首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons — (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.  相似文献   

2.
Particulate organic carbon (POC) concentrations from 0 to 1000 m were quantified in size-fractionated particulate matter samples obtained by the multiple unit large volume in situ filtration system (MULVFS) in 1996 and 1997 along the 1600 km long “line P” transect from continental slope waters near southern Vancouver Island to Ocean Station PAPA (OSP, 50°N, 145°W). Regression of in situ POC vs. beam attenuation coefficient, c, from a simultaneously deployed 1-m pathlength SeaTech transmissometer gave slope, intercept and r2 values of 6.15±0.19×10−5 m−1 (nmol C l−1)−1, 0.363±0.003 m−1, and 0.951 (n=145), respectively. This result agreed within several percent of calibrations obtained from two 2600-km-long transects of the equatorial Pacific in 1992 (Bishop, 1999). Data from other, more frequently deployed transmissometers were standardized against the 1-m instrument, and the combined optical data set was used to document POC variability at finer spatial and temporal scales than could be sampled directly using either conventional water bottle casts or MULVFS. Published bottle POC vs. c relationships show much more variability and remain problematic. Along the line P transect in the salinity-stratified upper 100 m, POC isolines shoaled from winter to summer in concert with seasonal stratification. At the same time, POC was progressively enriched in subeuphotic zone waters to depths greater than 500 m. Near-surface POC fields sampled in the winter time showed strong temporal POC variability over time scales of days as well as between years. POC concentrations at OSP in February 1996 were higher than those found at any other time of year. Less variability was found along line P in other seasons. In May 1996, kilometer-scale spatial variability of POC at OSP was small; dawn vs. dusk variations of c were used to calculate 0–100 m POC turnover times shorter than 6 d. Calculations also suggest that 25–50% of primary productivity was expressed as dissolved organic carbon at OSP in May 1996.  相似文献   

3.
We describe here the results of an interdisciplinary study conducted off the coast of northern and central California during September 1993 in which we deployed an Optical Plankton Counter. This instrument counted and measured particles in the size range between 0.27 and 9.8 mm equivalent spheric diameter (ESD) occurring between the surface and 240 m depth. The survey region was characterized by the presence of the California Current jet and a cyclonic and an anticyclonic eddy. We analyzed the spatial (horizontal and vertical) distribution of planktonic particles and their relation to this hydrodynamic structure. We used specific analytical methods that take into account spatial constraints, i.e. autocorrelation analysis, constrained agglomerative clustering and contiguity constraints permutation analysis of variance. Horizontal spatial organization of particles was revealed at three different spatial scales (5, 18 and 100 km), while vertical patterns were described at a much smaller scale (20 m). We could detect some degree of similarity between particle size category spatial organization and hydrodynamic structure both by size category association independent of current movements and by comparison of dynamically differentiated areas. Five groups of similar size composition were detected that had some relation to the dynamic structure. Four sub-regions were determined a priori by their different hydrodynamic heights. We could describe a variability of particle abundance among these regions, both for total particles and for some size categories. Particles were more abundant inside the cyclonic eddy and less abundant inside the anticyclonic eddy. We also found deep concentration maxima inside the anticyclonic eddy and shallower concentration maxima inside the cyclonic eddy, with particles >2 mm ESD at deeper levels, for both daytime and nighttime sampling. No systematic difference was detected between daytime and nighttime samples in 0–240 m integrated total particle abundance. However, at night particles appeared to be concentrated into three depth strata (10–50, 70–90 and 90–230 m) of different size-abundance composition, while during the day particles were distributed into one shallow (10–50 m) and one deeper stratum (70–240 m). Smaller particles always occupied the most shallow depths  相似文献   

