首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

2.
The bathymetric distribution of chaetognaths was studied at an oceanic station located 14 nautical miles off Valparaı́so. During an annual cycle between July 1994 and September 1995, vertical samples of plankton were taken between 0 and 900 m depth. Temperature, salinity and dissolved oxygen showed temporal and spatial fluctuations within the surface layer (0–100 m), mainly affected by Subantarctic Water and in certain periods by Subtropical Water. Between 150 and 400 m low dissolved oxygen content and higher salinity were found, characteristic of Equatorial Subsurface Waters, and between 400 and 800 m Antarctic Intermediate Water, characterized by its higher content of dissolved oxygen and lower temperature and salinity was present. Fifteen species of chaetognaths were identified: Sagitta bierii, S. enflata, S. minima, S. pacifica, S. lyra, S. planctonis, S. marri, S. macrocephala, S. maxima, S. decipiens, S. tasmanica, S. gazellae, Krohnitta subtilis, Eukrohnia hamata and E. fowleri. The most abundant and frequent species were Sagitta enflata, S. bierii and Eukrohnia hamata. The greatest density of chaetognaths was confined to the 0–200 m water column and the species diversity gradually decreased from the epiplanktonic to the mesoplanktonic domain. The vertical distribution of the chaetognaths showed a strong association with the water masses present. The epipelagic species (0–200 m) S. enflata, S. bierii, S. minima and Krohnitta subtilis are associated mainly with Subantarctic Water and occasionally with Subtropical Water; the mesopelagic species (200–1000 m) S. lyra, S. planctonis, S. macrocephala, S. marri and E. fowleri are associated with Equatorial Subsurface Water and Antarctic Intermediate Water. There is another species assemblage of broad bathymetric distribution (0–900 m) consisting of E. hamata, S. decipiens and S. maxima, which does not show a distinctive association with a given water mass. E. hamata is an indicator species of upwelling events off the Chilean coast, showing an association with waters of low temperatures, greater salinity, and low contents of dissolved oxygen, which are characteristic of Equatorial Subsurface Water.  相似文献   

3.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

4.
李福荣 《海洋与湖沼》1995,26(S1):47-53
采用1987年5-6月中日合作黄东海海域综合调查溶解氧资料,参考有关文献,讨论调查海域溶解氧分布特征及与水团的对应关系。分析结果表明,各水团中溶解氧含量的差异与各水团温盐特性及生物地球化学过程不同有关。通过分析还发现溶解氧对鉴别次表层以深各水团,特别对东海次表层水及黑潮次表层以深各水团,是一个重要的指标。  相似文献   

5.
The Japan Sea Intermediate Water; Its Characteristics and Circulation   总被引:6,自引:0,他引:6  
In the southern Japan Sea there is a salinity minimum layer between the Tsushima Current Water and the Japan Sea Proper Water. Since the salinity minimum corresponds to the North Pacific Intermediate Water, it is named the Japan Sea Intermediate Water (JIW). To examine the source and circulation of JIW, the basin-wide salinity minimum distribution was investigated on the basis of hydrographic data obtained in 1969. The young JIW, showing the highest oxygen concentration and the lowest salinity, is seen in the southwestern Japan Sea west of 133°E, while another JIW with lower oxygen and higher salinity occupies the southeastern Japan Sea south of the subpolar front. Since the young JIW shows high oxygen concentrations, high temperatures and low densities, the source of the water is probably in the surface layer. It is inferred that the most probable region of subduction is the subarctic front west of 132°E with the highest oxygen and the lowest salinity at shallow salinity minimum. In addition, property distributions suggest that JIW takes two flow paths: a eastward flow along the subarctic front and an southward flow toward the Ulleung Basin. On the other hand, a different salinity minimum from JIW occupies the northern Japan Sea north of the subarctic front, which shows an apparently higher salinity and high oxygen concentration than JIW. However, this salinity minimum is considered not to be a water mass but to be a boundary between overlying and underlying water masses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Hydrographic measurements by CTD were made in the western-central Equatorial Pacific (160°W–147°E) during the Japanese Pacific Climate Study cruise in January–February 1991. InT-S diagram, three water masses are seen in the layer of kg/m3: salinity water corresponding to the Tropical Water of eastern South Pacific origin, less saline water in the North Pacific, and water with salinity between the above two, found on the equator. In three meridional sections (160°W–160°E), the Tropical Water of eastern South Pacific origin extends further equatorward than the climatological data of Levitus (1982).  相似文献   

