首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Storm surges in the Beaufort Sea present a severe problem for navigation as well as for offshore oil drilling activities. Influence of ice cover on storm surges in the Beaufort Sea is examined making use of a numerical model as well as a set of observations.The automated shallow-water model of Henry has been modified to incorporate ice cover and is adapted to the Beaufort Sea. The leading edge of the permanent ice is calculated from the loci of identifiable points. Generalized similarity theory is employed to compute wind stresses. Simulations are made using model-predicted ice concentrations and observed ice concentrations. Ice motion is relatively small in units of model grid distance (approximately 18 km) during surges. Spherical effects are important and should be included in future adaptations of the model. Comparison of the computed surges with observed surges for eight different events showed reasonable agreement.  相似文献   

2.
Increased development and changing climate have enhanced global interest in the Arctic Ocean and adjacent seas. Using a large, 3-yr data base, we have determined the distribution of trace metals in sediments from the inner shelf of the western Beaufort Sea. Metal concentrations in these sediments reflect pristine conditions, consistent with those for most coastal areas in the Arctic and with predictions based on average continental crust. Geographic variations in metal values are primarily related to sediment grainsize distribution. However, grain-size patterns are a complex function of several variables including source areas, ice and water movement, as well as physical and chemical weathering. Future identification of any metal contamination in Beaufort Sea sediments will be simplified by understanding the predictable natural patterns.  相似文献   

3.
Unlike lower latitude coastlines, the estuarine nearshore zones of the Alaskan Beaufort Sea are icebound and frozen up to 9 months annually. This annual freezing event represents a dramatic physical disturbance to fauna living within intertidal sediments. The main objectives of this study were to describe the benthic communities of Beaufort Sea deltas, including temporal changes and trophic structure. Understanding benthic invertebrate communities provided a baseline for concurrent research on shorebird foraging ecology at these sites. We found that despite continuous year-to-year episodes of annual freezing, these estuarine deltas are populated by a range of invertebrates that represent both marine and freshwater assemblages. Freshwater organisms like Diptera and Oligochaeta not only survive this extreme event, but a marine invasion of infaunal organisms such as Amphipoda and Polychaeta rapidly recolonizes the delta mudflats following ice ablation. These delta sediments of sand, silt, and clay are fine in structure compared to sediments of other Beaufort Sea coastal intertidal habitats. The relatively depauperate invertebrate community that ultimately develops is composed of marine and freshwater benthic invertebrates. The composition of the infauna also reflects two strategies that make life on Beaufort Sea deltas possible: a migration of marine organisms from deeper lagoons to the intertidal and freshwater biota that survive the 9-month ice-covered period in frozen sediments. Stable isotopic analyses reveal that both infaunal assemblages assimilate marine and terrestrial sources of organic carbon. These results provide some of the first quantitative information on the infaunal food resources of shallow arctic estuarine systems and the long-term persistence of these invertebrate assemblages. Our data help explain the presence of large numbers of shorebirds in these habitats during the brief summer open-water period and their trophic importance to migrating waterfowl and nearshore populations of estuarine fishes that are the basis of subsistence lifestyles by native inhabitants of the Beaufort Sea coast.  相似文献   

4.
Clay-mineral, heavy-mineral, and elemental distributions in sediments from the Arctic Ocean and the adjacent Laptev and Kara seas can be attributed to the geology of the hinterland and the transport of terrigenous material by rivers onto the shelves. Kara Sea sediments are characterized by increased contents of smectite and elevated Ni/Al-, Ti/Al-, and Cr/Al ratios. In the western Laptev Sea sediments are enriched in smectite and clinopyroxene and increased in Ti/Al-, Cr/Al-, and Ca/Al ratios. The composition of the sediments reflects suspended matter input from the large trap basalt of the Putoran Mountains. The eastern Laptev Sea sediments display increased illite and amphibole contents as well as a chemical composition similar to average shale. This composition is due to the discharge from the Lena and Yana rivers, which drain a large catchment area consisting of sedimentary Mesozoic and Paleozoic rocks. Material from the eastern Laptev Sea is transported by ocean currents and sediment-laden sea ice along the Transpolar Drift into the central Arctic Ocean. This is indicated by similar values of Ti/Al-, Cr/Al-, Rb/Al-, and K/Al ratios as well as increased concentrations of amphibole and illite, determined in sediments from the Lomonosov Ridge. A minor input from the Beaufort Sea into the central Arctic Ocean is suggested from increased Ca/Al ratios and increased contents of opaque minerals.  相似文献   

