首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary productivity (PP), bacterial productivity (BP) and the uptake rates of nitrate and ammonium were measured using isotopic methods (13C, 3H, 15N) during a mesoscale iron (Fe)-enrichment experiment conducted in the western subarctic Pacific Ocean in 2004 (SEEDS II). PP increased following Fe enrichment, reached maximal rates 12 days after the enrichment, and then declined to the initial level on day 17. During the 23-day observation period, we observed the development and decline of the Fe-induced bloom. The surface mixed layer (SML) integrated PP increased by 3-fold, but was smaller than the 5-fold increase observed in the previous Fe-enrichment experiment conducted at almost the same location and season during 2001 (SEEDS). Nitrate uptake rates were enhanced by Fe enrichment but decreased after day 5, and became lower than ammonium uptake rates after day 17. The total nitrogenous nutrient uptake rate declined after the peak of the bloom, and accumulation of ammonium was obvious in the euphotic layer. Nitrate utilization accounted for all the requirements of N for the massive bloom development during SEEDS, whereas during SEEDS II, nitrate accounted for >90% of total N utilization on day 5, declining to 40% by the end of the observation period. The SML-integrated BP increased after day 2 and peaked twice on days 8 and 21. Ammonium accumulation and the delayed heterotrophic activity suggested active regeneration occurred after the peak of the bloom. The SML-integrated PP between days 0 and 23 was 19.0 g C m−2. The SML-integrated BP during the same period was 2.6 g C m−2, which was 14% of the SML-integrated PP. Carbon budget calculation for the whole experimental period indicated that 33% of the whole (particulate plus dissolved) PP (21.5 g C m−2) was exported below the SML and 18% was transferred to the meso-zooplankton (growth). The bacterial carbon consumption (43% of the whole PP) was supported by DOC or POC release from phytoplankton, zooplankton, protozoa and viruses. More than a half (56%) of the whole PP in the Fe patch was consumed within the SML by respiration of heterotrophic organisms and returned to CO2.  相似文献   

2.
During mesoscale Fe enrichment (SEEDS II) in the western North Pacific ocean, we investigated dissolved and particulate Co, Ni, Cu, Zn, Cd and Pb in seawater from both field observation and shipboard bottle incubation of a natural phytoplankton assemblage with Fe addition. Before the Fe enrichment, strong correlations between dissolved trace metals (Ni, Zn and Cd) and PO43−, and between particulate trace metals (Ni, Zn and Cd) and chlorophyll-a were obtained, suggesting that biogeochemical cycles mainly control the distributions of Ni, Zn and Cd in the study area. Average concentrations of dissolved Co, Ni, Cu, Zn, Cd and Pb in the surface mixed layer (0–20 m) were 70 pM, 4.9, 2.1, 1.6, 0.48 nM and 52 pM, respectively, and those for the particulate species were 1.7 pM, 0.052, 0.094, 0.46, 0.037 nM and 5.2 pM, respectively. After Fe enrichment, chlorophyll-a increased 3 fold (up to 3 μg L−1) during developing phases of the bloom (<12 days). Mesozooplankton biomass also increased. Particulate Co, Ni, Cu and Cd inside the patch hinted at an increase in the concentrations, but there were no analytically significant differences between concentrations inside and outside the patch. The bottle incubation with Fe addition (1 nM) showed an increase in chlorophyll-a (8.9 μg L−1) and raised the particulate fraction up to 3–45% for all the metals, accompanying changes in Si/P, Zn/P and Cd/P. These results suggest that Fe addition lead to changes in biogeochemical cycling of trace metals. The comparison between the mesoscale Fe enrichment and the bottle incubation experiment suggests that although Fe was a limiting factor for the growth of phytoplankton, the enhanced biomass of mesozooplankton also limited the growth of phytoplankton and the transformation of trace metal speciation during the mesoscale Fe enrichment. Sediment trap data and the elemental ratios taken up by phytoplankton suggest that export loss was another reason that no detectable change in the concentrations of particulate trace metals was observed during the mesoscale Fe enrichment.  相似文献   

