首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
Empirical characteristics of snowmelt runoff are derived from observations made during snowmelt in a six‐year period from 1980 to 1985 on three experimental plots and three plates located on the campus of the Lulea University of Technology in Lulea, Sweden. The plots had asphalt, gravel and grass surfaces. The plates were of different designs with one having the bottom cut out so that it was more like a frame. With the assumption that the asphalt surface of the plots was impervious, infiltration of meltwater into gravel and grass surfaces was deduced. Unlike rainfall infiltration, the graph of snowmelt infiltration rate resembled a flow hydrograph, with a distinct rise, a peak and a distinct recession. A strong linear relationship between the snowmelt runoff hydrograph peak and the snowmelt amount was found, which explained more than 90% of the variability in the snowmelt peak. This is in contrast with rainfall runoff where the relationship between runoff peak and volume is decidedly non‐linear. Hourly snowmelt runoff peak and daily snowmelt amount were found to exhibit nearly constant skew and follow approximately a Gumbel frequency distribution. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The potential impacts of climate change can alter the risk to critical infrastructure resulting from changes to the frequency and magnitude of extreme events. As well, the natural environment is affected by the hydrologic regime, and changes in high flows or low flows can have negative impacts on ecosystems. This article examines the detection of trends in extreme hydrological events, both high and low flow events, for streamflow gauging stations in Canada. The trend analysis involves the application of the Mann–Kendall non‐parametric test. A bootstrap resampling process has been used to determine the field significance of the trend results. A total of 68 gauging stations having a nominal record length of at least 50 years are analysed for two analysis periods of 50 and 40 years. The database of Canadian rivers investigated represents a diversity of hydrological conditions encompassing different extreme flow generating processes and reflects a national scale analysis of trends. The results reveal more trends than would be expected to occur by chance for most of the measures of extreme flow characteristics. Annual and spring maximum flows show decreasing trends in flow magnitude and decreasing trends in event timing (earlier events). Low flow magnitudes exhibit both decreasing and increasing trends. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (Østlandet) Norway by applying the Mann–Kendall test and Theil–Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983–2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. Østlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in Østlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.  相似文献   

4.
ABSTRACT

This study investigates changes in seasonal runoff and low flows related to changes in snow and climate variables in mountainous catchments in Central Europe. The period 1966–2012 was used to assess trends in climate and streamflow characteristics using a modified Mann–Kendall test. Droughts were classified into nine classes according to key snow and climate drivers. The results showed an increase in air temperature, decrease in snowfall fraction and snow depth, and changes in precipitation. This resulted in increased winter runoff and decreased late spring runoff due to earlier snowmelt, especially at elevations from 1000 to 1500 m a.s.l. Most of the hydrological droughts were connected to either low air temperatures and precipitation during winter or high winter air temperatures which caused below-average snow storages. Our findings show that, besides precipitation and air temperature, snow plays an important role in summer streamflow and drought occurrence in selected mountainous catchments.  相似文献   

5.
Abstract

Motivated by recent extreme flow events in the Mataquito River located in the Mediterranean region of Chile, we performed a detailed trend analysis of critical hydroclimatic variables based on observed daily flow, precipitation and temperature within the basin. For the period 1976–2008, positive trends in temperature were observed, especially during spring and summer months. At the same time, we found negative trends in the frequency and intensity of precipitation, especially during spring months. We observed an increasing difference between average streamflow in the rainy season as compared to the snowmelt season. Part of this trend is caused by larger flows during autumn months, although no positive precipitation trends are observed for these months. Finally, significant reductions in minimum flow during spring/summer and a disproportionate concentration of high-flow events occurring in the last 10 years were also identified. These high-flow events tend to happen during autumn months, and are associated with high precipitation and high minimum temperatures. Based on a simple assessment of changes in irrigated agriculture and land use, we concluded that other non-climatic factors seem not to be as relevant to the detected flow trends. All these results are in accord with future climate change scenarios that show an increase in temperature, a reduction in average precipitation and a reduction in snow accumulation. Such future scenarios could seriously hamper the development of economic activities in this basin, exemplifying also a fate that may be shared by other similar basins in Chile and in other regions of the world.