5.
2003年1月4日至2月15日期间,在5种不同情况下对南极海冰进行了调查研究。包括:(1)基于走航观测的威德尔海至普利茨湾之间海冰分布研究;(2)基于航空拍摄的普利茨湾海冰分布研究;(3)纳拉海峡固定冰和上浮雪厚度钻孔测量以及冰心钻取;(4)中山站附近融化冰的分布研究以及(5)中山站附近海冰早期冻结过程观测研究。结果表明,威德尔海至普利茨湾之间走航观测得到的海冰全部密集度为14.4%,大部分冰(99.7%~99.8%)属于一年冰,观测到冰的厚度在15~150 cm。沿观测航线上海冰最大密集度(80%)出现在威德尔海,从59°56 S到69°22 S以及从040°41 W到076°23 E的区域分布着广阔的水域。这一结果验证了Silvia的海冰漂移理论。普利茨湾沿岸海冰受制于沿岸地形、拉斯曼丘陵以及搁浅冰山的影响,其密集度呈现较大的空间变化。钻孔测量显示,纳拉海峡固定冰平均厚度为169.5 cm。风吹雪的重分布以及日照强度差异是导致纳拉海峡固定冰厚度差异的主要因素。观测表明,中山站附近海冰早期冻结遵循Lange的海冰早期冻结过程“饼状循环”最初的两个阶段。  相似文献   

6.
白令海楚科奇海的海冰范围变化特征   总被引:3,自引:0,他引:3  
白令海和楚科奇海位于北极太平洋一侧的海冰外缘线附近,具有较强烈的气冰海相互作用.采用滑动t检验和小波分析方法对白令海和楚科奇海1953—2004年海冰范围的年际变化、年代际变化和总体趋势变化进行分析.结果表明:20世纪70年代后期,海冰范围在白令海存在显著的均值突变现象,而楚科奇海在对应阶段则表现为更明显的变频现象;在突变点前后两个时段里,阿留申低压中心低压加强、核心位置偏移以及对应风场分布的变化是导致白令海海冰范围明显缩小的主要动力原因.楚科奇海海冰范围的年际变化中存在由低频向高频变化的现象,该现象除了在局地气温变化中存在之外,在北冰洋区域风涡度、波弗特海纬向风、东西伯利亚海经向风等动力因素中也有所体现.因此,除热力因素外,动力因素引起的海冰的平流与该变频现象也存在一定的联系.  相似文献   

7.
Storm Surge Hazard in Canada   总被引:3,自引:2,他引:3  
Storm surges occur frequently in Canada mainlydue to extra-tropical cyclones (ETC'S) also referred to as winter storms. The hurricanes from the Gulf of Mexico can affect eastern Canada including Lakes Ontario and Erie regions, after they get modified and acquire some extra-tropical characteristics. Storm surges have occurred both on the Atlantic and Pacific coasts, in the Gulf of St.Lawrence, St.Lawrence Estuary, Bay of Fundy, Hudson Bay, James Bay, Northwest Passage, Beaufort Sea, the Great Lakes and other large lakes such as Lake Winnipeg.Squall lines which are embedded in the largerscale synoptic systems like the ETC'S could also generate storm surges (referred to as edge waves) in Lakes Huron, Erie and Ontario (edge waves are most prominent in Lake Michigan, but Canada has no territory touching this lake). The effect of climate change on storm surges in the Canadian water bodies could be two-fold. First, there may be some possible intensification of the weather systems and the associated wind fields resulting in bigger surges. Second, and probably even more relevant, is an east-west and north-south shift in the tracks of the weather systems, which could expose certain new areas to storm surge activity.A high priority for proper assessment of storm surge hazard is the production of maps showing inundation zones for storm surges that might occur in populated coastal areas. Such maps can be used to improve public awareness of tsunamis and for planning purposes (i.e., to reduce or avoid the risk).  相似文献   