7.
Cold filaments associated with Eastern Boundary Currents are typically narrower than 100 km but can be several hundred kilometers long, extending from the coast to the open ocean in upwelling areas. One such structure, observed off Penı&#x0301;nsula de Mejillones (23°S, Chile), was studied with both satellite images and two 5-days hydrographic cruises carried out during January 1997. The study used a coastal grid of 31 stations in an area of 165 ×155 km2, approximately. The spatial distribution of the filament and its change between cruises are described from the horizontal distributions of dynamic height, temperature, salinity and dissolved oxygen. The filament was a shallow feature (thickness <100 m) and extended at least 165 km toward the open ocean. A meandering northward current flowed at the borders of the filament, separating oceanic and coastal waters of different physical properties. Comparisons of cross sections of the filament near the coast and in the oceanic zone show the ascent of the shallow salinity minimum (SSM), and its extension toward the ocean, bound to the filament. It is concluded that Subantarctic Water ((SAAW) distinguish by low salinity, high dissolved oxygen) and Equatorial Subsurface Water ((ESSW) high salinity, low dissolved oxygen, high nutrient content) form this filament, and that their relative proportions depend on the strength of the coastal upwelling. Thus, the knowledge of the dynamics of these structures is fundamental to better understanding of the spatial distribution of important biological variables, such as nutrients and chlorophyll, in the coastal ecosystem.  相似文献   

8.
Within the Central waters of the North Atlantic Ocean there is a significant east–west difference in salinity, similar to that caused by Mediterranean Water at deeper levels. In this paper we hypothesize that the salinity of the Central Water is influenced by the saline Mediterranean Outflow Water, despite physical separation of the two water masses by a salinity minimum over most of the ocean basin. It is suggested that there occurs a cross-isopycnal flux of salinity from the Mediterranean Outflow Water towards the low-density Central Water (detrainment) in the eastern Gulf of Cadiz, not far from the Strait of Gibraltar, where the two water masses are in physical contact. Laboratory experiments, inverse modeling and direct current observations are applied to support the hypothesis.  相似文献   

9.
A series of hydrographic stations north and south of Easter Island (27′10′S, 109′20′W), Chile, were sampled between 22 and 23 May, 1994. The hydrography measured was consistent with basin-scale studies and showed a surface mixed layer that ranged between 80 and 115 m depth and had temperature and salinity values typical of autumn subtropical waters (22′C in temperature and 35.85 in salinity). The hydrography indicated the presence of two water masses in the vicinity of the island: the eastern South Pacific Central Water and the Antarctic Intermediate Water. Nutrient concentrations in general were lowest at the surface, over a layer that was deeper than the density mixed layer, and increased with depth. The appearance of salt fingers within the eastern South Pacific Central water mass was suggested by the positive vertical gradients of temperature and salinity, by the rough steps in the temperature and salinity profiles, and by the low and positive density ratios combined with Turner angles between 70′ and 80′. The density field indicated the development of geostrophic flows that were consistent with the eastern portion of the subtropical gyre of the South Pacific and with the surface dynamic topography of the period of observations. Due to the presence of the island, the large-scale north-northwestward geostrophic flows were reversed at spatial scales comparable to the size of the island.  相似文献   