3.
Iron could play a key role in controlling phytoplankton biomass and productivity in high-nutrient, low-chlorophyll regions. As a part of the iron fertilization experiment carried out in the western subarctic Pacific from July to August 2004 (Subarctic Pacific iron Experiment for Ecosystem Dynamics Study II—SEEDS II), we analysed the concentrations of trace gases in the seawater for 12 d following iron fertilization. The mean concentrations of chlorophyll a in the mixed layer (5–30 m depth) increased from 0.94 to 2.81 μg L–1 for 8 d in the iron patch. The mean concentrations of methyl bromide (CH3Br; 5–30 m depth) increased from 6.4 to 13.4 pmol L–1 for 11 d; the in-patch concentration increased relative to the out-patch concentration. A linear correlation was observed between the concentrations of 19′-hexanoyloxyfucoxanthin, which is a biomarker of several prymnesiophytes, and CH3Br in the seawater. After fertilization, the air–sea flux of CH3Br inside the patch changed from influx to efflux from the ocean. There was no clear evidence for the increase in saturation anomaly of methyl chloride (CH3Cl) due to iron fertilization. Furthermore, CH3Cl fluxes did not show a tendency to increase after fertilization of the patch. In contrast to CH3Br, no change was observed in the concentrations of bromoform (in-patch day 11 and out-patch day 11: 1.7 and 1.7 pmol L–1), dibromomethane (2.1 and 2.2 pmol L–1), and dibromochloromethane (1.0 and 1.2 pmol L–1, respectively). The concentration of isoprene, which is known to have a relationship with chlorophyll a, did not change in this study. The responses of trace gases during SEEDS II differed from the previous findings (in situ iron enrichment experiment—EisenEx, Southern Ocean iron experiment—SOFeX, and Subarctic Ecosystem Response to Iron Enrichment Study—SERIES). Thus, in order to estimate the concomitant effect of iron fertilization on the climate, it is important to assess the induction of biological activity and the distributions/air–sea fluxes of trace gases by iron addition.  相似文献   

4.
A mesoscale iron fertilization experiment was carried out in the western subarctic Pacific during summer 2004. The iron-patch was traced for 26 days after the enrichment, and the abundance and behavior of meso- and microzooplankton was compared with those outside of the patch. The surface chlorophyll-a concentration in the patch was high between days 10 and 13 (2.5 mg m−3) and decreased to the initial level after day 20. Microzooplankton grazing rates, estimated by a dilution method, was mostly balanced with phytoplankton growth rates throughout the observed period. Dominant mesozooplankton species in the upper 200 m were copepods: dominated by Eucalanus bungii, Neocalanus plumchrus and Metridia pacifica. Species composition did not change in the patch over the observation period. The copepod biomass was 3–5 times higher than in Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS), the previous iron-enrichment experiment in the same area, before the bloom, and exponentially increased both inside and outside the patch, which was mainly brought by the development of N. plumchrus. The development rates of N. plumchrus were not significantly different between inside and outside the patch. Estimated grazing rate suggest that the copepod grazing was main cause of the low accumulation of phytoplankton biomass, and dominance of grazing-resistant organisms such as large ciliates, large diatoms and diatoms with extremely long setae. “Arrested migration” for M. pacifica and upward shift of vertical distribution by E. bungii were observed during the bloom period, even if the accumulation of phytoplankton biomass was very low compared to other iron-enrichment experiments. These results indicate that the copepod grazing shaped the food-web structure of the lower trophic levels (biomass and species composition) in SEEDS II.  相似文献   

5.
During two mesoscale iron-enrichment studies in the northwestern subarctic Pacific (SEEDS in 2001 summer and SEEDS II in 2004 summer), particulate materials from the iron-induced phytoplankton bloom in the upper water column were monitored to analyze the export processes beneath the upper mixed layer, mainly with drifting sediment traps. We could not observe the total downward export process of the high accumulation of particulate organic carbon from the mixed layer induced by the large diatom bloom of SEEDS [e.g., Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I., Kiyosawa, H., Shiomoto, A., Imai, K., Ono, T., Shimamoto, A., Tsumune, D., Yoshimura, T., Aono, T., Hinuma, A., Kinugasa, M., Suzuki, K., Sohrin, Y., Noiri, Y., Tani, H., Deguchi, Y., Tsurushima, N., Ogawa, H., Fukami, K., Kuma, K., Saino, T., 2003. A mesoscale iron enrichment in the western subarctic Pacific induces large centric diatom bloom. Science 300, 958–961] because the 2-week observation period was too short to examine the decline phase of the bloom. In contrast, in SEEDS II, the particulate organic carbon and particulate organic nitrogen were accumulated 123 and 23 mmol m−2, respectively, in the mixed layer until day-15 (days from iron-enrichment), and then ca. 90% were removed from the mixed layer by day-25. The sediment traps at 40 m depth between day-15 and day-25 accounted for at least more than 35% of these particles. There was no large variation in chemical composition in settling particles above 100 m depth throughout the experimental periods both in SEEDS and SEEDS II. The content of biogenic opal remained more than 50% of all settling particles during SEEDS, while the content of biogenic calcium carbonate was relatively high, with a low biogenic opal content of consistently less than 30% during SEEDS II. These results suggest that high standing stock of seed population of diatoms before the iron fertilization, indicated by low C/Si ratio of particulate matter, is an important factor to induce the large diatom bloom in SEEDS.  相似文献   

