首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mesoscale iron-fertilization experiment was carried out in the western subarctic Pacific during summer 2001. The iron-patch was traced for 14 days after the fertilization, and the abundance and behavior of mesozooplankton were compared with those outside of the patch. The phytoplankton biomass in the patch rapidly increased to over 15 times the initial level by the later half of the observation period, and was composed of large-sized (>10 mm), centric diatoms. Dominant zooplankton species in the upper 200-m depth were large copepods: Neocalanus plumchrus, Neocalanus cristatus, Eucalanus bungii and Metridia pacifica. Mesozoplankton biomass as well as species composition did not change significantly in the patch over the observation period. Furthermore, no changes of vertical distribution or diel vertical migration were observed for any species or stages of mesozooplankton throughout the observation period. However, the abundance of the first copepodite stages of N. plumchrus and E. bungii increased several fold in the patch after the diatom bloom formation compared to the densities outside the patch. The increases of both species are considered to be due to lowered mortality during the egg and nauplius stages. Spawning of N. plumchrus takes place at depth using lipid storage, while spawning of E. bungii takes place in the surface layer supported by grazing. These facts suggest that the relative importance of nauplii in the diets of the large copepods was decreased in the patch by the diatom bloom. Gut-pigment contents of dominant copepods in the patch increased 4–18 times, and the maximum values were observed during the bloom peak. However, the grazing impact on phytoplankton was low throughout the experiment, especially during the bloom period (<6% of the primary production).  相似文献   

2.
《Journal of Oceanography》2007,63(6):983-994
A mesoscale iron-enrichment study (SEEDS II) was carried out in the western subarctic Pacific in the summer of 2004. The iron patch was traced for 26 days, which included observations of the development and the decline of the bloom by mapping with sulfur hexafluoride. The experiment was conducted at almost the same location and the same season as SEEDS (previous iron-enrichment experiment). However, the results were very different between SEEDS and SEEDS II. A high accumulation of phytoplankton biomass (∼18 mg chl m−3) was characteristic of SEEDS. In contrast, in SEEDS II, the surface chlorophyll-a accumulation was lower, 0.8 to 2.48 mg m−3, with no prominent diatom bloom. Photosynthetic competence in terms of F v/F m for the total phytoplankton community in the surface waters increased after the iron enrichments and returned to the ambient level by day 20. These results suggest that the photosynthetic physiology of the phytoplankton assemblage was improved by the iron enrichments and returned to an iron-stressed condition during the declining phase of the bloom. Pico-phytoplankton (<2 μm) became dominant in the chlorophyll-a size distribution after the bloom. We observed a nitrate drawdown of 3.8 μM in the patch (day 21), but there was no difference in silicic acid concentration between inside and outside the patch. Mesozooplankton (copepod) biomass was three to five times higher during the bloom-development phase in SEEDS II than in SEEDS. The copepod biomass increased exponentially. The grazing rate estimation indicates that the copepod grazing prevented the formation of an extensive diatom bloom, which was observed in SEEDS, and led to the change to a pico-phytoplankton dominated community towards the end of the experiment.  相似文献   

