首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75?×?106 m3. The annual recharge through the infiltration of flood water is about 1.93?×?106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33?×?105 m3/year. The total annual groundwater recharge is 2.06?×?106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29?×?105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38?×?106 m3/year on average. The total annual groundwater discharge is about 4.7?×?106 m3. A deficit of 2.6?×?106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.  相似文献   

2.
The aim of this study is to understand the effects of pollution of anthropogenic origin on water quality in Yalvac Basin, part of the Egirdir Lake catchment. Surface discharge from the basin to the lake is 63 m3/year and underground discharge is 114 m3/year. Possible water pollution is categorized into domestic, industrial and agricultural origin. Domestic and industrial wastewaters, including effluents from leather tanneries are discharged, without being purified, into Yalvac Stream, which flows into Egirdir Lake directly or via the drainage canal. Surface waters flowing into the lake are used in winter for irrigation of agricultural areas. In agricultural areas natural and synthetic fertilizers and pesticides are used extensively. Lake Egirdir is used as a source of drinking water. Sampling sites were established for surface and underground waters, taking into account the known point sources of pollution. These sites were sampled in May and October of 2002, and analysed chemically. Cr3+ and Pb2+ concentrations exceed standard limits, meaning that pollution caused by effluent from the tanneries is adversely affecting the water quality in the lake.  相似文献   

3.
The River Gash Basin is filled by the Quaternary alluvial deposits, unconformably overlying the basement rocks. The alluvial deposits are composed mainly of unconsolidated layers of gravel, sand, silt, and clays. The aquifer is unconfined and is laterally bounded by the impermeable Neogene clays. The methods used in this study include the carry out of pumping tests and the analysis of well inventory data in addition to the river discharge rates and other meteorological data. The average annual discharge of the River Gash is estimated to be 1,056?×?106 m3 at El Gera gage station (upstream) and 587?×?106 m3 at Salam-Alikum gage station (downstream). The annual loss mounts up to 40% of the total discharge. The water loss is attributed to infiltration and evapotranspiration. The present study proofs that the hydraulic conductivity ranges from 36 to 105 m/day, whereas the transmissivity ranges from 328 to 1,677 m2/day. The monitoring of groundwater level measurements indicates that the water table rises during the rainy season by 9 m in the upstream and 6 m in the midstream areas. The storage capacity of the upper and middle parts of the River Gash Basin is calculated as 502?×?106 m3. The groundwater input reach 386.11?×?106 m3/year, while the groundwater output is calculated as 365.98?×?106 m3/year. The estimated difference between the input and output water quantities in the upper and middle parts of the River Gash Basin demonstrates a positive groundwater budget by about 20?×?106 m3/year  相似文献   

4.
The discharge of major cations and dissolved organic carbon (Corg) with water of the Ob River and its tributaries along the natural zones within the Ob River basin was calculated, and the contribution of the underground component to the volumes of total discharge of the Ob River basin was estimated. It was demonstrated that the total chemical composition of river water and the geochemical discharge in the Ob River basin were consistent with the zoned hydroclimatic conditions controlling the character and duration of interaction in the water–rock system. It was established that the average ionic discharge of the Ob River increased from 6–7 × 106 t/year near Barnaul to 46–47 × 106 t/year near Salekhard; the discharge of dissolved Corg increased from 0.1 × 106 to 3.8 × 106 t/year. Multiple enrichment of underground waters of the Ob River in dissolved organic matter from the upper to the lower reaches was revealed.  相似文献   

5.
Predicted changes in climate will lead to seawater intrusion in the Querença-Silves (QS) coastal aquifer (south Portugal) during the coming century if the current water-resource-management strategy is maintained. As for much of the Mediterranean, average rainfall is predicted to decrease along with increasing seasonal and inter-annual variability and there is a need to understand how these changes will affect the sustainable use of groundwater resources. A density-coupled flow and transport model of the QS was used to simulate an ensemble of climate, water-use and adaptation scenarios from 2010 to 2099 taking into account intra- and inter-annual variability in recharge and groundwater use. By considering several climate models, bias correction and recharge calculation methods, a degree of uncertainty was included. Changes in rainfall regimes will have an immediate effect on groundwater discharge; however, the effect on saltwater intrusion is attenuated by the freshwater–saltwater interfaces’ comparatively slow rate of movement. Comparing the effects of adaptation measures demonstrates that the extent of intrusion in the QS is controlled by the long-term water budget, as the effectiveness of both demand and supply oriented measures is proportional to the change in water budget, and that to maintain the current position, average groundwater discharge should be in the order of 50 × 106 m3 yr?1.  相似文献   