6.
The effect of added iron on bacterial cycling of the climate-active gas dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) was tested during the second Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS II) from 19 July to 21 August 2004 aboard the R/V Hakuho-Maru. The study area in the northwest Pacific Ocean (48°N 165°E) was enriched with Fe and the conservative tracer, SF6, allowing the fertilized patch to be tracked. Microbial DMSP cycling rates were determined in the surface mixed layer (5 m) during incubations using the 35S-DMSP technique. The addition of iron resulted in a 4-fold increase in concentrations of chlorophyll a (chl a) within the surface mixed layer (5 m depth), and the length of the sampling period allowed the observation of both bloom and post-bloom conditions. Inside the fertilized patch, the alleviation of resource limitation gave rise to the concurrent increase in bacterial abundance and production. Changes in the phytoplankton community within the Fe-enriched patch translated into a sustained decrease in chl a-normalized particulate DMSP (DMSPp) concentrations, suggesting a preferential stimulation of the growth of DMSPp-poor phytoplankton species. Despite short-lived peaks of DMSPp within the Fe-enriched area, concentrations of DMSPp generally remained stable during the entire sampling period inside and outside the fertilized patch. During the Fe-induced bloom, microbial DMSP-sulfur (DMSP-S) assimilation efficiency increased 2.6-fold inside the Fe-enriched area, which indicated that as bacterial production increased, a greater proportion of DMSP-S was assimilated and possibly diverted away from the bacterial cleavage pathway (i.e. production of DMS). Our results suggest that iron-induced stimulation of weak DMSPp-producers and DMSP-assimilating bacteria may diminish the potential production of DMS and thus limit its flux towards the atmosphere over the subarctic Pacific Ocean.  相似文献   

7.
《Journal of Oceanography》2007,63(6):983-994
A mesoscale iron-enrichment study (SEEDS II) was carried out in the western subarctic Pacific in the summer of 2004. The iron patch was traced for 26 days, which included observations of the development and the decline of the bloom by mapping with sulfur hexafluoride. The experiment was conducted at almost the same location and the same season as SEEDS (previous iron-enrichment experiment). However, the results were very different between SEEDS and SEEDS II. A high accumulation of phytoplankton biomass (∼18 mg chl m−3) was characteristic of SEEDS. In contrast, in SEEDS II, the surface chlorophyll-a accumulation was lower, 0.8 to 2.48 mg m−3, with no prominent diatom bloom. Photosynthetic competence in terms of F v/F m for the total phytoplankton community in the surface waters increased after the iron enrichments and returned to the ambient level by day 20. These results suggest that the photosynthetic physiology of the phytoplankton assemblage was improved by the iron enrichments and returned to an iron-stressed condition during the declining phase of the bloom. Pico-phytoplankton (<2 μm) became dominant in the chlorophyll-a size distribution after the bloom. We observed a nitrate drawdown of 3.8 μM in the patch (day 21), but there was no difference in silicic acid concentration between inside and outside the patch. Mesozooplankton (copepod) biomass was three to five times higher during the bloom-development phase in SEEDS II than in SEEDS. The copepod biomass increased exponentially. The grazing rate estimation indicates that the copepod grazing prevented the formation of an extensive diatom bloom, which was observed in SEEDS, and led to the change to a pico-phytoplankton dominated community towards the end of the experiment.  相似文献   

