首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
涠西南凹陷是勘探开发一体化研究重点区,本文以二号断裂带为研究对象,综合断裂动力学特征、运动学特征、几何学特征等研究,将中段“坡坪式”断裂体系、两侧“铲式”断裂体系等差异性断裂体系内部划分为3级雁列式主断裂、4级分支断裂、5级分支断裂。中段“坡坪式”断裂体系受到更高强度地应力作用,主断裂与分支断裂更为发育,二号断裂带绝大多数油气分布于此。综合分析二号断裂带差异性断裂体系内部断裂系统与油气展布规律之间的关系,得到3方面断裂控藏规律及4种优势断裂控藏模式。在断裂控藏规律及断裂控藏模式的指导下,搜索、优选二号断裂带中段北1块、北3块、北4块潜力目标进行评价、实施。3个潜力区块均实施成功,达到地质油藏目的,断裂控藏规律、断裂控藏模式在涠西南凹陷二号断裂带潜力区块应用效果好。  相似文献   

2.
An analysis is given of air-gun profiler and magnetic data obtained in the central North Atlantic between 12° and 18°N. Eight fracture zones were crossed, one of which (the 15°20N fracture zone) was traced over a distance of 1500 km. The mode of adjustment of fracture zones to a change in direction of spreading is discussed. It is shown that also if this new direction would lead to an opening of the fracture zone, and adjustment fracture can originate and actually does so in several instances.The about E-W fracture zones dominate the structure of the Ridge province entirely, both with regard to the topography and to the magnetics. A magnetic model is proposed accounting for the different types of anomalies found over fracture zones. No intrusive bodies are needed to explain these anomalies.The origin of fracture zones is related to thermal contraction of a cooling lithosphere while moving from the ridge. Thermal contraction may also explain how the American and the African plates are freed from the grip they are caught in by the fanning of the fracture zones in the central North Atlantic. The fanning of fracture zones has consequences for the determination of the pole of spreading. This pole can only be found as a best fit from a synthesis of the total plate boundary, i.e. from the Azores to Bouvet Island. Local poles have only restricted value, since deviations up to 5 deg occur from a small circle pattern based on existing data.Several huge structures, viz. Researcher Ridge and Royal Trough, are found in the area which seem to parallel the flow lines of the fracture zone system. No adequate explanation exists for these structures.  相似文献   

3.
At 11°N latitude, the Mid-Atlantic ridge is offset 300 km by the Vema fracture zone. Between the ridge offset, the fracture consists of an elongate, parallelogram-shaped trough bordered on the north and south by narrow, high walls. The W-E trending valley floor is segmented by basement ridges and troughs which trend W10°N and are deeply buried by sediment. Uniform high heat flow characterizes the valley area. Seismically inactive valleys south of the Vema fracture, also trending W10°N, are interpreted as relict fracture zones. We explain the high heat flow and the shape of the Vema fracture as the results of secondary sea-floor spreading produced by a reorientation of the direction of sea-floor spreading from W10°N to west-east. This reorientation probably began approximately 10 million years ago. Rapid filling of the fracture valley by turbidites from the Demerara Abyssal plain took place during the last million years.The large amount of differential uplift in the Vema fracture is not explained by the reorientation model. Since the spreading rate across the valley is small compared to that across the ridge crest, we suggest that it takes place by intrusion of very thin dikes that cool rapidly and hence have high viscosity. Upwelling in the fracture valley will thus result in cosiderable loss of hydraulic head, according to models by Sleep and Biehler (1970), and recovery of the lost head could produce valley walls higher than the adjacent ridge crest. We further postulate that the spreading takes place along the edges of the fracture zone rather than in the center. This would account for the uniform distribution of heat flow along the fracture valley and for the lack of disturbance of the valley fill. As a consequence, a median ridge should form in the center, where head loss is compensated in the older crust; such a median ridge may be present. The width of the valley should be a function of the angle and time of reorientation, and of the spreading rate; the width so obtained for the Vema fracture is in accordance with the observed width. If this model is correct, the narrowness of the valley walls implies a thin lithosphere of very limited horizontal strength.  相似文献   