3.
The role of copepod grazing on the ecosystem dynamics in the Oyashio region, western subarctic Pacific was investigated during six cruises from June 2001 to June 2002. In situ grazing rates of the copepod community (CGR) were measured by the gut fluorescence method in respect to developmental stages of dominant species. In terms of biomass, more than 80% of the copepod community was dominated by six large calanoid species (Neocalanus cristatus, Neocalanus flemingeri, Neocalanus plumchrus, Eucalanus bungii, Metridia pacifica and Metridia okhotensis) throughout the year. Resulting from the observed pattern of the interzonal migrating copepods, the CGR in the Oyashio region was divided into three phases, i.e. spring (bloom), summer (post-bloom) and autumn-winter phase. During the spring bloom, late copepodites of the interzonal migrating species, N. cristatus, N. flemingeri and E. bungii appeared in the surface layer (0-50 m) to consume the production of the bloom, resulting in a high grazing rate of the copepod community (7.9 mg Chl m−2 d−1), though its impact on phytoplankton community was low due to the high primary productivity. During the post-bloom period, although the copepod community which was dominated by N. cristatus, N. plumchrus, M. pacifica and newly recruited E. bungii still maintained a high biomass, the CGR was generally lower (1.8-2.6 mg Chl m−2 d−1 for June and August 2001), probably due to the lower availability of phytoplankton. Nevertheless, the highest CGR was also observed during this period (10.5 mg Chl m−2 d−1 in June 2002). The high CGR on autotrophic carbon accounted for 69% of the primary production, suggesting that the copepod community in the Oyashio region potentially terminates the phytoplankton bloom. Abundant occurrence of young E. bungii, which is a characteristic phenomenon in the Oyashio region, was largely responsible for the high grazing pressure in June 2002 suggesting that success of reproduction, growth, and survival in E. bungii during the spring bloom is an important factor in controlling phytoplankton abundance during the post-bloom season. During autumn and winter, CGR was the lowest in the year (0.29-0.38 mg Chl. m−2 d−1) due to the disappearance of the interzonal migrating copepods from the surface layer. Diel migrant M. pacifica was the most important grazer during this period. The annual ingestion of the copepod community is estimated as 37.7 gC m−2 on autotrophic carbon (converted using C:Chl ratio of 30) or 137.9 gC m−2 on suspended particles (using C:Chl ratio of in situ value, 58-191), accounting for 13% and 46% of annual primary production, respectively. This study confirms that copepod grazing is an important pathway in carbon flow in the Oyashio region and in particular their role in the phytoplankton dynamics is significant for the termination of the spring bloom.  相似文献   

4.
The dynamics, composition and grazing impact of microzooplankton were studied during the in situ iron fertilisation experiment EisenEx in the Antarctic Polar Frontal Zone in austral spring (November 2000). During the 21 day experiment, protozooplankton and small metazooplankton were sampled from the mixed layer inside and outside the patch using Niskin bottles. Aplastidic dinoflagellates increased threefold in abundance and biomass in the first 10 days of the experiment, but decreased thereafter to values twofold higher than pre-fertilisation values. The decline after day 10 is attributed to increasing grazing pressure by copepods. They also constrained ciliate abundances and biomass which were higher inside the fertilised patch than outside but highly variable. Copepod nauplii abundance remained stable whereas biomass doubled. Numbers of copepodites and adults of small copepod species (<1.5 mm) increased threefold inside the patch, but doubled in surrounding waters. Grazing rates estimated using the dilution method suggest that microzooplankton grazing constrained pico- and nanoplankton populations, but species capable of feeding on large diatoms (dinoflagellates and small copepods including possibly nauplii) were selectively predated by the metazoan community. Thus, iron fertilisation of a developing spring phytoplankton assemblage resulted in a trophic cascade which favoured dominance of the bloom by large diatoms.  相似文献   

5.
To identify seasonal patterns of change in zooplankton communities, an optical plankton counter (OPC) and microscopic analysis were utilised to characterise zooplankton samples collected from 0 to 150 m and 0 to 500 m in the Oyashio region every one to three months from 2002 to 2007. Based on the OPC measurements, the abundance and biomass of zooplankton peaked in June (0–150 m) or August (150–500 m), depending on the depth stratum. The peak periods of the copepod species that were dominant in terms of abundance and biomass indicated species-specific patterns. Three Neocalanus species (Neocalanus cristatus, Neocalanus flemingeri and Neocalanus plumchrus) exhibited abundance peaks that occurred before their biomass peaks, whereas Eucalanus bungii and Metridia pacifica experienced biomass peaks before their abundance peaks. The abundance peaks corresponded to the recruitment periods of early copepodid stages, whereas the biomass peaks corresponded to the periods when the dominant populations reached the late copepodid stages (C5 or C6). Because the reproduction of Neocalanus spp. occurred in the deep layer (>500 m), their biomass peaks were observed when the major populations reached stage C5 after the abundance peaks of the early copepodid stages. The reproduction of E. bungii and M. pacifica occurred near the surface layer. These species first formed biomass peaks of C6 and later developed abundance peaks of newly recruited early copepodid stages. From the comparison between OPC measurements and microscopic analyses, seasonal changes in zooplankton biomass at depths of 0–150 m were governed primarily by E. bungii and M. pacifica, whereas those at depths of 150–500 m were primarily caused by the three Neocalanus species.  相似文献   