8.
Temporal changes in the abundance, community composition, and photosynthetic physiology of phytoplankton in surface waters were investigated during the second in situ iron (Fe) fertilization experiment in the NW subarctic Pacific (SEEDS-II). Surface chlorophyll a concentration was 0.75 mg m−3 on the day before the first Fe enrichment (i.e. Day 0), increased ca. 3-fold until Day 13 after two Fe additions, and thereafter declined with time. The photochemical quantum efficiency (Fv/Fm) and functional absorption cross-section (σPSII) of photosystem II for total phytoplankton in surface waters increased and decreased inside the Fe-enriched patch through Day 13, respectively. These results indicate that the photosynthetic physiological condition of the phytoplankton improved after the Fe infusions. However, the maximum Fv/Fm value of 0.43 and the maximum quantum yield of carbon fixation (φmax) of 0.041 mol C (mol photon)−1 during the development phase of the bloom were rather low, compared to their theoretical maximum of ca. 0.65 and 0.10 mol C (mol photon)−1, respectively. Diatoms, which were mainly composed of oceanic species, did not bloom, and autotrophic nanoflagellates such as cryptophytes and prasinophytes became predominant in the phytoplankton community inside the Fe-enriched patch. In ferredoxin/flavodoxin assays for micro-sized (20–200 μm in cell length) diatoms, ferredoxin was not detected but flavodoxin expressions consistently occurred with similar levels both inside and outside the Fe-enriched patch, indicating that the large-sized diatoms were stressed by Fe bioavailability inside the Fe-enriched patch even after the Fe enrichments. Our data suggest that the absence of a Fe-induced large-sized diatom bloom could be partly due to their Fe stress throughout SEEDS-II.  相似文献   

9.
The three-dimensional structure of two potential mesoscale upwelling areas that are located in the external waters of the Philippine archipelago (i.e. northwest of Luzon and east of Mindanao) were constructed by analysis of historical data. A unique characteristic of both upwelling sites is that they can be identified by their anomalously cold subsurface temperatures rather than sea surface temperature distributions. As such, they cannot be observed in sea surface temperature fields derived by satellite imagery. The data used in the analysis were obtained from the National Oceanographic Data Center hydrographic database. Objective analysis was performed to produce monthly temperature fields at several standard depths within the upper 500 m of the region 0–30°N and 100–140°E with a horizontal grid resolution of 0.5°. The extent and timing of these upwelling areas are described. A review of existing hypothesis on the mechanisms for their evolution and seasonal modulation are presented. The change in heat content during the upwelling season is greater than 300 W m−2 in both areas. Based on the excursion of isotherms, vertical velocities of 83 cm day−1 and 26 cm day−1 were obtained for upwelling northwest of Luzon and east of Mindanao, respectively.  相似文献   

10.
How pico- and nanophytoplankton responded to artificial iron infusions was investigated using flow cytometry during SEEDS II, the second mesoscale in situ iron enrichment experiment in the western subarctic North Pacific. Two iron infusions on days 0 and 7 caused a remarkable increase in cellular chlorophyll fluorescence and cell size of all the four phytoplankton groups investigated: Synechococcus, cryptophytes, picoeucaryotes and nanoeucaryotes other than cryptophytes. After the second infusion, the abundance of three phytoplankton groups, excluding Synechococcus, also started to increase. After surface dissolved iron concentration decreased to <0.2 nM on day 11, chlorophyll fluorescence of all the four groups returned to a level observed before the iron infusions, suggesting that pico- and nanophytoplankton were physiologically stressed by iron deficiency. Cell concentrations of pico- and nanoeucaryotes decreased to the pre-infusion level by day 23, while that of cryptophytes remained high until day 25. Flow cytometric diagnosis showed that cryptophytes were physiologically limited during this period and effective iron uptake from suspended particles, as reported for freshwater cryptophytes, was not observed. Thus their prosperity may have been due to alleviation from grazing. Cell concentration of Synechococcus started to increase at a net specific growth rate of 0.13 d−1 after day 12, reaching more than 6 times that of the pre-infusion level on day 24. This may have been due to the elevation of surface water temperature observed during the survey period, together with trophic cascading effects of increased copepod grazing.  相似文献   