Editor Z.W. Kundzewicz

Citation Vicuña, S., Gironás, J., Meza, F.J., Cruzat, M.L., Jelinek, M., Bustos, E., Poblete, D., and Bambach, N., 2013. Exploring possible connections between hydrological extreme events and climate change in central south Chile. Hydrological Sciences Journal, 58 (8), 1598–1619.  相似文献   

6.
Abstract

The influence of suburbanization upon runoff response to snowmelt and rain-on-snow inputs was examined for a small drainage basin in south-central Ontario. Modification of more than 50% of the basin area over a 14 year period led to a six-fold increase in the spring quickflow response ratio and an increase in the number of snowmelt events that generate appreciable quickflow. Anticipated changes in mean peak discharge, time of rise and quickflow response ratio did not emerge, and the influence of development upon these streamflow characteristics may have been overshadowed by annual changes in basin antecedent conditions. The distinction between hydrograph properties associated with snowmelt and rain-on-snow events has become more pronounced with suburbanization. Rain-on-snow generated higher maximum peak flows and lower average peak discharge per unit input compared with snowmelt, and these differences were accentuated by development of the basin. Rain-on-snow also produced more variable time of rise values, while the reduction in hydrograph recession coefficients that accompanied suburban development was most apparent for snowmelt events. The results suggest that suburbanization can have a subtle, yet real, influence upon basin runoff regime during spring snowmelt.  相似文献   

7.
Urban stormwater is a major cause of urban flooding and natural water pollution. It is therefore important to assess any hydrologic trends in urban catchments for stormwater management and planning. This study addresses urban hydrological trend analysis by examining trends in variables that characterize hydrological processes. The original and modified Mann‐Kendall methods are applied to trend detection in two French catchments, that is, Chassieu and La Lechere, based on approximately 1 decade of data from local monitoring programs. In both catchments, no trend is found in the major hydrological process driver (i.e., rainfall variables), whereas increasing trends are detected in runoff flow rates. As a consequence, the runoff coefficients tend to increase during the study period, probably due to growing imperviousness with the local urbanization process. In addition, conceptual urban rainfall‐runoff model parameters, which are identified via model calibration with an event based approach, are examined. Trend detection results indicate that there is no trend in the time of concentration in Chassieu, whereas a decreasing trend is present in La Lechere, which, however, needs to be validated with additional data. Sensitivity analysis indicates that the original Mann‐Kendall method is not sensitive to a few noisy values in the data series.  相似文献   

8.
Abstract

A model based on analytical development and numerical solution is presented for estimating the cumulative distribution function (cdf) of the runoff volume and peak discharge rate of urban floods using the joint probability density function (pdf) of rainfall volume and duration together with information about the catchment's physical characteristics. The joint pdf of rainfall event volume and duration is derived using the theory of copulas. Four families of Archimedean copulas are tested in order to select the most appropriate to reproduce the dependence structure of those variables. Frequency distributions of runoff event volume and peak discharge rate are obtained following the derived probability distribution theory, using the functional relationship given by the rainfall–runoff process. The model is tested in two urban catchments located in the cities of Chillán and Santiago, Chile. The results are compared with the outcomes of continuous simulation in the Storm Water Management Model (SWMM) and with those from another analytical model that assumes storm event duration and volume to be statistically independent exponentially distributed variables.

Citation Zegpi, M. & Fernández, B. (2010) Hydrological model for urban catchments – analytical development using copulas and numerical solution. Hydrol. Sci. J. 55(7), 1123–1136.  相似文献   

9.
ABSTRACT

An adaptation of the degree-day method has been used to analyse a number of snowmelt events on two catchments as a first step in a programme of research on snowmelt river flooding in Britain. The analysis indicates that the degree-day factor varies during events and between events on the same catchment. A snowmelt event is seen as consisting of three phases, an initial lag phase, a phase of nearly constant degree-day factor and a recession phase. The degree-day factor in the constant part of each event has significant correlation with the total flood volume on both catchments and with liquid precipitation during the snowmelt on one catchment only. Separate procedures are considered necessary for forecasting the initial lag phase and runoff during the recession.  相似文献   