4.
ABSTRACT

Electro-osmosis is a foundation treatment method for clay that is not widely used because of its nonuniform consolidation effect and high cost. To overcome these limitations, this study investigates fracture grouting. To determine the optimal grouting method, anode grouting, polyurethane grouting, and fracture grouting were first compared in one-dimensional electro-osmosis consolidation tests using self-made model boxes under an equal electric potential gradient, and then different solution concentrations were tested. By comparing the current, drainage rate, and coefficient of energy consumption during the electro-osmosis process, as well as moisture content, electrical conductivity, and shear strength after the tests, the moisture and shear strength of clay after electro-osmosis were found to be significantly improved by adding chemical reagents at the fracture. In addition, the optimum concentration of fracture grouting was determined to be 1.5%, and the shear strength after testing of clay that had been treated with sodium hydroxide was found to be higher than that of the control group. However, the effects of fracture grouting in the early stage were clearer than the effects of fracture grouting at later stages.  相似文献   

5.
The properties of the Antarctic Bottom Water flow in the region of its inflow to the channel of the Romanche Fracture Zone at 22°10′–22°30′ W are studied on the basis of CTD and LADCP profiling in the western part of the equatorial fracture zone. A deep water cataract was found at the sill over the southern wall of the fracture with a depth of approximately 4600 m, which is associated with the abyssal flow, whose potential temperature is lower than 1°C. The inflow of water into the channel of the fracture in this temperature range is fully localized over this sill. The minimum potential temperature θ recorded in 2011 near the bottom was equal to 0.51°C, which is lower approximately by 0.12°C than the minimum temperatures ever measured in the western part of the fracture. The water transport in the cataract was estimated at 0.2 Sv (1 Sv = 106 m3/s), which is approximately 30% of the known estimates of the total transport of Antarctic Bottom Water (θ < 1.9°C) through the fracture. The extremely high intensity of the cross isothermal mixing in the cataract region was found. The analysis of the bottom topography data, including the historical WOD09 dataset, shows that the inflow of water with 1.00° < θ < 1.70°C into the channel of the fracture is most likely fully localized in a few passages in the region of the survey in 2011, while the water exchange with the abyssal waters with θ > 1.70°C through the Romanche Fracture Zone between the West and East Atlantic can also occur through the depressions in the southern and northern walls of the fracture in the region of the Vema Deep.  相似文献   

6.
The goal of this paper is to study the flows of Antarctic Bottom Water through the fracture zones in the northern part of the Mid-Atlantic Ridge based on the Conductivity-Temperature-Depth and Lowered Acoustic Doppler Current Profiler observations in 2014, 2015, and 2016. We measured the thermohaline properties and velocities and analyzed the flows of bottom water in the Strakhov, Bogdanov, nameless (07°28′N), Vernadsky, Doldrums, Arkhangelsky, Ten Degree, Vema, Marathon, Fifteen Twenty, and Kane fracture zones. These abyssal channels connect the deep basins of the East and West Atlantic. In addition to the known fact that the main portion of water propagates through the Vema Fracture Zone (11°N), we estimated that additionally a half of this volume propagates through the other fractures. Nevertheless, the pathway for the coldest water is located in the Vema Fracture Zone. Velocities of bottom currents in this fracture reach 45 cm/s. We found strong difference in the structure and transport through the Vema Fracture Zone based on four sections across the fracture occupied in 3 years from 2014 to 2016. The transport varies from 0.7 to 1.2 Sv. The core of maximum velocity in the main channel of this fracture changes its depth between 4000 m and the bottom at 4650 m. The total transport through the other fracture zones is as high as 0.48 ± 0.05 Sv.  相似文献   

7.
The Wilkes fracture zone offsets the East Pacific Rise about 200 km right-laterally near 9°S. The bathymetric expression of the fracture zone ranges from a simple slope or step along its inactive extension to a 100 km wide zone of oblique structural features in the active portion. A low ridge 200 to 300 m high, 5 to 15 km wide and 185 km long is the dominant oblique structure; it trends 23° north of the main transform trend. A high-amplitude magnetic anomaly trends 097° along the southern part of the active portion and apparently marks the main transform direction. The structurally simple, inactive portions of the Wilkes fracture zone trend 105°. Plots of epicenter locations reveal two groupings of earthquakes, one along an 082° trend in the central part of the fracture zone, and a cluster near the southwestern fracture zone — spreading center intersection.Taken together the data suggest that some event, other than a shift in the Nazca-Pacific pole of rotation, occurred 0.9 m.y. ago to change the Wilkes fracture zone from a simple fault to a complex zone of shearing. Since that time the long oblique ridge, probably the surface expression of a Riedel shear, was formed. At present the entire 200 km long, 100 km wide region between the offset axes is seismically active, but transform motion may be largely confined to the southern margin of the active zone, coincident with the high-amplitude magnetic anomaly there.  相似文献   