10.
Cold filaments associated with Eastern Boundary Currents are typically narrower than 100 km but can be several hundred kilometers long, extending from the coast to the open ocean in upwelling areas. One such structure, observed off Península de Mejillones (23°S, Chile), was studied with both satellite images and two 5-days hydrographic cruises carried out during January 1997. The study used a coastal grid of 31 stations in an area of 165 ×155 km2, approximately. The spatial distribution of the filament and its change between cruises are described from the horizontal distributions of dynamic height, temperature, salinity and dissolved oxygen. The filament was a shallow feature (thickness <100 m) and extended at least 165 km toward the open ocean. A meandering northward current flowed at the borders of the filament, separating oceanic and coastal waters of different physical properties. Comparisons of cross sections of the filament near the coast and in the oceanic zone show the ascent of the shallow salinity minimum (SSM), and its extension toward the ocean, bound to the filament. It is concluded that Subantarctic Water ((SAAW) distinguish by low salinity, high dissolved oxygen) and Equatorial Subsurface Water ((ESSW) high salinity, low dissolved oxygen, high nutrient content) form this filament, and that their relative proportions depend on the strength of the coastal upwelling. Thus, the knowledge of the dynamics of these structures is fundamental to better understanding of the spatial distribution of important biological variables, such as nutrients and chlorophyll, in the coastal ecosystem.  相似文献   

11.
On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m~3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.  相似文献   

12.
利用Argo资料和《世界海洋数据集2001版》(WOD01)温盐历史资料,通过对代表性等位势面上盐度分布的分析,探讨了次表层和中层等不同层次上印尼贯通流(ITF)的起源与路径问题.分析结果表明,ITF的次表层水源主要来自北太平洋,中层水源地既包括北太平洋、南太平洋,同时也不能排除有印度洋的可能性.在印度尼西亚海域西部,ITF的次表层和中层水源分别为北太平洋热带水(NPTW)和中层水(NPIW),经苏拉威西海、望加锡海峡到达弗洛勒斯海,层次越深特征越明显.在印度尼西亚海域东部,发现哈马黑拉-新几内亚水道附近存在次表层强盐度锋面,阻隔了南太平洋热带水(SPTW)由此进入ITF海域;中层水具有高于NPIW和来自南太平洋的南极中层水(AAIW)的盐度值,既可能是AAIW和SPTW在当地发生剧烈垂直混合而形成,也可能是来自印度洋的AAIW向北延伸进入ITF的结果.  相似文献   

13.
张艳慧  王凡  臧楠 《海洋学报》2008,30(6):17-23
利用20世纪80年代和90年代WOD01(World Ocean Database2001)中的CTD温盐剖面资料和2000年以后Argo资料,对比分析了热带西太平洋次表层和中层水团分布的年代变化特征。分析结果表明,在这两个时期,起源于南北太平洋中高纬度海域的各次表层水和中层水,在热带西太平洋分布特征和交织在一起的总体态势基本一致,水团性质的年代变化不大。这与上述两个时段全球海洋-大气耦合系统趋于正常状态相吻合。通过辨识和跟踪表征次表层水性质的盐度极大值,发现南太平洋热带水沿西边界向北扩散程度有所加大,由前一时期的5°N,进一步扩散到6°~7°N;北太平洋热带水在西边界附近的向南扩散程度有所削弱,在2002-2005年间只向南扩散到4°N,而前一个时期则可向南扩散到2°N。通过辨识表征中层水性质的盐度极小值,南极中层水在西边界附近向北扩散程度有所加大,在2002-2005年到达13°N附近,而前一个时期只到达11°N;同期,北太平洋中层水在西边界附近的向南扩散程度有所削弱。上述年代变化与全球水循环强度的变化之间有何关系有待进一步研究。  相似文献   