10.
ABSTRACT

This paper presents an analysis of trends in six drought variables at 566 stations across India over the period 1901–2002. Six drought variables were computed using standardized precipitation index (SPI). The Mann-Kendall (MK) trend test and Sen’s slope estimator were used for trend analysis of drought variables. Discrete wavelet transform (DWT) was used to identify the dominant periodic components in trends, whereas the significance of periodic components was examined using continuous wavelet transform (CWT) based global wavelet spectrum (GWS). Our results show an increasing trend in droughts in eastern, northeastern and extreme southern regions, and a decreasing trend in the northern and southern regions of the country. The periodic component influencing the trend was 2–4 years in south, 4–8 years in west, east and northeast, 8–64 years in central parts and 32–128 years in the north; however, most of the periodic components were not statistically significant.  相似文献   

11.
River runoff from the four largest Siberian river basins (the Ob, Yenisei, Lena, and Kolyma) considerably contributes to freshwater flux into the Arctic Ocean from the Eurasian continent. However, the effects of variation in snow cover fraction on the ecohydrological variations in these basins are not well understood. In this study, we analysed the spatiotemporal variability of the maximum snow cover fraction (SCFmax) in the four Siberian river basins. We compared the SCFmax from 2000 to 2016 with data in terms of monthly temperature and precipitation, night-time surface temperatures, the terrestrial water storage anomaly (TWSA), the normalised difference vegetation index (NDVI), and river runoff. Our results exhibit a decreasing trend in the April SCFmax values since 2000, largely in response to warming air temperatures in April. We identified snowmelt water as the dominant control on the observed increase in the runoff contribution in May across all four Siberian river basins. In addition, we detected that the interannual river runoff was predominantly controlled by interannual variations in the TWSA. The NDVI in June was strongly controlled by the timing of the snowmelt along with the surface air temperature and TWSA in June. The rate of increase in the freshwater flux from the four Siberian rivers decreased from 2000 to 2016, exhibiting large interannual variations corresponding to interannual variations in the TWSA. However, we identified a clear increase trend in the freshwater flux of ~4 km3/year when analysing the long-term 39-year historical record (1978–2016). Our results suggest that continued global warming will accelerate the transition towards the earlier timing of snowmelt and spring freshwater flux into the Arctic Ocean. Our findings also highlight the effects of earlier snowmelt on ecohydrological changes in the Northern Hemisphere.  相似文献   