4.
Evidence suggests that patterns of benthic community structure are functionally linked to estuarine processes and physical characteristics of the benthos. To assess these linkages for coarse-sediment shorelines, we used a spatially nested sampling design to quantify patterns of distribution and abundance of both macroinfauna and macroepibiota. We examined replicate beach segments within a site (∼1 km), sites within areas of relatively uniform salinity and temperature (∼10 km), and areas (∼100 km) in the two major basins of Puget Sound, Washington. Because slight variations in physical characteristics of a beach can lead to significant alterations in biota, we minimized confounding physical influences by working only in the predominant shoreline habitat type in Puget Sound, a mixture of sand, pebbles and cobbles. Species richness decreased steadily from north to south along gradients of declining wave energy, increasing temperature and decreasing salinity. A few taxa were confined to the South Basin, but many more were found in the North. Most of the variability in population abundance was captured at the smaller spatial scales. Physical conditions tend to become increasingly different with distance among sites. Communities became more different from north to south as species intolerant of more estuarine conditions dropped out. There was significant spatial autocorrelation among populations on neighboring beach segments for 73 of the 172 species sampled. Populations of these benthic species may be connected via dispersal on scales of at least km in Puget Sound. Our results strengthen prior conclusions about the strong linkages between the biota and physical patterns and processes in estuaries. It is important for monitoring and impact-detection studies to account for natural variation of physical gradients across the sampling scales used. Nested, replicated sampling designs can facilitate the detection of environmental change at spatial scales ranging from global (e.g., warming or El Niño), to regional (e.g., estuary-wide changes in salinity patterns), to local (e.g., from development at a site).  相似文献   

5.
Deep-sea benthic communities and their structural and functional characteristics are regulated by surface water processes. Our study focused on the impact of changes in water depth and food supplies on small-sized metazoan bottom-fauna (meiobenthos) along a bathymetric transect (1200–5500 m) in the western Fram Strait. The samples were collected every summer season from 2005 to 2009 within the scope of the HAUSGARTEN monitoring program. In comparison to other polar regions, the large inflow of organic matter to the sea floor translates into relatively high meiofaunal densities in this region. Densities along the bathymetric gradient range from approximately 2400 ind. 10 cm-2 at 1200 m to approximately 300 ind. 10 cm-2 at 4000 m. Differences in meiofaunal distribution among sediment layers (i.e., vertical profile) were stronger than among stations (i.e., bathymetric gradient). At all the stations meiofaunal densities and number of taxa were the highest in the surface sediment layer (0–1 cm), and these decreased with increasing sediment depth (down to 4–5 cm). However, the shape of the decreasing pattern differed significantly among stations. Meiofaunal densities and taxonomic richness decreased gradually with increasing sediment depth at the shallower stations with higher food availability. At deeper stations, where the availability of organic matter is generally lower, meiofaunal densities decreased sharply to minor proportions at sediment depths already at 2–3 cm. Nematodes were the most abundant organisms (60–98%) in all the sediment layers. The environmental factors best correlated to the vertical patterns of the meiofaunal community were sediment-bound chloroplastic pigments that indicate phytodetrital matter.  相似文献   

6.
Distribution of larger protozoans (armoured dinoflagellates, tintinnids, heliozoans, radiolarians and foraminiferans >64 μm) is presented for three major water masses of the Southern Ocean: the Polar Front region (PFr), the southern Antarctic Circumpolar Current (southern ACC) and the northern Weddell Gyre. Sampling took place during the SO-JGOFS cruise ANT X/6 of R/V Polarstern (October–November 1992) along a meridional transect at 6°W between 48°00′S and 59°30′S. Multinet samples (64 μm mesh size) were taken at six stations from the surface down to 500 m depth at five different depth intervals. In the upper 100 m of the water column abundances of larger protozoans varied between 94 and 10,930 ind. m–3, with highest abundances in the PFr, where phytoplankton blooms occurred, and lowest values in the Antarctic Circumpolar Current–Weddell Gyre Boundary (AWB). Foraminiferans and polycystine and smaller (<300 μm) phaeodarian radiolarians dominated larger protozoan assemblages in the PFr. In open water of the southern ACC, tintinnids, armoured dinoflagellates, foraminiferans and smaller (<300 μm) phaeodarian radiolarians were equally important. The heliozoans Sticholonche spp. and nassellarian radiolarians dominated assemblages in the Weddell Gyre and AWB. Larger protozoan biomasses ranged between 2 and 674 μg C m−3 and were always dominated by larger (>300 μm) phaeodarians. Highest biomasses were found in the AWB between 200 and 500 m depth. Standing stocks of larger protozoans constituted a negligible fraction of zooplankton biomass in the upper 200 m of the water column. In deeper layers of the ice-covered Weddell Gyre and AWB their biomasses, dominated by larger (>300 μm) phaeodarians, was significant contributing up to 45% to total larger protozoan and metazoan biomass. Analysis of correlation between distribution patterns and environmental conditions at the stations sampled indicate that spring distribution patterns of heterotrophic armoured dinoflagellates, polycystine radiolarians and foraminiferans follow productivity in the water column. Of the protozoan groups studied the smaller (<300 μm) phaeodarian radiolarians also showed a significant correlation with productivity during spring, however, results from previous studies do not suggest a consistent pattern. Spring distribution patterns of other larger protozoans were not related to differences in productivity in the water column, and effects such as ice-cover, grazing or silica limitation might be determining. Dead radiolarian skeletons constituted on average 27, 8 and 11% of the population of nassellarians, spumellarians and smaller (<300 μm) phaeodarians, respectively. The contribution of dead radiolarian skeletons to total radiolarian stocks varied with depth and water mass. Differences between live and skeleton assemblages composition were observed. These differences should be taken into consideration when interpreting the geological record.  相似文献   