6.
Phytoplankton species composition was analyzed inside and outside of the iron-enriched patch during the SEEDS experiment. Before the iron-enrichment, the phytoplankton community consisted of similar proportions of pico-, nano- and micro-sized phytoplankton, and the micro-phytoplankton was dominated by the pennate diatom Pseudo-nitzschia turgidula. Although all the diatoms, except the nano-sized Fragilariopsis sp., increased during the two weeks of the observation period, the flora in the patch dramatically changed with the increase of phytoplankton biomass to a centric diatom-dominated community. Neritic diatoms, especially Chaetoceros debilis, showed higher growth rates than other diatoms, without any delay in the initiation of growth after the enrichment, and accounted for 90% of the micro-phytoplankton after day 9. In contrast, the oceanic diatoms showed distinct delays in the initiation of growth. We conclude that the responses of the diatoms to the manipulation of iron concentration were different by species, and the fast and intensive response of the phytoplankton to iron-enrichment resulted from the presence of a small amount of neritic diatoms at the study site. The important factors that determine the dominant species in the bloom are the potential growth rates under an iron-replete condition and the growth lag. Abundant species in the patch are widely distributed in the North Pacific and their relative contributions in the Oyashio area and at Stn KNOT are high from spring to summer. However, a characteristic difference of species composition between the SEEDS bloom and natural blooms was the lack of Thalassiosira and Coscinodiscus species in the patch, which usually account for a major part of the phytoplankton community under blooming conditions in the western North Pacific.  相似文献   

7.
During two mesoscale iron-enrichment studies in the northwestern subarctic Pacific (SEEDS in 2001 summer and SEEDS II in 2004 summer), particulate materials from the iron-induced phytoplankton bloom in the upper water column were monitored to analyze the export processes beneath the upper mixed layer, mainly with drifting sediment traps. We could not observe the total downward export process of the high accumulation of particulate organic carbon from the mixed layer induced by the large diatom bloom of SEEDS [e.g., Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I., Kiyosawa, H., Shiomoto, A., Imai, K., Ono, T., Shimamoto, A., Tsumune, D., Yoshimura, T., Aono, T., Hinuma, A., Kinugasa, M., Suzuki, K., Sohrin, Y., Noiri, Y., Tani, H., Deguchi, Y., Tsurushima, N., Ogawa, H., Fukami, K., Kuma, K., Saino, T., 2003. A mesoscale iron enrichment in the western subarctic Pacific induces large centric diatom bloom. Science 300, 958–961] because the 2-week observation period was too short to examine the decline phase of the bloom. In contrast, in SEEDS II, the particulate organic carbon and particulate organic nitrogen were accumulated 123 and 23 mmol m−2, respectively, in the mixed layer until day-15 (days from iron-enrichment), and then ca. 90% were removed from the mixed layer by day-25. The sediment traps at 40 m depth between day-15 and day-25 accounted for at least more than 35% of these particles. There was no large variation in chemical composition in settling particles above 100 m depth throughout the experimental periods both in SEEDS and SEEDS II. The content of biogenic opal remained more than 50% of all settling particles during SEEDS, while the content of biogenic calcium carbonate was relatively high, with a low biogenic opal content of consistently less than 30% during SEEDS II. These results suggest that high standing stock of seed population of diatoms before the iron fertilization, indicated by low C/Si ratio of particulate matter, is an important factor to induce the large diatom bloom in SEEDS.  相似文献   