6.
Mine water samples collected from different mines of the North Karanpura coalfields were analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness (TH), major anions, cations and trace metals to evaluate mine water geochemistry and assess solute acquisition processes, dissolved fluxes and its suitability for domestic, industrial and irrigation uses. Mine water samples are mildly acidic to alkaline in nature. The TDS ranged from 185 to 1343 mg L?1 with an average of 601 mg L?1. Ca2+ and Mg2+ are the dominant cations, while SO4 2? and HCO3 ? are the dominant anions. A high concentration of SO4 2? and a low HCO3 ?/(HCO3 ? + SO4 2?) ratio (<0.50) in the majority of the water samples suggest that either sulphide oxidation or reactions involving both carbonic acid weathering and sulphide oxidation control solute acquisition processes. The mine water is undersaturated with respect to gypsum, halite, anhydrite, fluorite, aluminium hydroxide, alunite, amorphous silica and oversaturated with respect to goethite, ferrihydrite, quartz. About 40% of the mine water samples are oversaturated with respect to calcite, dolomite and jarosite. The water quality assessment shows that the coal mine water is not suitable for direct use for drinking and domestic purposes and needs treatment before such utilization. TDS, TH, F?, SO4 2?, Fe, Mn, Ni and Al are identified as the major objectionable parameters in these waters for drinking. The coal mine water is of good to suitable category for irrigation use. The mines of North Karanpura coalfield annually discharge 22.35 × 106 m3 of water and 18.50 × 103 tonnes of solute loads into nearby waterways.  相似文献   

7.
Spatial gradients of silver concentrations in the surface waters of San Francisco Bay reveal substantial anthropogenic perturbations of the biogeochemical cycle of the element throughout the estuarine system. The most pronounced perturbations are in the south bay, where dissolved (<0.45 μm) silver concentrations are as high as 250 pM. This is more than one order-of-magnitude above baseline concentrations in the northern reach of the estuary (6 pM) and approximately two orders-of-magnitude above natural concentrations in adjacent coastal waters (3 pM). The excess silver is primarily attributed to wastewater discharges of industrial silver to the estuary on the order of 20 kg d?1. The contamination is most evident in the south bay, where wastewater discharges of silver are on the order of 10 kg d?1 and natural freshwater discharges are relatively insignificant. The limited amount of freshwater flushing in the south bay was exacerbated by persistent drought conditions during the study period. This extended the hydraulic residence time in the south bay (≥160 d), and revealed the apparent seasonal benthic fluxes of silver from anthropogenically contaminated sediments. These were conservatively estimated to average ≈16 nmol m?2 d?1 in the south bay, which is sufficient to replace all of the dissolved silver in the south bay within 22 d. Benthic fluxes of silver throughout the estuary were estimated to average ≈11 nmol m?2 d?1, with an annual input of approximately 540 kg yr?1 of silver to the system. This dwarfs the annual fluvial input of silver during the study period (12 kg yr?1) and is equivalent to approximately 10% of the annual anthropogenic input of silver to the estuary (3,700–7,200 kg yr?1). It is further speculated that benthic fluxes of silver may be greater than or equal to waste water fluxes of silver during periods of intense diagenic remobilization. However, all inputs of dissolved silver to the estuary are efficiently sorbed by suspended particulates, as evidenced by the relatively constant conditional distribution coefficient for silver throughout the estuary (Kd≈105).  相似文献   