8.
Abstract

Geophysical evidence indicating the presence of gas hydrate has been found in the Ulleung Basin, which lies off the east coast of the Korean Peninsula; however, hydrate distribution in the basin is not well understood. Logging-while-drilling data for 13 sites in the Ulleung Basin, East Sea, were obtained to investigate the distribution pattern of gas hydrate. Most of the sites yielded log data indicating the presence of gas hydrate. Prominent fractures (both resistive and conductive fractures) were clearly identified on the resistivity borehole images, particularly at seismic chimney sites. Resistive fractures, which contain large amounts of gas hydrate, are prominent in the seismic chimney sites. The strike and dip of each fracture was calculated and displayed on a stereographic plot and rosette diagram. From the fracture orientations on the stereographic plots, the maximum horizontal stress is NW–SE, reflecting the regional stress regime around the Ulleung Basin, although the fracture orientations are broadly distributed, indicating that the fracture pattern is not well-ordered on the rosette diagram. The fracture dips are between 36.46° and 63.66°; the range of dip azimuths is 0.94°–359°, and exhibit little change with depth. The dip azimuths are generally westerly to southwesterly.  相似文献   

9.
The Kane Fracture Zone probably is better covered by geophysical survey data, acquired both by design and incidentally, than any other fracture zone in the North Atlantic Ocean. We have used this data to map the basement morphology of the fracture zone and the adjacent crust for nearly 5700 km, from near Cape Hatteras to the middle of the Mesozoic magnetic anomalies west of Cap Blanc, northwest Africa. We use the trends of the Kane transform valley and its inactive fracture valley to determine the record of plate-motion changes, and we interpret the basement structural data to examine how the Kane transform evolved in response to changes in plate motion. Prior to about 133 Ma the Kane was a small-offset transform and its fracture valley is structurally expressed only as a shallow ( < 0.5 km) trough. In younger crust, the offset may have increased to as much as 190 km (present offset 150 km) and the fracture valley typically is up to 1.2 km deep. This part of the fracture valley records significant changes in direction of relative plate motion (5°–30°) near 102 Ma, 92 Ma, 59 Ma, 22 Ma, and 17 Ma. Each change corresponds to a major reorganization of plate boundaries in areas around the Atlantic, and the fracture-zone orientation appears to be a sensitive recorder of these events. The Kane transform has exhibited characteristic responses to changes in relative plate motion. Counterclockwise plate-motion changes put the left-lateral transform offset into extension, and the response was for ridge tips at the ridge-transform intersections to propagate across the transform valley and against the truncating lithosphere. Heating of this lithosphere appears to have produced uplift and formation of a well developed transverse ridge that bounds the inactive fracture valley on its older side. The propagating ridge tips also rotated toward the transform fault in response to the local stress field, forming prominent hooked ridges that now extend into or across the inactive fracture valley. Clockwise (compressional) changes in relative plate motion produced none of these features, and the resulting fracture valleys typically have a wide-V shape. The Kane transform experienced severe adaptions to the changes in relative plate motion at about 102 Ma (compressional shift) and 92 Ma (extensional shift), and new transform faults were formed in crust outside the contemporary transform valley. Subsequently, the transform offset has been smaller and the rates of change in plate motion have been more gradual, so transform-fault adjustment has been contained within the transform valley. The fracture-valley structure formed during extensional and compressional changes in relative plate motion can be decidedly asymmetrical in conjugate limbs of the fracture zone. This asymmetry appears to be related to the ‘absolute’ motion of the plate boundary with respect to the asthenosphere.  相似文献   

