerful synthetic aperture at 400 Hz. Wide-band phase-coded signals, typically used in ocean tomography, were found suitable for this application. The displacement length was 100 m and the hydrophone velocity 1 m/s. The obtained resolution of 1° enabled all the rays in the tested middle range configuration to be resolved and identified. Most of them could not have been resolved with a static hydrophone. Several Doppler processing methods are presented. The narrowband approximation leading to fast algorithms is discussed. Phase time series of individual paths obtained with an array-like wave separation method show that the phase coherence of the different multipaths is nearly perfect. An angle/velocity calibration method and a first rough inversion are finally presented  相似文献   

4.
5.
Spatial processing, including beamforming and diversity combining, is widely used in communications to mitigate intersymbol interference (ISI) and signal fading caused by multipath propagation. Beamforming suppresses ISI (and noise) by eliminating multipath (and noise) arrivals outside the signal beam. Beamforming requires the signals to be highly coherent between the receivers. Diversity combining combats ISI as well as signal fading by taking advantage of the independent information in the signal. Classical (spatial) diversity requires that signals are independently fading, hence are (spatially) uncorrelated with each other. In the real world, the received signals are neither totally coherent nor totally uncorrelated. The available diversity is complex and not well understood. In this paper, we study the spatial processing gain (SPG) as a function of the number of receivers used, receiver separation, and array aperture based on experimental data, using beamforming and multichannel combining algorithms. We find that the output symbol signal-to-noise ratio (SNR) for a multichannel equalizer is predominantly determined by the array aperture divided by the signal coherence length, with a negligible dependence on the number of receivers used. For a given number of receivers, an optimal output symbol SNR (OSNR) is achieved by spacing the receivers equal to or greater than the signal coherence length. We model the SPG in decibels as the sum of the noise suppression gain (NSG, equivalent to signal-to-noise enhancement) and the ISI suppression gain (ISG, equivalent to signal-to-ISI enhancement) both expressed in decibels; the latter exploits the spatial diversity and forms the basis for the diversity gain. Data are interpreted using the modeled result as a guide. We discuss a beam-domain processor for sonar arrays, which yields an improved performance at low-input SNR compared to the element-domain processor because of the SNR enhancement from beamforming many sensors.  相似文献   

6.
Various parameters associated with the track of a stable CW source moving with constant velocity are estimated using synthetic aperture and Doppler processing techniques. These include the source frequency before Doppler distortion by its motion, the relative speed between the source and a constant velocity receiver, the range at closest approach to the source track, and the relative bearing to the source. Different processing techniques are suggested for a range of signal stabilities and observation times. Frequency analysis, or Doppler processing, supplements conventional synthetic aperture processing, and for relatively unstable signals a synthetic Doppler method is recommended. This method makes use of a rapid scan of signals from a succession of sensors in a horizontal line array to stimulate a higher speed motion of the array  相似文献   

7.
An operational passive sonar is required to detect signals from sources, which are subject to spatial and temporal coherence losses via modifications by the ocean environment. Furthermore, these signals are to be detected in the presence of frequency-dependent correlated noise fields. For a system which employs splitbeam cross-correlation processing, the spatial and spectral properties of the signal and noise are of significant import. Therefore, the exact probability density and cumulative distribution functions of the N-sampled correlator outputs of a splitbeam broadband passive sonar are derived for the case of Gaussian inputs which are described by arbitrary cross-spectral density matrices. The validity of approximating the exact probability density function (pdf) as a Gaussian distribution is investigated. The effect of signal coherence loss and noise correlation on the detection performance is considered and the associated processing loss is expressed as a degradation factor within the detection threshold equation  相似文献   

8.
The paper discusses the development of a simulation tool to model high data-rate acoustic communication in shallow water. The simulation tool is able to generate synthetic time series of signals received at a transducer array after transmission across a shallow-water communication channel. The simulation tool is suitable for testing advanced signal processing techniques for message recovery. A channel model has been developed based on the physical aspects of the acoustic channel. Special emphasis has been given to fluctuations of the signal transmission caused by time-varying multipath effects. At shorter ranges, the temporal variations are dominated by acoustic scattering from the moving sea surface. Therefore, the channel model produces a coherence function which may be interpreted as a time-varying reflection coefficient for the surface scattered acoustical path. A static, range-independent ray model identifies the significant multipaths, and the surface path is modulated with the time-varying reflection coefficient. The advantages and limitations of the channel model are discussed and assumptions necessary to overcome the limitations are emphasised. Based on the assumptions, an algorithm has been developed and implemented to model how a binary message will be modulated when transmitted by a transducer, is distorted in the channel and finally is received by a transducer array  相似文献   

9.
针对影响拖曳线列阵声纳系统目标检测性能的两种典型近场强干扰源,由宽带近场阵列模型,提出了基于功率谱相关的干扰抵消方法,通过比较基元域频域信号与干扰波束信号功率谱之间的相似关系,找到与每路基元信号相匹配的干扰分量信号,最后通过频域块自适应滤波算法实现每路基元域信号中的干扰抵消。宽带仿真结果与海试表明,这种方法在强干噪比和低信噪比条件下,比最小方差无失真响应和传统基元域干扰抵消方法在阵增益方面提高约10dB。相比传统基元域干扰抵消方法,这种方法能够实现抵消拖船干扰的同时抵消邻近目标强干扰。  相似文献   