11.
This study explores the changes in the surface water fugacity of carbon dioxide (fCO2) and biological carbon uptake in two Southern Ocean iron fertilisation experiments with different hydrographic regimes. The Southern Ocean Iron Release Experiment (SOIREE) experiment was carried out south of the Antarctic Polar Front (APF) at 61°S, 141°E in February 1999 in a stable hydrographic setting. The EisenEx experiment was conducted in a cyclonic eddy north of the APF at 48°S, 21°E in November 2000 and was characterised by a rapid succession of low to storm-force wind speeds and dynamic hydrographic conditions. The iron additions promoted algal blooms in both studies. They alleviated algal iron limitation during the 13-day SOIREE experiment and probably during the first 12 days of EisenEx. The fCO2 in surface water decreased at a constant rate of 3.8 μatm day−1 from 4 to 5 days onwards in SOIREE. The fCO2 reduction was 35 μatm after 13 days. The evolution of surface water fCO2 in the iron-enriched waters (or ‘patch’) displayed a saw tooth pattern in EisenEx, in response to algal carbon uptake in calm conditions and deep mixing and horizontal dispersion during storms. The maximum fCO2 reduction was 18–20 μatm after 12 and 21 days with lower values in between. The iron-enriched waters in EisenEx absorbed four times more atmospheric CO2 than in SOIREE between 5 and 12 days, as a result of stronger winds. The total biological uptake of inorganic carbon across the patch was 1389 ton C (±10%) in SOIREE and 1433 ton C (±27%) in EisenEx after 12 days (1 ton=106 g). This similarity probably reflects the comparable size of the iron additions, as well as algal growth at a similar near-maximum growth rate in these regions. The findings imply that the different mixing regimes had less effect on the overall biological carbon uptake across the iron-enriched waters than suggested by the evolution of fCO2 in surface water.  相似文献   

12.
Two in situ iron-enrichment experiments were conducted in the Pacific sector of the Southern Ocean during summer 2002 (SOFeX). The “north patch,” established within the Subantarctic Zone (∼56°S), was characterized by high nitrate (∼21 mmol m−3) but low silicic acid (2 mmol m−3) concentrations. North patch iron enrichment increased chlorophyll (Chl) by 12-fold to 2.1 mg m−3 and primary productivity (PPEU) by 8-fold to 188 mmol C m−2 d−1. Surprisingly, despite low silicic acid concentrations, diagnostic pigment and size-fraction composition changes indicated an assemblage shift from prymnesiophytes toward diatoms. The “south patch,” poleward of the Southern Boundary of the Antarctic Circumpolar Current (SBACC) (∼66°S), had high concentrations of nitrate (∼27 mmol m−3) and silicic acid (64 mmol m−3). South patch iron enrichment increased Chl by 9-fold to 3.8 mg m−3 and PPEU 5-fold to 161 mmol C m−2 d−1 but, notably, did not alter the phytoplankton assemblage from the initial composition of ∼50% diatoms. South patch iron addition also reduced total particulate organic carbon:Chl from ∼300 to 100; enhanced the presence of novel non-photosynthetic, but fluorescent, compounds; and counteracted a decrease in photosynthetic performance as photoperiod decreased. These experiments show unambiguously that in the contemporary, high nitrate Southern Ocean increasing iron supply increases primary productivity, confirming the initial premise of the Martin Iron Hypothesis. However, despite a 5-fold increase in PPEU under iron-replete conditions in late summer, the effect of iron on annual productivity in the Southern Ocean poleward of the SBACC is limited by seasonal ice coverage and the dark of polar winter.  相似文献   