14.
Water masses in the East Sea are newly defined based upon vertical structure and analysis of CTD data collected in 1993–1999 during Circulation Research of the East Asian Marginal Seas (CREAMS). A distinct salinity minimum layer was found at 1500 m for the first time in the East Sea, which divides the East Sea Central Water (ESCW) above the minimum layer and the East Sea Deep Water (ESDW) below the minimum layer. ESCW is characterized by a tight temperature–salinity relationship in the temperature range of 0.6–0.12 °C, occupying 400–1500 m. It is also high in dissolved oxygen, which has been increasing since 1969, unlike the decrease in the ESDW and East Sea Bottom Water (ESBW). In the eastern Japan Basin a new water with high salinity in the temperature range of 1–5 °C was found in the upper layer and named the High Salinity Intermediate Water (HSIW). The origin of the East Sea Intermediate Water (ESIW), whose characteristics were found near the Korea Strait in the southwestern part of the East Sea in 1981 [Kim, K., & Chung, J. Y. (1984) On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan), In T. Ichiye (Ed.), Ocean Hydrodynamics of the Japan and East China Seas (pp. 55–65). Amsterdam: Elsevier Science Publishers], is traced by its low salinity and high dissolved oxygen in the western Japan Basin. CTD data collected in winters of 1995–1999 confirmed that the HSIW and ESIW are formed locally in the Eastern and Western Japan Basin. CREAMS CTD data reveal that overall structure and characteristics of water masses in the East Sea are as complicated as those of the open oceans, where minute variations of salinity in deep waters are carefully magnified to the limit of CTD resolution. Since the 1960s water mass characteristics in the East Sea have changed, as bottom water formation has stopped or slowed down and production of the ESCW has increased recently.  相似文献   

15.
Hydrographic data collected aboard R. V. Anton Bruun along 65°E between 18°N and 42°S from 17 May to 4 July 1964 are used to investigate water characteristics and current structure in the upper 500 m in the Indian Ocean. The water characteristics indicate the occurrence of three main water masses,viz., warm, saltier, low-oxyty and nutrient-rich Arabian Sea Surface Water, relatively fresh and high-oxyty Equatorial Indian Ocean Water, and more saline, high-oxyty and nutrient-poor Tropical Water of the South Indian Ocean. The recently discovered South Equatorial Countercurrent and Subtropical Countercurrent (renamed Tropical Countercurrent, at the suggestion of Dr. R. B.Montgomery) are observed in the current structure at 13°S and 22°–26°S respectively, and these could also be identified on the vertical sections of temperature, thermosteric anomaly and salinity. Contrary to the existing concept, the North Equatorial Current continues to be present even after the onset of the southwest monsoon. The Equatorial Undercurrent could not be traced in the Indian Ocean during this period.  相似文献   

16.
This study of the mixing of Mediterranean Sea Water (MW) with the surrounding waters was made possible by the Semane 2002 cruise (Sortie des Eaux Meditérranéennes dans l'Atlantique Nord-Est) that took place in the Gulf of Cadiz in July 2002. Potential temperature, salinity, oxygen, nutrients and CFC data are used to describe the water masses present in the Gulf. In the southern part of the basin, a water mass characterised by low oxygen, high nutrient and low CFC concentrations occurs along the African continental slope. This water has been identified as the modified Antarctic Intermediate Water (AAIW). It has been previously observed south of this section, at the latitude of the Canary Islands, as a northward flow between the African shelf and the islands. The modified AAIW found in the Gulf of Cadiz is situated at a density of 27.5 kg m−3. Above, at 27.3 kg m−3, the lower limb of the North Atlantic Central Water is observed as a salinity minimum. The modified AAIW enters the Gulf of Cadiz along the south-western part of the continental shelf. It flows cyclonically and exits north-westward. In the northern part of the gulf, due to the presence of the Mediterranean Undercurrent (MU), the AAIW flows off the coast. An optimum multiparameter analysis was conducted to evaluate the influence of the AAIW on the MW northwest of the basin. We show that the AAIW is present in the lower core of the MU at a proportion of 12.9±8.2% and is absent in the upper core.  相似文献   