10.
The West O’Gorman Fracture Zone is an unusual feature that lies between the Mathematician Ridge and the East Pacific Rise on crust generated on the East Pacific Rise between 4 and 9 million years ago. We made a reconnaissance gravity, magnetic and Sea Beam study of the zone with particular emphasis on its eastern (youngest) portion. That region is characterized by an elongate main trough, a prominent median ridge and other, smaller ridges and troughs. The structure has the appearance of large-offset fracture zone, possibly in a slow spreading environment. However, magnetic anomalies indicate that the offset, if any, is quite small, and the spreading rate during formation was fast. In addition, the magnetic profiles do not support earlier models for a difference in spreading rate north and south of the fracture. The morphology of the fracture zone suggests that flexure may be responsible for some of the topography; but gravity studies indicate some of the most prominent features of the fracture zone are at least partially compensated. The main trough is underlain by a thin crust (or high density body), similar to large-offset fracture zones in the Atlantic, while the median ridge is underlain by a thickened crust. Sea Beam data does not unambiguously resolve between volcanism or serpentinization of the upper mantle as a mechanism for isostatic compensation. Why the West O’Gorman exists remains enigmatic, but we speculate that the topographic expression of a fracture zone does not require a transform offset during formation. Perhaps the spreading ridge was magma starved for some reason, resulting in a thin crust that allowed water to penetrate and serpentinize portions of the upper mantle.  相似文献   

11.
Opening-mode fractures in Devonian sandstones in outcrop and in several fields in the Subandean Ranges of southern Bolivia and northern Argentina compose two fracture sets, I and II that strike west–northwest and north–northeast, respectively. Abundant Set I fractures are at a high angle to local Andean structural trends, and Set II is aligned with fold axes. Crosscutting relations and quartz textures in fractures suggest that, although Set I is locally older, these sets may have opened partly contemporaneously. Sets comprise both macroscopic fractures and more abundant, millimeter-scale microfractures. Fractures with opening displacement of less than 0.1 mm are typically sealed with quartz, but wider fractures are lined with quartz and contain connected fracture porosity. Microfractures are more abundant than macrofractures, and size distributions can be interpreted to approximate power laws. Microfracture strain is an efficient method of quantifying fracture abundance. Both sets record small fracture strains of 0.00016–0.0083. In backlimbs Set I strain is higher in brittle quartz-rich sandstones. Set II strain varies markedly and is generally high in hinges and steep forelimbs of asymmetric anticlines. For individual samples, Set I–II strains in fold hinges and forelimbs are comparable, consistent with concurrent Set I–II growth. Open fractures that could augment permeability are present both on and off structure, but microfractures document fracture abundance that varies with structural position and sandstone quartz content that could account for variations in production outcomes.  相似文献   

12.
Abstract

Fault fracture zones have always been a key problem in the construction of submarine tunnels. To efficiently summarize the safety impact of different construction schemes on a submarine tunnel crossing a fault fracture, a theoretical model using numerical simulation has been established via the benching tunnelling construction method, three-step method, Center Diaphragm method (CD method), both sides heading method, Cross Diaphragm method (CRD method) and two kinds of supporting methods: pre-grouting and shotcreting. Numerical simulation studies on the excavation and support of submarine tunnels crossing fault fracture zones have been carried out. The research indicates: the fracture zone is the main area where sedimentation instability occurs; the CRD method has the lowest horizontal convergence under the support of the diaphragm; increasing the grouting strength is more effective in controlling the deformation of the surrounding rock than increasing the range of the pre-grouting and the thickness of the shotcrete in the initial support is increased, and its resulting effect is obvious. To optimize the construction scheme, we compared the settlement, horizontal convergence and surrounding rock stress of the tunnel according to the simulation results of different excavation support methods, which could provide theoretical guidance for better on-site construction techniques.  相似文献   