13.
The present paper synthesizes data obtained during a multidisciplinary cruise carried out in June 2004 at the continental margin of the northern Bay of Biscay. The data-set allows to describe the different stages of a coccolithophore bloom dominated by Emiliania huxleyi. The cruise was carried out after the main spring phytoplankton bloom that started in mid-April and peaked in mid-May. Consequently, low phosphate (PO4 < 0.2 μM) and silicate (DSi < 2.0 μM) concentrations, low partial pressure of carbon dioxide (pCO2) and high calcite saturation degree in surface waters combined with thermal stratification, probably favoured the blooming of coccolithophores. During the period of the year our cruise was carried out, internal tides induce enhanced vertical mixing at the continental shelf break leading to the injection of inorganic nutrients to surface waters that probably trigger the bloom. The bloom developed as the water-column stratified and as the water mass was advected over the continental shelf, following the general residual circulation in the area. The most developed phase of the bloom was sampled in a remote sensed high reflectance (HR) patch over the continental shelf that was characterized by low chlorophyll-a (Chl-a) concentration in surface waters (<1.0 μg L?1), high particulate inorganic carbon (PIC) concentration (~8 μmol L?1) and coccolithophore abundance up to 57 × 106 cells L?1. Transparent exopolymer particles (TEP) concentrations ranged between 15 and 75 μg C L?1 and carbon content of TEP represented up to 26% of the particulate organic carbon (POC; maximum concentration of 15.5 μmol L?1 in the upper 40 m). Integrated primary production (PP) ranged between 210 and 680 mg C m?2 d?1 and integrated calcification (CAL) ranged between 14 and 140 mg C m?2 d?1, within the range of PP and CAL values previously reported during coccolithophore blooms in open and shelf waters of the North Atlantic Ocean. Bacterial protein production (BPP) measurements in surface waters (0.3–0.7 μg C L?1 h?1) were much higher than those reported during early phases of coccolithophore blooms in natural conditions, but similar to those during peak and declining coocolithophorid blooms reported in mesocosms. Total alkalinity anomalies with respect to conservative mixing (ΔTA) down to ?49 μmol kg?1 are consistent with the occurrence of biogenic precipitation of calcite, while pCO2 remained 15–107 μatm lower than atmospheric equilibrium (372 μatm). The correlation between ΔTA and pCO2 suggested that pCO2 increased in part due to calcification, but this increase was insufficient to overcome the background under-saturation of CO2. This is related to the biogeochemical history of the water masses due to net carbon fixation by the successive phytoplankton blooms in the area prior to the cruise, hence, the investigated area remained a sink for atmospheric CO2 despite calcification.  相似文献   

14.
New productivity measurements using the 15N tracer technique were conducted in the north-eastern (NE) Arabian Sea during six expeditions from 2003 to 2007, mostly in winter. Our results indicate that the NE Arabian Sea has a potential for higher new productivity during blooms. Nitrate uptake by plankton is the highest during late winter. New productivity and f-ratios in the NE Arabian Sea are mainly controlled by hydrodynamic and meteorological parameters such as wind strength, sea surface temperature (SST), mixed layer depth (MLD) and mixed layer nitrate. Deepening of the mixed layer supplies nitrate from below, which supports the observed nitrogen uptake. Higher f-ratios during blooms indicate the strong coupling between surface layers and sub-surface layers. Deepening of mixed layer below 100 m (from its inter-monsoon value between 30 and 40 m) transferred often more than 100 mmol N–NO3 m? 2 into the surface layers from below. The observed winter blooms in the region are supported by such input and are sustained for more than a month. Higher new productivity has been found in late winter, whereas transport of nitrate is maximum in early winter. In general, new production varies progressively during winter. Diurnal cycling of the mixed layer could be the reason for the under utilization of entrained nitrate during early winter. New productivity values and wind strength show significant differences during Feb–Mar 03 and Feb–Mar 04. These differences indicate that the winter cooling and parameters related the biological productivity also vary inter-annually. However, the difference between the new productivity values between Feb–Mar 03 and Feb–Mar 04 is much lower than the difference between Jan 03 and Feb–Mar 03. The results suggest that amplitude of seasonal variation is higher than the inter-annual variation in the region. During spring, Fickian diffusive fluxes of nitrate into the surface layer range from 0.51 to 1.38 mmol N–NO3 m? 2 day? 1, and can account for 67% and 78% of the observed nitrogen uptake in the coastal and open ocean regions, respectively. We document the intra-seasonal and inter-annual variations in new productivity during winter and identify sources of nitrate which support the observed productivity during spring.  相似文献   

15.
The cumulative evidence from more than a dozen mesoscale iron-enrichment studies in high nitrate low chlorophyll (HNLC) waters demonstrates that iron limitation is widespread and very likely affects atmospheric carbon dioxide and thus global climate. However, the responses of microphytoplankton (>20 μm), predominantly diatoms, vary greatly among these mesoscale experiments even though similar amounts of iron were added, making it difficult to quantitatively incorporate iron effects into global climate models. Nowhere is this difference more dramatic than between the massive bloom observed during Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS) I and the order of magnitude smaller ecosystem response in SEEDS II; two mesocale experiments performed in the same HNLC region of the western subarctic Pacific in different years. Deckboard incubation experiments initiated during the early, middle, and late stages of the 32-day SEEDS II experiment show that while the two iron infusions increased phytoplankton growth, diatoms remained significantly limited by iron availability, despite total dissolved Fe concentrations in the patch being well above the diffusion-limited threshold for rapid diatom growth. This iron limitation was apparent <6 days after the initial iron infusion and was not alleviated by the second, smaller iron infusion. In contrast, smaller phytoplankton (<20 μm) showed a more restricted response to further iron amendments, indicating that their iron nutrition was near optimal. Iron complexed to desferrioximine B, a commonly available siderophore produced by at least one marine bacterium, was poorly available to diatoms throughout the patch evolution, indicating that these diatoms lacked the ability to induce high-affinity iron uptake systems. These results suggest that the strong organic complexation of Fe(III) observed in the SEEDS II-fertilized patch was not compatible with rapid diatom growth. In contrast, iron associated with protoporphyrin IX, a weaker iron complexing ligand of a class hypothesized to be representative of recycled iron species, was readily available to diatoms. Our findings demonstrate that a persistence of iron limitation was the primary factor underlying the comparatively small diatom response during SEEDS II. This continued growth limitation would have increased the importance of mesozooplankton grazing as a controlling factor in the SEEDS II ecosystem response.  相似文献   