8.
Ireland has large water resources. Only 5.3% of developable waters are as yet developed, to supply some 650 I/day/per capita to the population of some 3.37 million people. State of development varies in each of the seven water resources regions. Precipitation is fairly evenly distributed over the year, but the percentage infiltrating to form groundwater varies quite sharply. Some 61% of infiltration occurs in the four winter months November to February, when agricultural activities are low. Only 10% infiltrates in the four summer months, May to August, when agricultural activities are high. In all, annual groundwater amounts to some 24.8 km3, of which 50% is considered to be recoverable. Capital groundwater reserves must be large, but are unquantified. Under these conditions, the impact of agriculture on groundwater quantities is negligible. Of the annual extraction of some 170 × 106m3 of groundwater, some 66 × 106m3/year are used in different agricultural activities. Drainage operations, however, have effects on Irish groundwater. Such lands may overlie impermeable strata or pans, or may receive concealed or visible groundwater discharge. Their drainage will affect the groundwater in various ways. There has been a considerable impact of agriculture on groundwater quality. The effects on the atmosphere and on precipitation are not identifiable. Effects of diffuse infiltration are treated with respect to: (a) application of ground limestone (lime); (b) application of K.N.P. inorganic fertilizer; (c) spreading of organic slurries; (d) development of organic nitrogen in soils, mainly after ploughing of grasslands; and (e) residues from herbicides, fungicides, and pesticides. The infiltration of these substances spread on the land is closely related to the interaction between times of ground-water recharge and times of fertilizer application. Effects of concentrated infiltration are treated under seven sub-heads: (a) infiltration of polluted surface waters; (b) localized farm infiltration; (c) concentrated waste disposal from feedlots; (d) concentrated waste disposal from silage; (e) concentrated waste disposal from agro-industries; (f) disposal through sinkholes and quarries; and (g) disposal by deep well injection. These operations are deliberate, and not related to times of groundwater recharge. They are often into the limestone aquifers, and so doubly dangerous.  相似文献   

9.
The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114?×?104 m3/year in 2017 to 11,875?×?104 m3/year in 2021, and to 17,039?×?104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277?×?104 m3/year in 2017 to 1857?×?104 m3/year in 2021, and to 510?×?104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.  相似文献   

10.
岷江水流量约为8.9×1010m3/yr,约占长江全流域水量10%。作者对4个监测站监测数据的分析发现,岷江TZ 高于世界河流平均值,具有富HCO3-、Ca2 特征;流域化学剥蚀通量为20.48×106t/yr,约占长江流域的10%;化学剥蚀速率为155.9t/km2.yr。岷江在流经四川盆地时主要离子SO42-、Cl-和Ca2 均已受到了人类活动较为严重的影响,酸雨是SO42-的主要污染来源,Cl的污染来源包括生活和工业废水、化肥和井盐开采,农业生产使用的富Ca化肥应是河流Ca污染源之一。  相似文献   

11.
MODFLOW is a groundwater modeling program. It can be compiled and remedied according to the practical applications. Because of its structure and fixed data format, MODFLOW can be integrated with Geographic Information Systems (GIS) technology for water resource management. The North China Plain (NCP), which is the politic, economic and cultural center of China, is facing with water resources shortage and water pollution. Groundwater is the main water resource for industrial, agricultural and domestic usage. It is necessary to evaluate the groundwater resources of the NCP as an entire aquifer system. With the development of computer and internet information technology it is also necessary to integrate the groundwater model with the GIS technology. Because the geological and hydrogeological data in the NCP was mainly in MAPGIS format, the powerful function of GIS of disposing of and analyzing spatial data and computer languages such as Visual C and Visual Basic were used to define the relationship between the original data and model data. After analyzing the geological and hydrogeological conditions of the NCP, the groundwater flow numerical simulation modeling was constructed with MODFLOW. On the basis of GIS, a dynamic evaluation system for groundwater resources under the internet circumstance was completed. During the process of constructing the groundwater model, a water budget was analyzed, which showed a negative budget in the NCP. The simulation period was from 1 January 2002 to 31 December 2003. During this period, the total recharge of the groundwater system was 49,374 × 10m3 and the total discharge was 56,530 × 10m3 the budget deficit was −7,156 × 10m3. In this integrated system, the original data including graphs and attribution data could be stored in the database. When the process of evaluating and predicting groundwater flow was started, these data were transformed into files that the core program of MODFLOW could read. The calculated water level and drawdown could be displayed and reviewed online.  相似文献   