7.
The Drake Passage region near Elephant Island in the Southern Ocean displays patchy phytoplankton blooms. To test the hypothesis that natural Fe addition from localized sources promoted phytoplankton growth here, a grid of stations (59°S to 62°S, 59°W to 53°W, as well as four stations in the eastern Bransfield Strait) were occupied from 12 February–24 March 2004. Phytoplankton abundance was measured using shipboard flow cytometry (70 stations), with abundances conservatively converted to biomass, and compared with measurements of dissolved iron (dFe) at a subset of stations (30 stations). Based on T–S property plots, stations were divided into Antarctic Circumpolar Current (ACC), Water On Shelf (WOS), Bransfield Strait (BS), and Mixed water stations, the latter representing locations with T–S properties intermediate between ACC and WOS stations. The highest integrated phytoplankton biomass was found at Mixed water stations, however, the highest integrated abundance was found at WOS stations, demonstrating that abundance and biomass do not necessarily show the same patterns. The distributions of nano- and micro-phytoplankton (<20 and >20 μm diameter cells, respectively) were also examined, with nano- and micro-plankton contributing equally to the total biomass at WOS and BS stations, but micro-plankton representing ∼2/3 of the biomass at Mixed and ACC stations. Increased inventories of dFe did not always correspond to increases in phytoplankton biomass – rather stations with lower mean light levels in the mixed layer (<110 μEinsteins m−2 s−1) had lower biomass despite higher ambient dFe concentrations. However, where the mean light levels in the mixed layer were >110 μEinsteins m−2 s−1, total biomass shows a positive trend with dFe, as does micro-phytoplankton biomass, but neither regression is significant at the 95% level. In contrast, if just nano-phytoplankton biomass is considered as a function of dFe, there is a significant correlation (r2=0.62). These data suggest a dual mechanism for the patterns observed in biomass: an increasing reservoir of dFe allows increased phytoplankton biomass, but biomass can only accumulate where the light levels are relatively high, such that light is not limiting to growth.  相似文献   