8.
To test the iron hypothesis in the subarctic Pacific Ocean, an in situ iron-enrichment experiment (SEEDS) was performed in the western subarctic gyre in July–August 2001. About 350 kg of iron (as acidic iron sulfate) and 0.48 mol of the inert chemical tracer sulfur hexafluoride were introduced into a 10-m deep surface mixed layer over an 80 km2 area. This single iron infusion raised dissolved iron levels to 2.9 nM initially. Dissolved iron concentrations rapidly decreased after the infusion, but levels remained close to 0.15 nM even at the end of the 14-day experimental period. During SEEDS there were iron-mediated increases in chlorophyll a concentrations (up to 20 μg l−1), primary production rates, biomass and photosynthetic energy conversion efficiency relative to waters outside the iron-enriched patch. The rapid and very high accumulation of phytoplankton biomass in response to the iron addition appeared to be partly attributable to shallow mixed-layer depth and moderate water temperature in the western subarctic Pacific. However, the main reason was a floristic shift to fast-growing centric diatom Chaetoceros debilis, unlike the previous iron-enrichment experiments in the equatorial Pacific and the Southern Ocean, in both of which iron stimulated the growth of pennate diatoms. The iron-mediated blooming of diatoms resulted in a marked consumption of macronutrients and drawdown of pCO2. Biological and physiological measurements indicate that phytoplankton growth in the patch became both light- and iron-limited, making phytoplankton biomass relatively constant after day 9. The increase in microzooplankton grazing rate after day 9 also influenced the net growth rate of phytoplankton. There was no significant increase in the export flux of carbon to depth during the 14-day occupation of the experimental site. The export flux between day 4 and day 13 was estimated to be only 13% of the integrated primary production in the iron-enriched patch. The major part of the carbon fixed by the diatom bloom remained in the surface mixed layer as biogenic particulate matter. Our findings support the hypothesis that iron limits phytoplankton growth and biomass in a ‘bottom up’ manner in this area, but the fate of algal carbon remains unknown.  相似文献   

9.
Several in situ iron-enrichment experiments have been conducted, where the response of the phytoplankton community differed. We use a marine ecosystem model to investigate the effect of iron on phytoplankton in response to different initial plankton conditions and mixed-layer depths (MLDs). Sensitivity analysis of the model results to the MLDs reveals that the modeled response to the same iron enhancement treatment differed dramatically according to the different MLDs. The magnitude of the iron-induced biogeochemical responses in the surface water, such as maximum chlorophyll, is inversely correlated with MLD, as observed. The significant decrease in maximum surface chlorophyll with MLD results from the difference in diatom concentration in the mixed layer, which is determined by vertical mixing. The modeled column-integrated chlorophyll, on the other hand, is the highest with intermediate MLD cases, suggesting difference in iron-induced biogeochemical responses between volume and area considerations. The iron-induced diatom bloom is severely restricted below the compensation depth due to both light limitation and grazing pressure, irrespective of the MLD. Sensitivity of the model to initial mesozooplankton (as grazers on diatoms) biomass shows that column-integrated biomass, net community production and export production are strongly controlled by the initial mesozooplankton biomass. Higher initial mesozooplankton biomass yields high grazing pressure on diatoms, which results in less accumulation of diatom biomass and may account for notably lower surface chlorophyll during SEEDS (Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study) II than during SEEDS. The initial diatom biomass is also important to the outcome of iron enrichment but is not as crucial as the MLD and the initial mesozooplankton biomass. This modeling study suggests that not only MLD but also the initial biomass of diatoms and its principle grazers are crucial factors in the response of the phytoplankton community to iron enrichments, and should be considered in designing future iron-enrichment experiments.  相似文献   

10.
The cumulative evidence from more than a dozen mesoscale iron-enrichment studies in high nitrate low chlorophyll (HNLC) waters demonstrates that iron limitation is widespread and very likely affects atmospheric carbon dioxide and thus global climate. However, the responses of microphytoplankton (>20 μm), predominantly diatoms, vary greatly among these mesoscale experiments even though similar amounts of iron were added, making it difficult to quantitatively incorporate iron effects into global climate models. Nowhere is this difference more dramatic than between the massive bloom observed during Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS) I and the order of magnitude smaller ecosystem response in SEEDS II; two mesocale experiments performed in the same HNLC region of the western subarctic Pacific in different years. Deckboard incubation experiments initiated during the early, middle, and late stages of the 32-day SEEDS II experiment show that while the two iron infusions increased phytoplankton growth, diatoms remained significantly limited by iron availability, despite total dissolved Fe concentrations in the patch being well above the diffusion-limited threshold for rapid diatom growth. This iron limitation was apparent <6 days after the initial iron infusion and was not alleviated by the second, smaller iron infusion. In contrast, smaller phytoplankton (<20 μm) showed a more restricted response to further iron amendments, indicating that their iron nutrition was near optimal. Iron complexed to desferrioximine B, a commonly available siderophore produced by at least one marine bacterium, was poorly available to diatoms throughout the patch evolution, indicating that these diatoms lacked the ability to induce high-affinity iron uptake systems. These results suggest that the strong organic complexation of Fe(III) observed in the SEEDS II-fertilized patch was not compatible with rapid diatom growth. In contrast, iron associated with protoporphyrin IX, a weaker iron complexing ligand of a class hypothesized to be representative of recycled iron species, was readily available to diatoms. Our findings demonstrate that a persistence of iron limitation was the primary factor underlying the comparatively small diatom response during SEEDS II. This continued growth limitation would have increased the importance of mesozooplankton grazing as a controlling factor in the SEEDS II ecosystem response.  相似文献   