8.
This paper presents data on the content of hydrocarbons (HCs) in the snow-ice cover of the coastal regions of the Dvina and Kandalaksha gulfs, White Sea, in 2008–2012 in comparison with the content of organic carbon, lipids, and the suspension. The accumulation of HCs in the snow-ice cover depends on the degree of pollution of the atmosphere, formation conditions of ice, and intensity of biogeochemical processes at the ice-water boundary. Thus, the highest concentrations in the water basin of Arkhangelsk are identified in snow and in the upper part of the ice. The peculiarities of formation of the snow-ice cover in Rugozero Bay of the Kandalaksha Gulf leads to the concentration of HCs in different snow and ice layers. The decreased HC content in the snow-ice cover of the White Sea, in comparison with previous studies, is caused by recession of industrial production in recent years.  相似文献   

9.
Azimi  Hamed  Shiri  Hodjat 《Natural Hazards》2021,106(3):2307-2335

Ice gouging problem is a significant challenge threatening the integrity of subsea pipelines in the Arctic (e.g., Beaufort Sea) and even non-Arctic (e.g., Caspian Sea) offshore regions. Determining the seabed response to ice scour through the subgouge soil deformations and the keel reaction forces are important aspects for a safe and cost-effective design. In this study, the subgouge soil deformations and the keel reaction forces were simulated by the extreme learning machine (ELM) for the first time. Nine ELM models (ELM 1–ELM 9) were developed using the key parameters governing the ice–seabed interaction. The number of neurons in the hidden layer was optimized and the best activation function for the ELM network was identified. The premium ELM model, resulting in the lowest level of inaccuracy and complexity and the highest level of correlation with experimental values was identified by performing a sensitivity analysis. The gouge depth ratio and the shear strength of the seabed soil were found to be the most influential input parameters affecting the subgouge soil deformations and the keel reaction forces. A set of the ELM-based equations were proposed to approximate the ice gouging parameters. The uncertainty analysis showed that the premium ELM model slightly underestimated the subgouge soil deformation.

  相似文献   

10.
为定量分析北冰洋海冰密集度年际差异,提出并采用累积海冰密集度(ASIC)概念。利用SSMR/SSMI的分辨率为25 km的海冰密集度数据,分别研究了1979—2011年北极海冰在融冰期(4~9月)和结冰期(10月至翌年3月)的变化过程以及2个冰期内ASIC的区域差异。研究发现,在1979—1989年、1989—1999年和1999—2009年期间,融冰期海冰发生明显变化的范围都远远大于结冰期海冰发生明显变化的范围。1998—2010年,融冰期内发生加速融化的海区并没有都出现结冰期冰量减小的现象。在此期间融冰期ASIC减小,结冰期ASIC也减小的海域仅集中在楚克奇海、新地岛北部海域以及格陵兰岛东西海岸。融冰期ASIC减小,而结冰期ASIC无明显变化的海域包括波弗特海、东西伯利亚海、拉普捷夫海和喀拉海。这些区域与局地陆地径流侵入的海域重合。研究发现,在这些区域,融冰期ASIC减少是陆地径流增大加速海冰融化引起的。在结冰期,陆地径流加速海水结冰的作用消除融冰期海水吸收大量太阳辐射能后发生推迟结冰的现象,使得ASIC无明显变化。融冰期ASIC减小,而结冰期ASIC增大的区域只有白令海。研究结果证明累积海冰密集度能够去除海冰高频变化而只表现低频变化,能够描述海冰的年际变化特征。同时由于海冰变化与海洋中其他物理参数存在显著关系,变T的ASIC可以更加方便地描述次表层叶绿素最大值层深度的变化。  相似文献   