12.
We investigated trends in future seasonal runoff components in the Willamette River Basin (WRB) of Oregon for the twenty‐first century. Statistically downscaled climate projections by Climate Impacts Group (CIG), eight different global climate model (GCM) simulations with two different greenhouse gas (GHG) emission scenarios, (A1B and B1), were used as inputs for the US Geological Survey's Precipitation Runoff Modelling System. Ensemble mean results show negative trends in spring (March, April and May) and summer (June, July and August) runoff and positive trends in fall (September, October and November) and winter (December, January and February) runoff for 2000–2099. This is a result of temperature controls on the snowpack and declining summer and increasing winter precipitation. With temperature increases throughout the basin, snow water equivalent (SWE) is projected to decline consistently for all seasons. The decreases in the centre of timing and 7‐day low flows and increases in the top 5% flow are caused by the earlier snowmelt in spring, decreases in summer runoff and increases in fall and winter runoff, respectively. Winter runoff changes are more pronounced in higher elevations than in low elevations in winter. Seasonal runoff trends are associated with the complex interactions of climatic and topographic variables. While SWE is the most important explanatory variable for spring and winter runoff trends, precipitation has the strongest influence on fall runoff. Spatial error regression models that incorporate spatial dependence better explain the variations of runoff trends than ordinary least‐squares (OLS) multiple regression models. Our results show that long‐term trends of water balance components in the WRB could be highly affected by anthropogenic climate change, but the direction and magnitude of such changes are highly dependent on the interactions between climate change and land surface hydrology. This suggests a need for spatially explicit adaptive water resource management within the WRB under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The spatial and temporal variations of precipitation and runoff for 139 basins in South Korea were investigated for 34 years (1968–2001). The Precipitation‐Runoff Modelling System (PRMS) was selected for the assessment of basin hydrologic response to varying climates and physiology. A non‐parametric Mann–Kendall's test and regression analysis are used to detect trends in annual, seasonal, and monthly precipitation and runoff, while Moran's I is adapted to determine the degree of spatial dependence in runoff trend among the basins. The results indicated that the long‐term trends in annual precipitation and runoff were increased in northern regions and decreased in south‐western regions of the study area during the study period. The non‐parametric Mann–Kendall test showed that spring streamflow was decreasing, while summer streamflow was increasing. April precipitation decreased between 15% and 74% for basins located in south‐western part of the Korean peninsula. June precipitation increased between 18% and 180% for the majority of the basins. Trends in seasonal and monthly streamflow show similar patterns compared to trends in precipitation. Decreases in spring runoff are associated with decreases in spring precipitation which, accompanied by rising temperatures, are responsible for reducing soil moisture. The regional patterns of precipitation and runoff changes show a strong to moderate positive spatial autocorrelation, suggesting that there is a high potential for severe spring drought and summer flooding in some parts of Korea if these trends continue in the future. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The runoff in Songhuajiang River catchment has experienced a decreasing trend during the second half of the 20th century. Serially complete daily rainfall data of 42 rainfall stations from 1959 to 2002 and daily runoff data of five meteorological stations from 1953 to 2005 were obtained. The Mann–Kendall trend test and the sequential version of Mann–Kendall test were employed in this study to test the monthly and annual trends for both rainfall and runoff, to determine the start point of abrupt runoff declining, and to identify the main driving factors of runoff decline. The results showed an insignificant increasing trend in rainfall but a significant decreasing trend in runoff in the catchment. For the five meteorological stations, abrupt runoff decline occurred during 1957–1963 and the middle 1990s. Through Mann–Kendall comparisons for the area‐rainfall and runoff for the two decreasing periods, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. Analysis of land use/cover shows that farmland is most related with runoff decline among all the land use/cover change in Nenjiang catchment. From 1986 to 1995, the area of farmland increased rapidly from 6.99 to 7.61 million hm2. Hydraulic engineering has a significant influence on the runoff decline in the second Songhuajiang catchment. Many large‐scale reservoirs and hydropower stations have been built in the upstream of the Second Songhuajiang and lead to the runoff decline. Nenjiang and the Second Songhuajiang are the two sources of mainstream of Songhuajiang. Decreased runoff in these two sub‐catchments then results in runoff decrease in mainstream of Songhuajiang catchment. It is, therefore, concluded that high percent agricultural land and hydraulic engineering are the most probable driving factors of runoff decline in Songhuajiang River catchment, China.  相似文献   

15.
ABSTRACT

A rainfall–runoff model was employed to identify four major flood-generating processes corresponding to flood events identified from daily discharge data from 614 stations across Europe in the period 1961–2010: long-rain, short-rain, snowmelt, and rain-on-dry-soil flood events. Trend analyses were performed on the frequency of occurrence of each of the flood types continentally and in five geographical regions of Europe. Continentally, the annual frequency of flood events did not show a significant change over the investigation period. However, the frequency of both winter and summer long-rain events increased significantly, while that of summer snowmelt events decreased significantly. Regionally, the frequency of winter short and long-rain events increased significantly in Western Europe, while the frequency of summer snowmelt and short-rain events decreased in Northern Europe. The frequency of summer snowmelt events in Eastern Europe and winter short-rain events in Southern Europe showed a declining trend.  相似文献   

16.
Abstract

Abstract Monthly precipitation and temperature trends of 51 stations in the Yangtze basin from 1950–2002 were analysed and interpolated. The Mann-Kendall trend test was applied to examine the monthly precipitation and temperature data. Significant positive and negative trends at the 90, 95 and 99% significance levels were detected. The monthly mean temperature, precipitation, summer precipitation and monthly mean runoff at Yichang, Hankou and Datong stations were analysed. The results indicate that spatial distribution of precipitation and temperature trends is different. The middle and lower Yangtze basin is dominated by upward precipitation trend but by somewhat downward temperature trend; while downward precipitation trend and upward temperature trend occur in the upper Yangtze basin. This is because increasing precipitation leads to increasing cloud coverage and, hence, results in decreasing ground surface temperature. Average monthly precipitation and temperature analysis for the upper, middle and lower Yangtze basin, respectively, further corroborate this viewpoint. Analysis of precipitation trend for these three regions and of runoff trends for the Yichang, Hankou and Datong stations indicated that runoff trends respond well to the precipitation trends. Historical flood trend analysis also shows that floods in the middle and lower Yangtze basin are in upward trend. The above findings indicate that the middle and lower Yangtze basin is likely to face more serious flood disasters. The research results help in further understanding the influence of climatic changes on floods in the Yangtze basin, providing scientific background for the flood control activities in large catchments in Asia.  相似文献   