11.
Phytoplankton growth and microzooplankton grazing were studied during the 2007 spring bloom in Central Yellow Sea. The surveyed stations were divided to pre-bloom phase (Chl a concentration less than 2 μg L−1), and bloom phase (Chl a concentration greater than 2 μg L−1). Shipboard dilution incubation experiments were carried out at 19 stations to determine the phytoplankton specific growth rates and the specific grazing rates of microzooplankton on phytoplankton. Diatoms dominated in the phytoplankton community in surface waters at most stations. For microzooplankton, Myrionecta rubra and tintinnids were dominant, and heterotrophic dinoflagellate was also important in the community. Phytoplankton-specific growth rates, with an average of 0.60±0.19 d−1, were higher at pre-bloom stations (average 0.62±0.17 d−1), and lower at the bloom stations (average 0.59±0.21 d−1), but the difference of growth rates between bloom and pre-bloom stations was not statistically significant (t test, p=0.77). The phytoplankton mortality rate by microzooplankton grazing averaged 0.41±0.23 d−1 at pre-bloom stations, and 0.58±0.31 d−1 during the blooms. In contrast to the growth rates, the statistic difference of grazing rates between bloom and pre-bloom stations was significant (after removal of outliers, t test, p=0.04), indicating the importance of the top-down control in the phytoplankton bloom processes. Average potential grazing efficiency on primary productivity was 66% at pre-bloom stations and 98% at bloom stations, respectively. Based on our results, the biomass maximum phase (bloom phase) was not the maximum growth rate phase. Both phytoplankton specific growth rate and net growth rate were higher in the pre-bloom phase than during the bloom phase. Microzooplankton grazing mortality rate was positively correlated with phytoplankton growth rate during both phases, but growth and grazing were highly coupled during the booming phase. There was no correlation between phytoplankton growth rate and cell size during the blooms, but they were positive correlated during the pre-bloom phase. Our results indicate that microzooplankton grazing is an important process controlling the growth of phytoplankton in spring bloom period in the Central Yellow Sea, particularly in the “blooming” phase.  相似文献   

12.
The copepods Neocalanus flemingeri and N. plumchrus are major components of the mesozooplankton on the shelf of the Gulf of Alaska, where they feed, grow and develop during April–June, the period encompassing the spring phytoplankton bloom. Satellite imagery indicates high mesoscale variability in phytoplankton concentration during this time. Because copepod ingestion is related to food concentration, we hypothesized that phytoplankton ingestion by N. flemingeri and N. plumchrus would vary in response to mesoscale variability of phytoplankton. We proposed that copepods on the inner shelf, where the phytoplankton bloom is most pronounced, would be larger and have more lipid stores than animals collected from the outer shelf, where phytoplankton concentrations are typically low. Shipboard feeding experiments with both copepods were done in spring of 2001 and 2003 using natural water as food medium. Chlorophyll concentration ranged widely, between 0.32 and 11.44 μg l−1 and ingestion rates varied accordingly, between 6.0 and 627.0 ng chl cop−1 d−1. At chlorophyll concentrations<0.50 μg l−1, ingestion is always low, <40 ng cop−1 d−1. Intermediate ingestion rates were observed at chlorophyll concentrations between 0.5 and 1.5 μg l−1, and maximum rates at chlorophyll concentrations>1.5 μg l−1. Application of these feeding rates to the phytoplankton distribution on the shelf allowed locations and time periods of low, intermediate and high daily feeding to be calculated for 2001 and 2003. A detailed cross-shelf survey of body size and lipid store in these copepods, however, indicated they were indistinguishable regardless of collection site. Although the daily ingestion of phytoplankton by N. flemingeri and N. plumchrus varied widely because of mesoscale variability in phytoplankton, these daily differences did not result in differences in final body size or lipid storage of these copepods. These copepods efficiently dealt with small and mesoscale variations in their food environment such that mesoscale structure in phytoplankton did not affect their final body size.  相似文献   