13.
The Zagros-Taurus fold and thrust belt hosts a prolific hydrocarbon system. Most hydrocarbon reserves are stored in naturally fractured reservoirs and such fracture systems can therefore have a significant impact on reservoir performance. Fractures are one of the most important paths for fluid flow in carbonate reservoirs, and industrial geoscientists and engineers therefore need to understand and study fracture patterns in order to optimise hydrocarbon production. The observed fracture patterns in outcrops may have implications on fluid flow and reservoir modelling in subsurface reservoirs, and we have therefore undertaken a case study of fracturing associated with regional folding in Iraqi Kurdistan. In this area, some exploration wells currently target Upper Triassic dolostones (Kurra Chine Formation) and/or Lower Jurassic limestones and dolomitised limestones (Sehkaniyan Formation). In both units hydrocarbon production comes mainly from secondary porosity created by dolomitisation, dissolution and fracturing. Both formations have undergone multiple phases of deformation associated with burial, uplift, folding and thrusting. We investigate some fracture pattern characteristics and some petrophysical properties of these units using selected outcrops around the Gara, Ora and Ranya anticlines that form folds directly traceable for 25–70 km. Our outcrop data is compared with subsurface fracture and petrophysical datasets reported from wells in the nearby Shaikhan and Swara Tika Fields. The 1-2-3D fracture attributes collected from outcrops are fracture orientation, type, spacing, intensity, length and cross-cutting and abutting relationships. Fracture orientations show a clear relationship to the local fold axis in both the outcrop and subsurface, although in some cases they appear to relate more to the present day in-situ maximum horizontal stress direction or local strike-slip faulting. Three stages of fracturing are proposed: pre-folding, early-folding and post-folding fractures. In addition, we report petrophysical properties - porosity, permeability and acoustic velocity of both the Kurra Chine and Sehkaniyan formations in relation to their structural position within folds and faults and stratigraphic level. The highest porosities and permeabilities are recorded in the hinges and backlimbs of the Gara Anticline. The best reservoir quality (highest porosity and permeability) is often found in areas associated with replacement dolomite i.e. solution vugs and intercrystalline porosity. The Kurra Chine Formation displays similar trends in velocity-porosity data at both outcrop and the subsurface. However, the Sehkaniyan Formation displays lower acoustic velocity for a given porosity at outcrop compared to the subsurface.  相似文献   

14.
A 1500 km long segment of a fracture zone exhibiting continuity of trend and offset with the Atlantis fracture zone (30°N) was mapped with bathymetric, seismic reflection, and magnetic profiles between the outer continental shelf and the abyssal hills off northwest Africa. The fracture zone segment occurs in crust of Mesozoic age dated tentatively by the identification of remanent magnetic anomalies.Lithospheric plate motions in a frame of reference fixed with respect to Africa are deduced along the fracture zone. During the Early and Middle Jurassic (? 180 to > 155 my) the plate motion was east-west described by a rotation of 10° about a pole located at 36° ± 2°N, 17.5 ± 1°W with respect to Africa. The location of this pole indicates that the opening of the Atlantic between North America and Africa was independent of the opening between North America and Europe with an intervening plate boundary in the position of the present Azores-Gibraltar ridge. The rotation changed to northwest-southeast during the Late Jurassic (> 155 to about 150 my), when the azimuth to the pole of plate rotation jumped about 20° of arc eastward from the azimuth to the prior pole. The northwest-southeast relative rotation continued during the Late Jurassic and Early Cretaceous (about 150 to about 100 my). The azimuth to the rotational pole appears to have migrated progressively westward toward the Cenozoic pole.  相似文献   

15.
A 2°×2° map of spreading centres and fracture zones surrounding the Indian Ocean RRR triple junction, at 25.5°S, 70°E, is described from a data set of GLORIA side-scan sonar images, bathymetry, magnetic and gravity anomalies. The GLORIA images show a pervasive fabric due to linear abyssal hills oriented parallel to the two medium-spreading ridges (the Central Indian Ridge (CIR) and Southeast Indian Ridge (SEIR)). A cuvature of the fabric occurs along fracture zones, which are also located by lows in the bathymetry and gravity data and by offsets between magnetic anomalies. The magnetic anomalies also record periods of asymmetric spreading marking the development of the fracture zones, including the birth, at anomaly 2A, of a short fracture zone 50 km north of the triple junction on the CIR, and its death near the time of the Jaramillo anomaly. In some localities, a fine-scale fabric corresponds to a coarser fabric on the opposite flank of the CIR, possibly indicating a persistent asymmetry in the faulting at the median valley walls if the fabric has a tectonic and not a volcanic origin. A plate velocity analysis of the triple junction shows that both the CIR and Southwest Indian Ridge (SWIR) are propagating obliquely; the CIR appears to form an oblique trend by segmenting into a series of almost normally-oriented segments separated by short-offset fracture zones. For the last 4 m.y., the abyssal hill lineations indicate that the CIR segment immediately north of the triple junction has been spreading with an average 10° obliquity. The present small 5 km offset of the centres of the CIR and SEIR median valleys (Munschy and Schlich, 1989) is shown to be the result of this obliquity and a 30% spreading asymmetry between anomaly 2 and the Jaramillo on the CIR segment immediately north of the triple junction.  相似文献   