11.
针对极地冰雪显著影响中低纬气候的事实,利用1979-2017年长江流域116站降水资料和美国国家冰雪数据中心海冰资料,通过奇异值分解等统计学方法,研究北极海冰对长江流域主汛期降水的影响及可能的机制,结果表明:冬春季节,巴伦支海和鄂霍次克海海冰面积偏多、波佛特海海冰面积偏少时,主汛期长江上中游干流、汉江上游和雅砻江降水偏多;北极群岛、楚科奇海和拉普捷夫海以北海域海冰面积偏多时,主汛期两湖水系降水偏多,嘉陵江上游、汉江上游降水偏少;反之亦然。可能的机制为冬春季关键区海冰变化通过影响湍流热通量引发大气能量波动,这种波动以大气波列形式向东亚传播,影响东亚地区夏季的大气环流和水汽输送,从而间接影响长江流域主汛期降水。应用多元回归法,以关键区海冰面积作为预测因子建立4个流域内主汛期降水趋势预测模型,模型对预报区降水的定量预测有明显的波动,但对预报区总体的降水趋势有较好的预测效果。  相似文献   

12.
极地海冰的研究及其在气候变化中的作用   总被引:4,自引:2,他引:2  
极地海冰作为全球气候系统的一个重要组成部分,通过影响大洋表面的辐射平衡、物质平衡、能量平衡以及大洋温、盐流的形成和循环而影响全球气候变化.从最初研究极地海冰的强度和承载力到目前海/冰/气相互作用全球气候耦合模型的建立,使海冰变化和全球气候变化紧密结合起来.这些研究领域主要有:海冰及其表层雪的物理特性和过程、海冰区域生态特征、海冰区与气候相关的反照率和物质平衡研究以及海冰气候耦合模型等大的领域.模拟显示,21世纪因为全球变暖,南北极海冰都将减少.海冰和全球气候系统其它要素之间的相互作用问题、极地海冰的厚度季节性区域性分布问题、极地海冰边界及范围变化趋势问题、生消关键过程及其影响因素问题、冰间湖的作用以及海气相互作用等将是未来重要的研究方向.  相似文献   

13.
Shallow estuarine lagoons characterize >70 % of the eastern Alaskan Beaufort Sea coastline and, like temperate and tropical lagoons, support diverse and productive biological communities. These lagoons experience large variations in temperature (?2 to 14 °C) and salinity (0 to >45) throughout the year. Unlike lower latitude coastal systems, transitions between seasons are physically extreme and event-driven. On Arctic coastlines, a brief summer open-water period is followed by a 9-month ice-covered period that concludes with a late-spring sea ice breakup and intense freshwater run-off. From 2011 to 2014, we examined interannual variations in water column physical structure (temperature, salinity, and δ18O) in five lagoons that differ with respect to their degree of exchange with adjacent marine waters and magnitude of freshwater inputs. Temperature, salinity, and source water composition (calculated using a salinity and δ18O mixing model) were variable in space and time. During sea ice breakup in June, water column δ18O and salinity measurements showed that low salinity waters originated from meteoric inputs (50–80 %; which include river inputs and direct precipitation) and sea ice melt (18–51 %). Following breakup, polar marine waters became prevalent within a mixed water column over the summer open-water period within all five lagoons (26–63 %). At the peak of ice-cover extent and thickness in April, marine water sources dominated (75–87 %) and hypersaline conditions developed in some lagoons. Seasonal runoff dynamics and differences in lagoon geomorphology (i.e., connectivity to the Beaufort Sea) are considered key potential drivers of observed salinity and source water variations.  相似文献   

14.
Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas   总被引:8,自引:0,他引:8  
This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information, and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal erosion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45᎒6 t a-1) mainly of the Mackenzie River, which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10᎒6 t a-1, more than 70% of which are related to the Lena River. In comparison with the CBS, the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4᎒6 t a-1) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6᎒6 t a-1 is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.  相似文献   

15.
The Eskimo Lakes and Liverpool Bay constitute a series of estuarine waters to the Beaufort Sea in arctic Canada. Salinity ranges in summer from 20‰ at the mouth to less than 1‰ at the head of the system. Arctic features include an ice cover lasting for about 8 months annually and water temperatures which fluctuate from ?1°C in winter to as high as 12°C in late summer. Subsurface light is severely attenuated. Reactive phosphate varies from a spring high of 0.3 μg-at P per 1 to undetectable levels during summer. Nitrate is more abundant, and silicate is consistently plentiful. Chlorophyll a reaches a maximum only occasionally higher than 3 mg per m3 in June and July, rising from undetectable levels in winter. Photosynthetic rates are low by all standards, and have not been measured at greater than 6.4 mg C per m2 per hour in summer. Low levels of subsurface light and reactive phosphate and nitrate characterize this exceptionally oligotrophic arctic estuary.  相似文献   