13.
Biogeochemical cycles of N and Si were examined in the surface mixed layer during the mesoscale iron-enrichment (IE) experiment in the high-nutrient low-chlorophyll (HNLC) western subarctic Pacific (SEEDS-II). Although the IEs increased nitrate uptake, silicic acid utilization was not stimulated. The nitrate drawdown in the iron-patch (IN-patch, 140.3 mmol m−2 in the surface mixed layer, 0–30 m) was only 25% of the initial inventory, which was 1/3–2/5 of the previous IE experiments in the subarctic Pacific. This relatively weak response of nutrient drawdown to IEs was due to the high biomass of mesozooplankton (MZ) dominated by copepod Neocalanus plumchrus. Feeding of MZ (247.2 mmol m−2 during Day 0–21 from the first IE) in the IN-patch was higher than the nitrate drawdown and prevented further development of the phytoplankton bloom. In the later period of the experiment (Day 14–21), the increase in the feeding activity and resultant decrease in phytoplankton biomass induced the accumulation of dissolved organic nitrogen (DON) and ammonium. Among total growth of MZ (81.6 mmol N m−2), 89% (72.8 mmol N m−2) was transported to the depth by the ontogenetic downward migration of N. plumchrus. Although silicic acid drawdown was not increased by the IEs, Si export flux increased by 2.7 times. The increase in Si export was also due to the increase in MZ, which egested faecal pellets with higher Si:N ratio and faster sinking speed than diatoms. The export efficiency (78% of new production) and total amount of export flux (143.8 mmol N m−2, 1392 mmol C m−2) were highest records within the IE experiments despite weak responses of nutrient drawdown to the IE. During SEEDS-II, the high biomass of MZ reduced the phytoplankton response and nutrient drawdown to the IEs but via grazing and ontogenetic vertical migration accelerated the export flux as well as accumulations of dissolved forms of N. Results of the present and previous IE experiments indicate that the ecosystem and biogeochemical responses to IEs in the HNLC region are quite sensitive to the ecosystem components, especially for grazers of diatoms such as copepods and heterotrophic dinoflagellates. More attention needs to be paid to the ecosystem components and their biogeochemical functions as well as physical and chemical properties of the ecosystems in order to hindcast or forecast the impacts of changes in atmospheric iron deposition.  相似文献   

14.
Temporal changes in the abundance, community composition, and photosynthetic physiology of phytoplankton in surface waters were investigated during the second in situ iron (Fe) fertilization experiment in the NW subarctic Pacific (SEEDS-II). Surface chlorophyll a concentration was 0.75 mg m−3 on the day before the first Fe enrichment (i.e. Day 0), increased ca. 3-fold until Day 13 after two Fe additions, and thereafter declined with time. The photochemical quantum efficiency (Fv/Fm) and functional absorption cross-section (σPSII) of photosystem II for total phytoplankton in surface waters increased and decreased inside the Fe-enriched patch through Day 13, respectively. These results indicate that the photosynthetic physiological condition of the phytoplankton improved after the Fe infusions. However, the maximum Fv/Fm value of 0.43 and the maximum quantum yield of carbon fixation (φmax) of 0.041 mol C (mol photon)−1 during the development phase of the bloom were rather low, compared to their theoretical maximum of ca. 0.65 and 0.10 mol C (mol photon)−1, respectively. Diatoms, which were mainly composed of oceanic species, did not bloom, and autotrophic nanoflagellates such as cryptophytes and prasinophytes became predominant in the phytoplankton community inside the Fe-enriched patch. In ferredoxin/flavodoxin assays for micro-sized (20–200 μm in cell length) diatoms, ferredoxin was not detected but flavodoxin expressions consistently occurred with similar levels both inside and outside the Fe-enriched patch, indicating that the large-sized diatoms were stressed by Fe bioavailability inside the Fe-enriched patch even after the Fe enrichments. Our data suggest that the absence of a Fe-induced large-sized diatom bloom could be partly due to their Fe stress throughout SEEDS-II.  相似文献   