17.
ABSTRACT

The snowmelt runoff process from small basins is discussed. A differentiation is made between overland flow in the snowpack and groundwater flow induced by infiltrating meltwater. The effect of variations of the snowmelt intensity on streamflow is studied. It is shown that the runoff is high from the first day of snowmelt runoff if the streamflow is caused by overland flow, and that there are pronounced peaks every day, which almost correspond with the snowmelt intensity during daytime. Streamflow originating from groundwater, on the other hand, increases continuously during the snowmelt and shows only small daily peaks in the flow. Simultaneous overland and groundwater flow are also discussed. Observed runoff hydrographs from small basins are analysed in some detail. For the open fields studied the runoff shows the typical character of overland flow. For a rather large forested area the surface runoff also constitutes an important part of the runoff, but the groundwater baseflow is considerable.  相似文献   

18.
Determining abrupt changes in runoff and sediment load may not only enhance identification of the principal driving factors for such changes but also help establish effective countermeasures for serious water deficit by managers in the Yellow River basin. We used the Mann-Kendall trend test and linear regression to determine trends and abrupt changes of runoff and sediment load during the period between 1950 and 2005, based on monthly hydrological data. Results show that runoff and sediment load decreased from 1950 to 2005, on annual or monthly time scales. Their changes are divided into three stages: fluctuating stage (1950–1970), slowly decreasing stage (1970–1980) and accelerated decreasing stage (1980–2005). The relationship between runoff and sediment load was most significant, and it can be expressed as a linear regression function. Precipitation was one of the most important climate factors affecting runoff before 1985, and the impact of human activities on runoff decrease grew strongly after 1985. Water balance analysis of the Yellow River basin indicates that natural climate change contributed about 55.3% and human activities about 44.7% to the runoff decrease after 1986.  相似文献   

19.
Fluvial flood events have substantial impacts on humans, both socially and economically, as well as on ecosystems (e.g., hydroecology and pollutant transport). Concurrent with climate change, the seasonality of flooding in cold environments is expected to shift from a snowmelt‐dominated to a rainfall‐dominated flow regime. This would have profound impacts on water management strategies, that is, flood risk mitigation, drinking water supply, and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large‐scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality and defining related key drivers therefore is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explores changes in flood seasonality across near‐natural catchments in Scandinavia using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt‐dominated catchments with a single peak occurring in spring and early summer (March through June), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows with 5–35% of the catchments showing significant changes at the 5% significance level. Seasonal mean daily flows corroborate those findings with higher percentages (5–60%) of the catchments showing statistically significant changes. Alterations in annual flood occurrence also point towards a shift in flow regime from snowmelt‐dominated to rainfall‐dominated with consistent changes towards earlier timing of the flood peak (significant for 25% of the catchments). Regionally consistent patterns suggest a first‐order climate control as well as a local second‐order catchment control, which causes inter‐seasonal variability in the streamflow response.  相似文献   

20.
A seasonal water budget analysis was carried out to quantify various components of the hydrological cycle using the Soil and Water Assessment Tool (SWAT) model for the Betwa River basin (43?500 km2) in central India. The model results were satisfactory in calibration and validation. The seasonal water budget analysis showed that about 90% of annual rainfall and 97% of annual runoff occurred in the monsoon season. A seasonal linear trend analysis was carried out to detect trends in the water balance components of the basin for the period 1973–2001. In the monsoon season, an increasing trend in rainfall and a decreasing trend in ET were observed; this resulted in an increasing trend in groundwater storage and surface runoff. The winter season followed almost the same pattern. A decreasing trend was observed in summer season rainfall. The study evokes the need for conservation structures in the study area to reduce monsoon runoff and conserve it for basin requirements in water-scarce seasons.

EDITOR Z.W. Kundzewicz

ASSOCIATE EDITOR F. Hattermann  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号