16.
A model for sedimentation by surging glaciers is developed from analysis of the debris load, sedimentary processes, and proglacial stratigraphy observed at the Icelandic surging glacier, Eyjabakkajökull. Three aspects of the behavior of surging glaciers explain the distinctive landformsediment associations which they may produce: (a) sudden loading of proglacial sediments during rapid glacier advances results in the buildup of excess pore pressures, failure, and glacitectonic deformation of the overridden sediments; (b) reactivation of stagnant marginal ice by the downglacier propagation of surges is associated with large longitudinal compressive stresses. These induce intense folding and thrusting during which basal debris-rich ice is elevated into an englacial position in a narrow marginal zone. As the terminal area of the glacier stagnates between surges, debris from this ice is released supraglacially and deposited by meltout and sediment flows; (c) local variations in overburden pressure beneath stagnant, crevassed ice cause subglacial lodgement tills, which are sheared during surges, to flow into open crevasses and form “crevasse-fill” ridges.  相似文献   

17.
All the available historic records of sea level and appropriate weather charts have been used to study storm surges in the northern part of the Sea of Japan. The generation of surges in this area was investigated by means of a two-dimensional numerical model. Computed sea levels were compared with hourly observed residual sea levels in De-Kastri. The agreement between computed and observed storm surges is quite satisfactory. The relative importance of various meteorological parameters and bottom topography in formation of the strong storm surge on 20–21 September 1975 was studied numerically.  相似文献   

18.
Modeling the impact of land reclamation on storm surges in Bohai Sea,China   总被引:1,自引:0,他引:1  
Ding  Yumei  Wei  Hao 《Natural Hazards》2017,85(1):559-573

A nested model for the simulation of tides and storm surges in the Bohai Sea, China, has been developed based on the three-dimensional finite-volume coastal ocean model. The larger domain covers the entire Yellow Sea and Bohai Sea with a horizontal resolution of ~10 km, and the smaller domain focuses on the Bohai Sea with a fine resolution up to ~300 m. For the four representative storm surges caused by extratropical storms and typhoons, the simulated surge heights are in good agreement with observations at coastal tide gauges. A series of sensitivity experiments are carried out to assess the influence of coastline change due to land reclamation in recent decades on water levels during storm surges. Simulation results suggest that changes in coastline cause changes in the amplitude and phase of the tidal elevation, and fluctuations of surge height after the peak stage of the storm surges. Hence, for the assessment of the influence of coastline changes on the total water level during storm surges, the amplitudes and phases of both the tidal and surge heights need to be taken into account. For the three major ports in the Bohai Bay, model results suggest that land reclamation has created a coastline structure that favors increasing the maximum water level by 0.1–0.2 m. Considering that during the storm surges the total water level is close to or even exceeds the warning level for these ports, further increasing the maximum water level by 0.1–0.2 m has the potential to cause severe damages and losses in these ports.

  相似文献   

19.
Ship-based sea ice observation data (concentrations,ice thickness,topography and overlying snow cover) were collected from Middle Weddell Sea to Prydz Bay,Antarctic during the period of 4 to 17 Jan 2003.Antarctic ice chart of first week of Jan 2003 was derived from National Ice Center (NIC).The compared analysis of sea ice concentrations and thickness distributions were conducted though in situ data and NIC chart.Results from sea ice concentration-analysis indicated the presence of large-scale open water between 2000 and 4100 km along transit route resulted from sea ice drifting.We describe the existence of mostly smooth first-year sea ice in study region ranged between 30 and 120 era.We also display the derived overlying snow coverage.Our results reveal the strong correspondence between ship-based observations and remotely sensed ice charts whatever in ice concentrations and ice thickness distributions.  相似文献   

20.
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6–2.4 Ma). (2) A transitional growth phase (2.4–1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic–Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号