15.
A patch of water in the western subarctic gyre (low iron concentration, <0.02 nM) was fertilized twice with 322 and 159 kg of iron to induce a phytoplankton bloom. In order to understand the changes in iron distribution and bio-availability throughout the evolution and termination phase of the iron-induced bloom, iron concentrations were measured at stations inside and outside of the iron-fertilized patch, and shipboard culture experiments using iron and desferrioxamine B (DFB) inoculation to regulate iron availability were conducted 5 times with water collected from the center of the iron-fertilized patch on D2, D7, D11, D17 and D23.After the iron fertilization, we observed a significant increase in dissolved iron (1.38 nM at 5 m depth) at the center of the patch (D1). Dissolved iron concentrations subsequently decreased to an ambient level (~0.08 nM) on D16–D17, despite the second iron fertilization made on D6. During the 4-day incubations of the shipboard culture experiments, excess DFB-inoculated treatment inhibited the phytoplankton growth compared to the controls for D2, D7 and D11 patch water. This indicated that available iron existed in the iron-fertilized patch at least until D11. Moreover, iron-inoculated treatments induced growth of large-sized phytoplankton with an accompanying silicate decrease for D7, D11 and D17 patch water, but not for D23 patch water. These results indicated that large diatoms, which can respond to additional iron inoculation, existed in the iron-fertilized patch in evolution and early termination phase of the iron-induced bloom (at least until D17); however, there was no significant amount of large diatoms, which could rapidly respond to iron, in late termination phase (D23) of the iron-induced phytoplankton bloom.  相似文献   

16.
Microzooplankton species composition and grazing rates on phytoplankton were investigated along a transect between ∼46 and 67°S, and between 140 and 145°E. Experiments were conducted in summer between November 2nd and December 14th in 2001. The structure of the microbial food web changed considerably along the transect and was associated with marked differences in the physical and chemical environment encountered in the different water masses and frontal regions. On average microzooplankton grazing experiments indicated that 91%, 102%, and 157%, (see results) of the phytoplankton production would be grazed in the <200, <20 and <2 μm size fractions, respectively, indicating microzooplankton grazing was potentially constraining phytoplankton populations (<200 μm) along most of the transect. Small ciliates in general and especially oligotrich species declined in importance from the relatively warm, Southern Subtropical Front waters (6.8 μg C/L) to the colder waters of the southern branch of the Polar Front (S-PF), (∼0.5 μg C/L) before increasing again near the Antarctic landmass. Large changes in microzooplankton dominance were observed, with heterotrophic nanoflagellates (HNF), ciliates and larger dinoflagellates having significant biomass in different water masses. HNF were the dominant grazers when chlorophyll a was low in areas such as the Inter-Polar Frontal Zone (IPFZ), while in areas of elevated biomass such as the S-PF and Southern Antarctic Circumpolar Current (SACC), a mix of copepod nauplii and large heterotrophic and mixotrophic dinoflagellates tended to dominate the grazing community. In the S-PF and SACC water masses the tight coupling observed between the microzooplankton grazers and phytoplankton populations over most of the rest of the transect was relaxed. In these regions grazing was low on the >20 μm size fraction of chlorophyll a, which dominated the biomass, while smaller diatoms and nanoplankton in the <20 μm size fraction were still heavily grazed. The lack of grazing pressure on large phytoplankton contributes to this region's potential to export carbon with larger cells known to have higher sinking rates.  相似文献   