16.
The Mississippian Barnett Shale (Texas, USA), consisting of organic-rich shales and limestones, hosts the largest gas fields of North America. This study examines sealed fractures from core and outcrop samples of the Barnett Shale of the Fort Worth Basin and aims to: 1) characterize the phases occurring in the fractures from samples having experienced different burial histories; 2) establish a paragenetic sequence to relate the timing of fracture origin and sealing with the burial history of the basin; and 3) contribute to the understanding of the mechanisms of fracture formation in shales, including overpressure origin.Four fracture generations were distinguished in the most deeply buried core samples by characterizing the sealing minerals petrographically and geochemically. The generations were inserted into the framework of a reconstructed burial history for the Fort Worth Basin, which allowed a time sequence for fracture development to be established. This in turn allowed inference of conditions of fracture development, and consideration of fracture mechanisms as well as the origin of the parent fluids of sealing minerals.Type 1 fractures formed during early mechanical compaction (at a few 10 s to 100 m of depth) of still not fully cemented sediments. Type 2 fractures formed during moderate burial (∼2 km), from slightly modified seawater. Their timing is consistent with overpressure generated during rapid deposition and differential compaction of Pennsylvanian lithologies during the onset of the Ouachita compressional event. Type 3 fractures formed during deep burial (>3 km) from silica-rich basinal brines possibly derived from clay diagenesis. Type 4 fractures formed at very deep burial (>4 km), from hot and 18O-rich fluids, carrying light oil (20-30 API) and record the opening of the fluid system after hydrocarbon migration.Differences are highlighted between the timing and thermal regimes under which fractures formed in Barnett lithologies from different areas of the basin, this suggesting that extrapolation of outcrop observations to subsurface must be used with due care.  相似文献   

17.
Understanding the distribution of natural fractures in sedimentary systems is of high relevance for the exploration and production of fluids in the subsurface. This study focuses on a Kimmeridgian mixed siliciclastic-carbonate ramp system, which is part of the Jurassic limestones outcropping in the northeastern Iberian Chain. The study area is located north of the Ricla village, fifty kilometers southwest of Zaragoza. The outcrop stretches over six kilometers in length, it allows for recording detailed fracture patterns and facies variations. A GIS-based software-package 'DigiFract' is used to measure and digitize fractures in vertical outcrops. Fracture orientation measurements obtained from vertical and horizontal outcrops are used to create a conceptual three-dimensional image of the fracture distribution of the mixed ramp system. The fracture data are processed by integrating outcrop logs and sample-data obtained from thin-sections and rock property analysis. The continuous facies belts of the shallow low-angle ramp system show limited lateral variations. The studied sediments are subdivided in four main facies tracts (FT's): (FT-1) Bioclastic siltstones, (FT-2) alternating sandy limestones and marls, (FT-3) cross-bedded and channelled oolitic-bioclastic sand- and grainstones and (FT-4) coralgal float-to mudstones with eventites. Measured fracture orientations of the vertical and horizontal outcrops are identical throughout the entire exposure. Two main fracture sets are identified, the first set (Set 1) has a N–S direction and the second set (Set 2) has a NE–SW direction. The lateral homogeneity of the sedimentary system, thus facies, layer thickness and slope angle, can be translated to the observed fracture patterns. Within one single facies belt, fractures tend to behave the same in the proximal, middle and distal part of the ramp system. However, vertical facies variations are an important factor for the measured vertical fracture-heterogeneity. Fine-grained mud-supported facies correspond to periods of a sea-level highstand; coarse-grained cemented facies on the other hand are related to a sea-level lowstand. The physical contrast of the sediments caused by sea-level fluctuations forces fractures to solely concentrate in the brittle layers. Fracture density and termination patterns observed on this ramp stand in contrast to fracture geometries observed in flat-topped carbonate platforms. Lateral facies heterogeneity and platform anatomy of flat-topped carbonate platforms are key parameters for the eventual fracture distribution. For the studied mixed ramp-type system the vertical facies variations are key parameter.  相似文献   