12.
This paper demonstrates a practical simulation approach to analyze domestic water demand and its future uncertainty in water scarce areas through a case study of Beijing, China. Analytic models and a forecasting model were constructed using statistic and econometric regression approaches. The analytic models were used to analyze the interrelationships between domestic water demand and some socio-economic factors of Beijing. The forecasting model was applied to predict domestic water demand from 2009 to 2015, and this model was validated by comparing the prediction values with the observations. Scenario analysis was applied to simulate uncertainty and risks in domestic water demand in the future. The simulation results proved that domestic water demand will increase from 13.9×108 m3 to 16.7×108 m3 from 2009 to 2015. Three more sustainable strategies were also found through scenario analysis. The simulation and modeling approaches and results would be very supportive for water decision makers in allocating water efficiently and making sustainable water strategies.  相似文献   

13.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

14.
Cochlodinium polykrikoides formed large blooms in the coastal waters of Oman from October 2008 through mid-January 2009, and satellite images from Aqua-MODIS and region-wide reports suggest that this bloom was found throughout the Arabian Gulf and Sea of Oman for more than 10 months. The unusual occurrence of this species appears to have supplanted the more regularly occurring bloom species, Noctiluca scintillans, in 2008–2009. For the first 2 weeks of the coastal Omani bloom, C. polykrikoides abundance was near monospecific proportions, with cell densities ranging from 4.6?×?103 to 9?×?106 cells L?1 and very high levels of chlorophyll a (78.0 μg L?1) were also recorded. The regional progression of the bloom likely began with stronger than normal upwelling along the Iranian and northern Omani coasts during the southwest monsoon in late summer, followed by discharge of unusually warm coastal plume water along the coast of Oman with the reversal of monsoonal winds in late October. The occurrence and persistence of high densities of C. polykrikoides in Oman coastal water were also significantly influenced by an elevated nutrient load and warmer than normal temperatures. Concentrations of nutrients, especially NH4 +, urea, PO4 3?, and organic nitrogen and phosphorus, were manyfold higher than observed in the year prior or since. These findings suggest that mesoscale features were important in bloom dynamics more regionally, but locally the bloom was sustained by nutrient enrichment supplemented by its mixotrophic capabilities.  相似文献   

15.
A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86?×?108 to 4.33?×?108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy’s Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s?1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3–9 m3 s?1) and Darcy’s Law (about 9 m3 s?1). A groundwater flux of 9 m3 s?1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills.  相似文献   

16.
The concentrations and physico-chemical states of 210Pb have been measured in Bikini Atoll and Washington State coastal waters, and 210Po in Washington coastal waters. Lead-210 concentrations of 113–133 dpm · m?3 were found in surface water collections near Bikini Atoll and 29–153 dpm · m?3 in Bikini Lagoon. The concentrations of 210Pb in near Bikini and in Washington State waters increased with depth in the upper 150m at a rate of 0.35–0.45dpm·m?3 · m?1. In the North Equatorial Current waters near Bikini Atoll 210Pb was found associated predominantly with the soluble (colloidal) fraction, but in Washington coastal waters 210Pb and 210Po were found associated with the paniculate (> 0.3 μm) fraction. The mean residence times of 210Pb, calculated from the atmospheric input to marine waters from precipitation and the concentrations measured in surface water, were consistent with the physico-chemical states of 210Pb found in samples collected in deep ocean and coastal waters. Approximate values of the mean residence times were calculated, for the upper 50 m, to be as follows: 58 days in the Strait of Juan de Fuca, 128 days at the 5-mile (8 km) station off Cape Flattery (Washington), 163 days at the 12-mile (19 km) station off Cape Flattery, and 2.6 yr near Bikini Atoll. It appears that 210Pb and 210Po can be used to trace particle removal rates in the upper layers of marine waters.  相似文献   

17.
The Oramiriukwa River is within the sandy coastal plain strata of the Benin formation (Miocene–Recent). The base flow is very high ranging from 79.13–98.56%, which is caused by the excellent hydraulic interconnection between the river and the adjacent unconfined aquifer. Recharge rates are high, estimated to range from 1.8×1012–2.5×1012 m3/year. Coastal sands are medium-to-coarse grained, moderately-to-poorly sorted, angular to subangular, with lenses of clay and clayey fine-grained sands. The coastal sands and clay lenses form aquifer and aquitard systems, which are unconfined to semi-confined. Groundwater recharge potential is high. Runoff from precipitation is low. Groundwater and surface water are fairly acidic; pH ranges from 5.5–6.1 (groundwater) and 5.8–6.5 (surface water), and hardness is generally low. Chemical analysis and percentage sodium show that groundwater and surface water are somewhat potable after some pH modification of the surface water. The waters are good for agricultural use, especially for irrigation and poultry water supply. However, pollution from landfill leachate is serious. Electronic Publication  相似文献   