17.
Sulfur hexafluoride (SF6) tracer release experiments were carried out to trace the iron-fertilized water mass during the iron-fertilization experiments in the western North Pacific of Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study II (SEEDS II) in 2004. A solution of Fe and SF6 tracer was released into the surface mixed layer over an 8×8 km area, and the fertilized patch was traced by onboard SF6 analysis for 12 days during each experiment. A Lagrangian frame of reference was maintained by the use of a drogued GPS buoy released at the center of the patch to reduce the advection effect on observations. The patch moved along the contour of sea-surface height (SSH) of a clockwise mesoscale eddy for 4 days after release. Then strong easterly winds dragged the patch across the contour of SSH. The patch behavior was affected by both the mesoscale eddy and surface winds. Apparent horizontal diffusivities were determined by the change of the distribution of SF6 concentrations. The averaged apparent horizontal diffusivity was about 49 m2 s−1 during SEEDS II. It was larger than the one in SEEDS. Mixed-layer depth (MLD) was 8.5–18 m during SEEDS, and 12–33 m during SEEDS II. The larger horizontal diffusivity and deeper MLD in SEEDS II were disadvantages to maintain a high iron concentration in the surface layer compared to SEEDS. Temporal change of the MLD corresponded to the temporal change of chlorophyll-a concentration. Temporal change in the surface MLD was also important for the response of phytoplankton by iron fertilization.  相似文献   

18.
《Journal of Sea Research》2009,61(4):246-254
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m 2 d 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after ∼ 30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m 2 d 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

19.
During mesoscale Fe enrichment (SEEDS II) in the western North Pacific ocean, we investigated dissolved and particulate Co, Ni, Cu, Zn, Cd and Pb in seawater from both field observation and shipboard bottle incubation of a natural phytoplankton assemblage with Fe addition. Before the Fe enrichment, strong correlations between dissolved trace metals (Ni, Zn and Cd) and PO43−, and between particulate trace metals (Ni, Zn and Cd) and chlorophyll-a were obtained, suggesting that biogeochemical cycles mainly control the distributions of Ni, Zn and Cd in the study area. Average concentrations of dissolved Co, Ni, Cu, Zn, Cd and Pb in the surface mixed layer (0–20 m) were 70 pM, 4.9, 2.1, 1.6, 0.48 nM and 52 pM, respectively, and those for the particulate species were 1.7 pM, 0.052, 0.094, 0.46, 0.037 nM and 5.2 pM, respectively. After Fe enrichment, chlorophyll-a increased 3 fold (up to 3 μg L−1) during developing phases of the bloom (<12 days). Mesozooplankton biomass also increased. Particulate Co, Ni, Cu and Cd inside the patch hinted at an increase in the concentrations, but there were no analytically significant differences between concentrations inside and outside the patch. The bottle incubation with Fe addition (1 nM) showed an increase in chlorophyll-a (8.9 μg L−1) and raised the particulate fraction up to 3–45% for all the metals, accompanying changes in Si/P, Zn/P and Cd/P. These results suggest that Fe addition lead to changes in biogeochemical cycling of trace metals. The comparison between the mesoscale Fe enrichment and the bottle incubation experiment suggests that although Fe was a limiting factor for the growth of phytoplankton, the enhanced biomass of mesozooplankton also limited the growth of phytoplankton and the transformation of trace metal speciation during the mesoscale Fe enrichment. Sediment trap data and the elemental ratios taken up by phytoplankton suggest that export loss was another reason that no detectable change in the concentrations of particulate trace metals was observed during the mesoscale Fe enrichment.  相似文献   

20.
The micro- and mesozooplankton communities in surface waters of the Greenland Sea are described based on data from five cruises covering an annual cycle. Special emphasis is given to the summer period (June and August), prior to and after the descent of Calanus spp. Calanus spp. dominated the copepod community during the spring bloom and in the beginning of the summer. However, during the summer, there was a pronounced shift in the zooplankton composition in the euphotic zone. In contrast to what has been observed in other Arctic systems, smaller genera such as Pseudocalanus spp., Oncaea spp. and Oithona spp. became abundant and the total copepod biomass remained high after the Calanus spp. descended for hibernation. The peak protozooplankton biomass in the Greenland Sea (June) co-occurred with the peak in Calanus spp. Protozooplankton biomass then decreased during the summer. Growth of protozooplankton and grazing rates of the two dominating non-Calanus genera, Oithona and Pseudocalanus, were measured. For both copepod genera, protozooplankton constituted 40% or more of the diet, and maximum clearance was on prey items with an equivalent spherical diameter between 15 and 30 μm. The non-Calanus components of the zooplankton community were responsible for 70–99% of the total zooplankton grazing on phytoplankton during summer and were crucial for the recycling and respiration of primary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号