16.
The copepods Neocalanus flemingeri and N. plumchrus are major components of the mesozooplankton on the shelf of the Gulf of Alaska, where they feed, grow and develop during April–June, the period encompassing the spring phytoplankton bloom. Satellite imagery indicates high mesoscale variability in phytoplankton concentration during this time. Because copepod ingestion is related to food concentration, we hypothesized that phytoplankton ingestion by N. flemingeri and N. plumchrus would vary in response to mesoscale variability of phytoplankton. We proposed that copepods on the inner shelf, where the phytoplankton bloom is most pronounced, would be larger and have more lipid stores than animals collected from the outer shelf, where phytoplankton concentrations are typically low. Shipboard feeding experiments with both copepods were done in spring of 2001 and 2003 using natural water as food medium. Chlorophyll concentration ranged widely, between 0.32 and 11.44 μg l−1 and ingestion rates varied accordingly, between 6.0 and 627.0 ng chl cop−1 d−1. At chlorophyll concentrations<0.50 μg l−1, ingestion is always low, <40 ng cop−1 d−1. Intermediate ingestion rates were observed at chlorophyll concentrations between 0.5 and 1.5 μg l−1, and maximum rates at chlorophyll concentrations>1.5 μg l−1. Application of these feeding rates to the phytoplankton distribution on the shelf allowed locations and time periods of low, intermediate and high daily feeding to be calculated for 2001 and 2003. A detailed cross-shelf survey of body size and lipid store in these copepods, however, indicated they were indistinguishable regardless of collection site. Although the daily ingestion of phytoplankton by N. flemingeri and N. plumchrus varied widely because of mesoscale variability in phytoplankton, these daily differences did not result in differences in final body size or lipid storage of these copepods. These copepods efficiently dealt with small and mesoscale variations in their food environment such that mesoscale structure in phytoplankton did not affect their final body size.  相似文献   

17.
The Mediterranean basin features a semi-enclosed sea, where interactions and feedbacks between the atmosphere and the Sea at various temporal and spatial scales play a predominant role in the regional climate. This study analyzes the Mediterranean Sea response in sensitivity experiments conducted by driving the NEMO-MED12 oceanic model in perpetual mode with various atmospheric forcings, all produced by the WRF non-hydrostatic mesoscale atmospheric model, but differing by their resolutions: two horizontal resolutions (20 km at basin scale and 6.7 km in the North-Western [NWE] area) and two temporal resolutions (daily and three-hourly). The atmospheric fields available from August 1998 to July 1999 are in good agreement with estimates derived from satellite data. The heat budget of the Mediterranean Sea represents an heat loss of 5 W/m2 and the annual freshwater budget is ?1.04 m, in agreement with climatologies. An increase in the spatial resolution in the NWE area modifies the modeled circulation from ?10% to +15% for the SST, from ?30% to +50% for the SSS, from ?10% to +30% for the MLD and from ?10% to +30% for the EKE in surface. The increase in the wind speed with a better chanelling by the land orography enhances in particular the oceanic convection process in the NWE area. On the other hand, the increase in the temporal resolution reduces the convection process, because of the diurnal restratification of the oceanic upper layer. It also reduces the surface parameters high-frequency variability, whereas it increases the EKE values in surface, due to the rapid response to the wind.  相似文献   