10.
Limitations on the performance of the overlap-correlator method of forming a passive synthetic aperture are derived. The technique uses the overlap of the array in sequential positions to estimate a series of phase correction factors that compensate for the motion of the array over time. It is of primary interest to optimize this overlap with respect to the effects of random noise. By minimizing the variance of the estimates of the set of phase correction factors, it is found that the optimal overlap is one-half the length of the physical array. Using this optimal overlap, the bounds on the usable spatial response are then determined as a function of signal-to-noise ratio and the number of hydrophones in the physical array. The ability of the overlap-correlator algorithm to synthesize a coherent aperture is investigated for the case of multiple sources in the absence of noise  相似文献   

11.
A special-purpose definition is proposed for phase fluctuations to overcome the obstacle of unpredictable dynamic changes in the phase angle. This definition implies a specific time history for each phase sample and any deviation is termed a phase fluctuation. Its application to acoustic data led to the development of a technique for temporally aligning the phase angles of the acoustic pressure phasors. This alignment process transforms the signal phasors to the real half-space of a rotated complex plane, while the corresponding noise is distributed with random phase angles. Signal processing conducted in the rotated plane improves the temporal coherence of the signals without significantly altering the incoherence of the noise. Coherent attenuation and cancellation of signals is common with temporal coherence and vector averaging. These were eliminated when the aligned-phase angles were substituted for the original unaligned phase angles. Thus, the transformation produces a net temporal coherence gain. Furthermore, it significantly improves the robustness of the signal processor to source and receiver motion. An automatic identifier of signals in the transformed plane also is introduced. Signal identification is based on aligned-phase angle temporal coherence, which significantly improves identification of signals. Results are included for both ocean and atmosphere acoustic data.  相似文献   

12.
A rotated coordinates inversion algorithm is used on subsets of the Inversion Techniques 2001 Geoacoustic Workshop data, to which white Gaussian noise is added. The resulting data sets are equivalent to noisy broad-band signals received on a horizontal line array (HLA) during a single integration time interval. The inversions are performed using a technique called systematic decoupling using rotated coordinates (SDRC), which expands the original idea of rotated coordinates by using multiple sets of rotated coordinates, each corresponding to a different set of bounds, to systematically decouple the unknowns in a series of efficient simulated annealing inversions. The cost function minimized in the inversion is based on the coherent broad-band correlation between data and model cross spectra, which increases the coherence gain of the signal relative to incoherent noise. Using the coherent broad-band cost function with sparse HLA-like data sets, the SDRC inversion method yields good estimates for the sensitive environmental parameters for signal-to-noise ratios as low as -15 dB.  相似文献   

13.
It is shown that the performance of a conventional matched filter can be improved if the reference (replica) channel compensates for the distortion by the ocean medium. A model-based matched filter is generated by correlating the received signal with a reference channel that consists of the transmitted signal convolved with the impulse response of the medium. The channel impulse responses are predicted with a broadband propagation model using in situ sound speed measured data and archival bottom loss data. The relative performance of conventional and model-based matched filter processing is compared for large time-bandwidth-product linear-frequency-modulated signals propagating in a dispersive waveguide. From ducted propagation measurements conducted in an area west of Sardinia, the model-based matched filter localizes the depths of both the source and receiving array and the range between them. The peak signal-to-noise ratio for the model-based matched filter is always larger than that of the conventional filter  相似文献   

14.
Based on the general concept of the inverse acoustic radiation problem, the temporal scanning of a stationary acoustic field along a closed contour is used to simplify the measurement approach for obtaining information on source directionality. The mathematical formulation is derived from a model of the two-dimensional acoustic field. The formulation of the inverse problem is also investigated to establish a methodology for improving the angular resolution of the array processing. The fundamental relationship between the sound sources and the circular passive synthetic array is explored, utilizing existing mathematical methods, in order to develop the processing algorithm. Other subjects of practical interest, such as directional ambiguity, effect of Doppler frequency, interference noise, and processing gain are discussed. It is concluded that the results can be used to establish guidelines for engineering design and deployment of this type of synthetic array, and to further exploit the new array signal processing technique  相似文献   

15.
This paper describes results from an experiment carried out to investigate geoacoustic inversion with a bottom-moored hydrophone array located in the shallow waters of the Timor Sea off the northern coast of Australia. The array consisted of two arms in a V shape, horizontally moored at a site that was essentially flat over a large area. Hydrophone positions were estimated using an array element localization (AEL) technique that established relative uncertainties of less than 1 m on the seafloor. The data used for geoacoustic inversion were from experiments with continuous wave (CW) tones in the 80- to 195-Hz band transmitted from a towed projector. A hybrid search algorithm determined the set of geoacoustic model parameters that maximized the Bartlett fit (averaged coherently spatially at each tone and incoherently over frequency) between the measured and modeled data at the array. Due to the long range experimental geometry, the inversion was sensitive to attenuation in the sediment. The inverted geoacoustic profile performed well in a simple test for localizing the sound source at other sites in the vicinity of the array. Range-depth localization performance for the horizontal array was comparable to that for an equivalent vertical array.  相似文献   