8.
Our objective was to understand how marine birds respond to oceanographic variability across the Southern Indian Ocean using data collected during an 16-day cruise (4–21 January 2003). We quantified concurrent water mass distributions, ocean productivity patterns, and seabird distributions across a heterogeneous pelagic ecosystem from subtropical to sub-Antarctic waters. We surveyed 5155 km and sighted 15,606 birds from 51 species, and used these data to investigate how seabirds respond to spatial variability in the structure and productivity of the ocean. We addressed two spatial scales: the structure of seabird communities across macro-mega scale (1000 s km) biogeographic domains, and their coarse-scale (10 s km) aggregation at hydrographic and bathymetric gradients. Both seabird density and species composition changed with latitudinal and onshore–offshore gradients in depth, water temperature, and chlorophyll-a concentration. The average seabird density increased across the subtropical convergence (STC) from 2.4 birds km−2 in subtropical waters to 23.8 birds km−2 in sub-Antarctic waters. The composition of the avifauna also differed across biogeographic domains. Prions (Pachyptila spp.) accounted for 57% of all sub-Antarctic birds, wedge-tailed shearwaters (Puffinus pacificus) accounted for 46% of all subtropical birds, and Indian Ocean yellow-nosed albatross (Thallasarche carteri) accounted for 32% of all birds in the STC. While surface feeders were the most abundant foraging guild across the study area, divers were disproportionately more numerous in the sub-Antarctic domain, and plungers were disproportionately more abundant in subtropical waters. Seabird densities were also higher within shallow shelf-slope regions, especially in sub-Antarctic waters, where large numbers of breeding seabirds concentrated. However, we did not find elevated seabird densities along the STC, suggesting that this broad frontal region is not a site of enhanced aggregation.  相似文献   

9.
Zooplankton metabolic rates, determined from electron transfer system (ETS) activity, were studied at two seamounts (Seine: 34°N, 14°W, summit depth ∼170 m; Sedlo: 40°N, 27°W, summit depth ∼750 m) in the northeast (NE) Atlantic during three cruises in November 2003, April 2004 and July 2004. ETS activity and respiratory carbon demand were measured for samples taken at seamount and open-ocean locations in order to probe the hypothesis of locally enhanced seamount productivity. ETS activity and biomass revealed no consistent diel patterns of feeding activity and vertical migration at Seine and Sedlo Seamounts. Spatial differences of biomass-specific ETS activity were observed at both seamounts and coincided with differences in food abundance and quality. At Seine Seamount in April 2004, biomass-specific ETS activity was on average higher at the seamount locations compared to the open ocean, though the enhancement was of a lower magnitude than spatial and temporal variability and had no apparent influence on zooplankton respiratory carbon demand or biomass. A persistent pattern of reduced zooplankton biomass above the summit location at Seine Seamount in April 2004 and July 2004 resulted in a local reduction of respiratory carbon demand. At Sedlo Seamount in November 2003, large spatial differences in biomass-specific ETS activity observed at the seamount locations resulted in a large range of respiratory carbon demand at the seamount, but were not reflected in zooplankton biomass. The depth-integrated (0–150 m) median respiratory carbon demand of the zooplankton community estimated from day and night hauls was 2.1 mg C m−2 d−1 at Seine Seamount (range: 0.3–6.3) and 2.9 mg C m−2 d−1 at Sedlo Seamount (range: 1.6–12.0). The sporadic nature and low magnitude of locally higher zooplankton respiration rates at the seamounts, which did not result in locally higher zooplankton standing stock biomass, lead us to reject the hypothesis that locally enhanced seamount productivity provides an autochthonous food supply to the resident faunas at Seine and Sedlo Seamounts. Instead, we conclude that the faunas at both seamounts are more likely supported by advection of food from the surrounding ocean.  相似文献   

10.
In order to identify environmental factors driving the distribution and functioning of deep-sea fauna and the spatial scales of interactions, we carried out a multiple-scale investigation in the Mediterranean basin in which we compared two bathyal plains, located at the same depth (ca. 3000 m), but characterised by contrasting trophic conditions. We investigated meiofaunal abundance, biomass, community structure and biodiversity (expressed as richness of taxa) in relation to sediment characteristics, downward fluxes and food availability in the sediment. Samples were collected at all spatial scales (from small to macroscale) in two seasons. Our results indicated that deep-sea systems with different trophic conditions displayed different responses to the distribution of available energy and its spatio-temporal variability in the sediment. The analysis at a macroscale (>1000 km) indicated that meiofauna were controlled primarily by the trophic inputs to the deep-sea system. Spatial variability of meiofaunal parameters at a mesoscale (>50 km) was highest in the eastern Mediterranean and lowest in the western Mediterranean. Such differences are the consequence of the unpredictable inputs of organic matter in the oligotrophic eastern Mediterranean versus a more homogeneous distribution of food inputs in the mesotrophic western Mediterranean. At a smaller scale (local scale 7 km), in the western Mediterranean, the distribution of meiofaunal parameters was highly homogeneous, reflecting the homogeneous distribution of the food availability in the sediment. Our results indicated that the highly variable input and distribution of food sources in the deep eastern Mediterranean did not provide any “insurance” for the sustainability of the deep-sea faunal assemblages in the long term, thus leading to an uncoupling between resource availability and distribution of organisms. We conclude that the influence of energy availability on the deep-sea faunal distributions change at different spatial scales and that the analysis of spatial variability at mesoscales is crucial for understanding the relationships between deep-sea benthic fauna and environmental drivers.  相似文献   