17.
The intermediate water masses in the eastern Atlantic Ocean between 31°N and 53°N were studied by analysis of the distributions of potential temperature, salinity, dissolved nutrients and oxygen. Sub-surface salinity minima are encountered everywhere in the area. At the northern and southern boundary they are connected with the presence of Sub-Arctic Intermediate Water and Antarctic Intermediate Water, respectively, but towards the European ocean margin the sub-surface salinity minima shift to shallower density levels. The sub-surface salinity minima observed west of the Iberian Peninsula represent a water mass formed by winter convection in the Porcupine Sea Bight and the northern Bay of Biscay. These minima gain salt by diapycnal mixing with the underlying Mediterranean Sea Outflow water and with the overlying permanent thermocline. The core of Antarctic Intermediate Water appears to contribute to the formation of Mediterranean Sea Outflow Water since it becomes entrained into the overflow near Gibraltar. This entrainment gives rise to an enhanced concentration of the nutrients in the Mediterranean water in the North Atlantic. The deep salinity minimum, due to the presence of Labrador Sea Water, is restricted mainly to the Porcupine Abyssal Plain. In the Bay of Biscay this water type is strongly modified by enhanced diapycnal mixing near the continental slope. At all intermediate levels the continental slope in the Bay of Biscay seems to be a focal point for water mass modification by diapycnal mixing. Below the core of the Mediterranean Sea Outflow Water the Labrador Sea Water is also strongly modified. Its salinity is strongly enhanced by diapycnal mixing with the overlying core of Mediterranean Sea Outflow Water. An analysis of the oxygen and nutrient data indicates that the large spatial concentration differences at the level of the Labrador Sea Water are caused mainly by ageing of the water. The youngest water is observed at 52°N, and, especially in the Bay of Biscay and off south-west Portugal, the water at levels of about 1700 dbar are strongly enriched in nutrients and depleted in oxygen.  相似文献   

18.
19.
Evidence from geochemical tracers (salinity, oxygen, silicate, nutrients, alkalinity, dissolved inorganic carbon (DIC), carbon isotopes (δ13CDIC) and radiocarbon (Δ14C)) collected during the Pacific Ocean World Ocean Circulation Experiment (WOCE) voyages (P10, P15, P17 and P19) indicate there are three main water types at intermediate depths in the Pacific Ocean; North Pacific Intermediate Water (NPIW), Antarctic Intermediate Water (AAIW) and Equatorial Pacific Intermediate Waters (EqPIW). We support previous suggestions of EqPIW as a separate equatorial intermediate depth water as it displays a distinct geochemical signature characterised by low salinity, low oxygen, high nutrients and low Δ14C (older radiocarbon). Using the geochemical properties of the different intermediate depth waters, we have mapped out their distribution in the main Pacific Basin.From the calculated pre-formed δ13Cair–sea conservative tracer, it is evident that EqPIW is a combination of AAIW parental waters, while quasi-conservative geochemical tracers, such as radiocarbon, also indicate mixing with old upwelling Pacific Deep Waters (PDW). The EqPIW also displays a latitudinal asymmetry in non-conservative geochemical tracers and can be further split into North (NEqPIW) and South (SEqPIW) separated at ~2°N. The reason for this asymmetry is caused by higher surface diatom production in the north driven by higher silicate concentrations.The δ13C signature measured in benthic foraminifera, Cibicidoides spp.13CCib), from four core tops bathed in AAIW, SEqPIW and NPIW, reflects that of the overlying intermediate depth waters. The δ13CCib from these cores show similarities and variations down-core that highlight changes in mixing over the last 30,000 yr BP. The reduced offset between the δ13CCib of AAIW and SEqPIW during the last glacial indicates that AAIW might have had an increased influence in the eastern equatorial Pacific (EEP) region at this time. Additional intermediate depth cores and other paleo-geochemical proxies such as Cd/Ca and radiocarbon are required from the broader Pacific Ocean to further understand changes in intermediate depth water formation, circulation and mixing over glacial/interglacial cycles.  相似文献   

20.
应用对应分析法划分夏季东海水团的初步研究   总被引:9,自引:1,他引:9       下载免费PDF全文
本文所用资料主要是日本气象厅等单位于1966年7月10日一8月10日所收集的溫、盐度和溶解氧的观测資料,共75个测站。测站分布均匀且遍及24°—32°N的整个东海海域(图1c)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号