18.
Facies and diagenetic heterogeneities in carbonate reservoir rocks affect both, fracture distribution and fracture permeability. Many studies focussed on fracture patterns in limestone–marl alternations, as e.g. fluid flow models, are based on laterally continuous beds. Here we examine 4010 fractures in multiple layers of limestone–marl alternations using a modified scan-line method. The studied successions belong to the Blue Lias Formation (Hettangian–Sinemurian), exposed on the coast of the Bristol Channel, United Kingdom. We combine methods of sedimentology and structural geology with rock physics to gain a better understanding of the role of facies, diagenesis and petrophysical properties (tensile and compressive strength, hardness, porosity) on the distribution of fractures (fracture orientation, density, spacing and height). Fracture distribution varies significantly despite similar bed thicknesses, indicating that planar bedding planes (i.e. well-bedded limestones, WBL) and beds with bedding plane irregularities (i.e. semi-nodular limestones, SNL) must be distinguished. SNL show higher percentages of non-stratabound fractures (67%) while they are more stratabound in WBL (57%). Additionally, beds with variable bed thicknesses (in scale of 15 m long beds) exhibit a wide range of fracture spacing, whereas fractures in beds with more continuous bed thicknesses are more regularly spaced. Considering all lithologies, the percentage of non-stratabound fractures increases proportionally with CaCO3 content. Three subsections studied in detail reveal different main sedimentological and diagenetic features (from early lithified over differentially compacted to physically compacted). All of them are characterised by dissimilar percentages of stratabound and non-stratabound fractures in limestone beds and marl interbeds. Our findings demonstrate that the distribution of fractures in individual well-bedded limestones is not necessarily representative for successions of limestone–marl alternations; multiple layers should therefore be studied in outcrop analogues as basis for fluid flow models of reservoirs composed of such lithologies.  相似文献   

19.
A survey across the western intersection of the mid-Atlantic ridge with Oceanographer fracture zone near 35°N shows this intersection to be different in character from its more typical eastern counterpart. At the western junction the transform valley broadens into a parallelogram shaped deep some 46 by 24 km, which extends well across the trace of the active transform. Within 30 km south of the fracture zone the median valley becomes oblique forming a NE trending ridge which is the SE edge of the deep. Magnetic mapping shows the current spreading centre to be adjacent to this ridge.A sequence of evolution for this intersection over the past 0.7 Ma is proposed to explain the features mapped. We suggest that the oblique ridge crest trends extended across the transform trace to form the elongated graben-like deep with its associated faults and sediment slumps. Such complex patterns may occur as plate-wide changes in spreading direction become modified by localised shear stress fields at ridge crest-transform intersections, as have been observed in a number of other cases. The absence of significant tranverse ridges across from the spreading centre at this particular fracture zone intersection, may have temporarily allowed these stress patterns to propagate across the fracture zone.  相似文献   

20.
Through the analysis of the faults and their internal structure in Zhu I Depression, it is found that the internal structure of the late fault is obviously segmented vertically. It develops unitary structure(simple fault plane) in shallow layers, binary structure(induced fracture zone in hanging wall and sliding fracture zone in footwall) in middle, layers and ternary structure(induced fracture zone in hanging wall and sliding fracture zone in middle,and induced fracture zone in footwall) in deep layers. Because the induced fracture zone is a high porosity and permeability zone, and the sliding fracture zone is a low porosity and ultra-low permeability zone, the late fault in middle layers has the character of "transporting while sealing". The late fault can transport hydrocarbon by its induced fracture zone in the side of the hanging wall and seal hydrocarbon by its sliding fracture zone in the side of the footwall. In deep layers, the late fault has the character of "dual-transportation", induced fracture zones in both sides of hanging wall and footwall can transport hydrocarbon. The early fault that only developed in the deep layers is presumed to be unitary structure, which plays a completely sealing role in the process of hydrocarbon migration and accumulation due to inactivity during the hydrocarbon filling period. Controlled by hydrocarbon source, early/late faults, sand bodies and traps, two reservoir-forming models of "inverted L" and "stereo-spiral"can be proposed in middle layers, while two reservoir-forming models of "cross fault" and "lateral fault sealing"are developed in the deep layers of Zhu I Depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号