16.
The Cramer-Rao lower bound is used to assess the potential localization accuracy of a horizontal array observing a narrowband moving target. The narrowband signal received by the array is assumed to have only partial temporal coherence, which is modeled by taking the signal to be completely coherent over a data block but with an unknown absolute phase from block to block. A numerical example for a linear array illustrates the improvement in localization accuracy caused by an increase in the signal coherence time. The effect of target/array geometry is also studied  相似文献   

17.
In this paper, we present a nonconventional matched-mode procedure for localizing a broadband source in the time-frequency domain. This hybrid coherent and incoherent approach exploits both the temporal and spatial characteristics of the multimode arrival structure at a receiving sensor array. In the previous work, a time-domain technique was developed to deal with narrowband signals coherently. It consists of the following three steps. The first step employs a receiving sensor array to separate the modes by the conventional modal filtering approach. The second step is to estimate the energy and relative arrival times of the various modes which arrive at the receiver. The last step uses the differences of modal travel times to estimate the source range, and uses the ratios of modal energies to estimate the source depth. Here, we employ bandpass filters to divide the received broadband signal into several subfrequency bands, and apply the first and second steps of the previously developed coherent narrowband technique to the subfrequency bands in the time domain. The results obtained from subfrequency bands are then combined incoherently in the frequency domain to produce an estimate of the source position. Numerical simulation of an experiment with explosive sources at the shallow water site of the Yellow Sea is presented  相似文献   

18.
Underwater acoustic transient signals are generated mechanically at known positions along a wharf. These signals are received by a wide aperture planar array of four underwater acoustic sensors, whose positions relative to the wharf are unknown. A method is described that enables the positions of the sensors to be estimated from accurate differential time-of-arrival measurements (with 0.1 /spl mu/s precision) as the signal wavefronts traverse the array. A comparison of the estimated positions with the nominal positions of the first three sensors, which form a 20-m-wide aperture horizontal line array, reveals a 2-cm displacement of the middle sensor from the line array axis. This slight bowing of the line array results in overranging (bias error of 3%) when the wavefront curvature method is used with the nominal collinear sensor positions to locate a static source of active sonar transmissions at a range of 59.2 m. The use of the spherical intersection method coupled with the estimated sensor positions of the line array provides an order of magnitude improvement in the range estimate (within 0.3% of the actual value). However, systematic ranging errors are observed when the sound propagation medium becomes nonstationary. Next, the differences in the arrival times of the direct path and boundary-reflected path signals at the middle sensor of the wide aperture line array are estimated using the differential phase residue of the analytic signal at the sensor output. These multipath delays are used to estimate the range and depth of the source. Although the average value of the multipath range estimates is within 0.5% of the actual value, the variance of the range estimates is 50 times larger when compared with the results of the spherical intersection and wavefront curvature methods. The multipath delay data are also processed to provide a reliable estimate of the temporal variation in the water depth enabling the tidal variation to be observed.  相似文献   

19.
A low-angle tracking technique based on a novel high-resolution algorithm is presented. The new high-resolution algorithm, which is called the forward-backward nonlinear prediction (FBNLP) method, replaces the linear predictor in the conventional forward-backward linear prediction (FBLP) method with a nonlinear one to try to improve the tracking in a realistic naval environment, Real radar tracking data over the sea, which were recorded with a 32-element sampled aperture antenna on an “over-water” path, were used in this study. They were recorded in a multipath environment, i.e., one where, in addition to the customary direct signal, an indirect signal was also received by the antenna system, and separation of these two signals was less than one standard beamwidth. The performance of the FBNLP method is shown to be better than that of the modified FBLP algorithm for the data sets used in this paper  相似文献   

20.
The relative height of the seafloor can be estimated by using two vertically displaced receivers. In this paper, we propose techniques to improve the accuracy of the estimated height. Our results are based on the use of synthetic aperture sonar (SAS) imaging, which implies coherent addition of complex images acquired from a moving platform. The SAS processing improves the along-track (or azimuth) resolution, as well as the signal-to-noise ratio (SNR), which in turn improves the estimated height accuracy. We show that the shift of the effective center frequency induced by coherent, frequency-dependent scattering affect the time-delay estimates from complex cross correlations, and we propose a correction technique for broadband signals with uneven magnitude spectra. To reduce the effect of geometrical decorrelation and increase the coherence between the images, we beamform the sonar images onto an a priori estimate of the seafloor height before correlating. We develop a mathematical model for the imaging geometry. Finally, we demonstrate our proposed estimators by providing relative seafloor height estimates from real aperture and SAS images, obtained during the InSAS-2000 experiment at Elba Island in Italy. In particular, we demonstrate that the SAS image quality is significantly improved by inclusion of the height estimates as a priori information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号