18.
Land-based pollutants such as fertilizers and wastewater can infiltrate into aquifers and discharge into surrounding coastal water bodies as submarine groundwater discharge (SGD). Oceanic islands, with a large coast length to land area ratio, may be hot spots of SGD into the global ocean. Although SGD may be a major pathway of dissolved nutrients, carbon and metals to coastal waters, studies have been limited due to the difficulties in measuring this often diffuse process. This study used radium isotopes (223Ra, 224Ra, 226Ra) to investigate SGD and the associated fluxes of nutrients into Tauranga Harbour, New Zealand. We calculated the apparent water mass ages of the harbour to be between ~4.1 and 7.8 days, which was similar to a previous numerical model of ~2–8 days. A 226Ra mass balance was constructed to quantify SGD fluxes at the harbour scale. A minimum SGD flux rate of 0.53 cm day?1 was calculated by using the maximum groundwater end-member value from 22 sample sites. However, using the geometric mean from these samples as a representative end-member, a final value of 2.83 cm day?1 or a flux of 3.09 × 106 m3 day?1 was calculated. These values were between ~1 and 2.8 times greater than all the major river and creeks discharging into the harbour during the sampling period. Due to the higher observed nutrient concentrations in groundwater, the SGD-derived dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and total dissolved phosphorus (TDP) fluxes were calculated to be 1.07, 0.87 and 0.05 mmol m2 day?1, respectively. These SGD inputs were ~5 times (for nitrogen) and ~8 times (for phosphorus) greater than the input from surrounding rivers and streams. The average N:P ratio in groundwater samples was 36:1 (which was greatly in excess of the Redfield ratio of 16). The harbour water had a N:P ratio of ~17:1. A positive relationship between radium isotopes and N:P ratios in the harbour further supported the hypothesis that SGD can have major implications for primary production, including recurrent algal bloom events which occur in the harbour. We suggest SGD as a major driver of nutrient dynamics in Tauranga Harbour and potentially other similar coastal lagoon systems and estuaries on oceanic islands.  相似文献   

19.
Five similar glacial-lake outburst floods (GLOFs) occurred in April, October, December 2008, March and September 2009 in the Northern Patagonia Icefield. On each occasion, Cachet 2 Lake, dammed by the Colonia Glacier, released circa 200-million m3 water into the Colonia River. Refilling has occurred rapidly, such that further outbreak floods can be expected. Pipeflow calculations of the subglacial tunnel drainage and 1D hydraulic models of the river flood give consistent results, with an estimated peak discharge surpassing 3,000 m3 s?1. These floods were larger in magnitude than any flood on record, according to gauged data since 1963. However, geomorphological analysis of the Colonia valley shows physical evidence of former catastrophic outburst floods from a larger glacial-lake, with flood discharges possibly as high as 16,000 m3 s?1. Due to potential impacts of climate change on glacier dynamics in the area, jökulhlaups may increase future flood risks for infrastructure and population. This is particularly relevant in view of the current development of hydropower projects in Chilean Patagonia.  相似文献   

20.
Modeling of groundwater flow for Mujib aquifer, Jordan   总被引:4,自引:0,他引:4  
Jordan is an arid country with very limited water resources. Groundwater is the main source for its water supply. Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman, Madaba and Karak cities. High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore, proper groundwater management of Mujib aquifer is necessary; and groundwater flow modeling is essential for proper management. For this purpose, Modflow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses. The model was calibrated for steady state condition by matching observed and simulated initial head counter lines. Drawdown data for the period 1985–1995 were used to calibrate the transient model by matching simulated drawdown with the observed one. Then, the transient model was validated by using drawdown data for the period 1996–2002. The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40m/d. Calibrated specific yield ranges from 0.0001 to 0.15. The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106m3, the total annual inflow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual outflow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates. Also the model is sensitive to specific yield  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号