18.
The first iron (Fe) – fertilization experiment in the western North Pacific was carried out using SF6 to trace the Fe-fertilized water mass. A solution in 10,800 liters of seawater of 350 kg of Fe and 0.48 M of SF6 tracer was released into the mixed layer over a 8 × 10 km area. On the first underway transects through the patch after the Fe release, we observed a significant increase of dissolved Fe (ave. 2.89 nM). The fertilized patch was traced for 14 days by on-board SF6 analysis. A Lagrangian frame of reference was maintained by the use of a drogued GPS buoy released at the center of the patch. The patch moved westward at a rate of 6.8 km d−1. Mixed layer depth increased from 8.5 to 15 m during the experiment. Horizontal diffusivity was determined by the change of SF6 concentration in the patch. The horizontal diffusivity increased during the experiment. We evaluate here the fate of Fe in a Fe-fertilized patch using the dilution rate determined from sulphur hexafluoride (SF6) concentration. Dissolved Fe concentrations subsequently decreased rapidly to 0.15 nM on Day 13. However, the dissolved Fe half-life of 43 h was relatively longer than in previous Fe-enrichment studies, and we observed a larger increase of the centric diatom standing stock and corresponding drawdown of macro-nutrients and carbon dioxide than in the previous studies. The most important reason for the larger response was the phytoplankton species in the western North Pacific. In addition, the smaller diffusivity and shallower mixed layer were effective to sustain the higher dissolved Fe concentration compared to previous experiments. This might be one reason for the larger response of diatoms in SEEDS.  相似文献   

19.
An intra-annual investigation of the fugacity of CO2 (fCO2) has been conducted in surface waters of the north-eastern shelf of the Gulf of Cádiz (SW Iberian Peninsula) in four cruises made in 2006 and 2007. Intra-annual variability of fCO2 was assessed and is discussed in terms of mixing, temperature and biology. In the study area of the shelf, thermodynamic control over fCO2 predominates from early May to late November, and this is opposite and similar in magnitude to the net biological effect. However, biological control over fCO2 predominates during winter. The results suggest that surface waters in the coastal area are under-saturated with respect to atmospheric CO2 during most of the year; therefore they represent a sink for atmospheric CO2 between November and May (? 1.0 mmol m? 2 day? 1), but a weak source in June (1.3 mmol m? 2 day? 1). In contrast, the coastal ecosystems studied (the lower estuary of Guadalquivir Estuary and Bay of Cádiz) acted as a weak sink for atmospheric CO2 during February (? 1.3 mmol m? 2 day? 1) and as a source between May and November (2.6 mmol m? 2 day? 1). The resulting mean annual CO2 flux in the north-eastern shelf of the Gulf of Cádiz was ? 0.07 mol m? 2 year? 1 (? 0.2 mmol m? 2 day? 1), indicating that the area acts as a net sink on an annual basis.  相似文献   

20.
To reveal spatial dynamics of silicic acid [Si(OH)4] in the poorly sampled oligotrophic western North Pacific, we investigated the surface distribution of Si(OH)4 and associated biogeochemical parameters by using an underway survey system with a highly sensitive nutrient analyzer along the 138°E transect (between 30 and 34°N) and the 155°E transect (between 10 and 35°N) during the summers of 2007 and 2008. Surface Si(OH)4 concentrations ranged from the detection limit (11 nmol L−1) to 2462 nmol L−1. High Si(OH)4 concentrations (>1000 nmol L−1) and dynamic fluctuations were generally observed north of 23°N, while consistently stable low concentrations of 415–751 nmol L−1 were observed south of 23°N. Surface nitrate+nitrite (N+N) and phosphate (PO43−) were typically depleted to <20 nmol L−1, except for PO43− in the area south of 16°N. The majority of the study area was characterized by high-Si(OH)4 and low-N+N and PO43−. However, submesoscale/mesoscale depressions of Si(OH)4 were locally observed in the cyclonic eddy fields north of 23°N. Among a total of six Si(OH)4 depressions within the eddies, a complete Si(OH)4 depletion (<11 nmol L−1) was observed on the cyclonic side near the Kuroshio axis (33.1°N, 138°E). This depletion was closely coupled with a diatom bloom, suggesting that Si(OH)4 was exhausted by diatoms. All of the Si(OH)4 depressions were selective and not accompanied by local depressions of N+N and PO43−. This unique phenomenon might be driven by biogeochemical processes such as selective Si export (Si pump), anomalous Si uptake associated with diatom physiology, and/or Si uptake supported by N2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号