11.
Investigations of biomass, production, and anthropogenic impact require knowledge of the spatial distribution of the species concerned. Studies of the spatial distribution of soft-sediment infauna are inherently difficult, because the organisms are generally not readily visible, necessitating painstaking excavation. Although the large-scale (tens of km) distribution patterns of infaunal bivalves have been studied previously, the fine-scale (1 to tens of meters) has received much less attention. We investigated the fine-scale spatial distribution of the edible cockle Cerastoderma edule at a fishing-impacted site and a non-impacted site on an intertidal mudflat in Bourgneuf Bay, France, in 2009–2010. A preliminary study using a 1 m spatial lag was performed to determine the optimum lags for a nested sampling design. Cohorts were identified using Bhattacharya-resolved size-frequency distributions and verification of isotropy, and the spatial characteristics of each cohort were determined using Moran's I auto-correlation coefficient. The non-impacted site presented one strongly-aggregated main cohort, C3, (Moran's I = 0.67 to − 0.34, spatial range 16 to 20 m, inter-patch distance 41 to 51 m). The impacted site presented two main cohorts, C2 (1.31 cm mean shell length, SL) and C3 (2.11 cm SL) both of which also showed a patchy spatial distribution (C2: Moran's I = 0.7 to − 0.72, spatial range 22 to 35 m; inter-patch distance 63 to 90 m; C3: Moran's I = 0.41 to − 0.63, spatial range 36 to 58 m, inter-patch distance not defined). The C3 cohort was less aggregated than the C2; possibly due to the homogenizing effect of fishing, which typically proceeds via a Lévy walk foraging model.Our results show that the spatial distributions of C. edule retained a strongly aggregated character over the 8 months of the study, suggesting that these characteristics are powerfully maintained by recruitment/post-recruitment processes, despite intense fishing pressure throughout the sampling period, and indeed for decades, prior to this study. These data also show that we cannot assume a random or a regular spatial distribution for this species in studies of biomass, production, trophic relations, or anthropogenic impact; rather, close attention must be paid to the spatial characteristics of studied populations in order to reduce the confounding effects of auto-correlation.  相似文献   

12.
To examine the relationship between near-bottom larval surfclam concentrations and surfclam settlement at an inner continental shelf site off New Jersey (USA), four consecutive sets of settlement experiments were carried out at three stations at the Long-term Ecosystem Observatory (LEO-15) from 14 to 31 July 1997 during upwelling and downwelling. Two inshore stations were on the landward and seaward sides of Beach Haven Ridge at ∼12 m depth, and a third station was 8 km further offshore at ∼20 m depth. In each experiment, four replicate trays of azoic sand from Beach Haven Ridge were placed flush with the seafloor and exposed for 3–7 days. Larval surfclam concentrations were measured every 4 h at 1 m above the bottom (mab) using Moored, Automated, Serial Zooplankton Pumps at the three stations. At all three stations, larval surfclam concentrations (1 mab) were low during upwelling, and higher during and after downwelling. Pulses of highest larval surfclam concentrations coincided with the initial arrival of downwelled warm water. In addition, larval surfclam concentrations were higher at the two inshore stations than at the offshore station. Larval surfclam settlement in the trays was higher during and following downwelling than during upwelling at one inshore station and at the offshore station. At the other inshore station (landward of Beach Haven Ridge), surfclam settlement did not increase during and following downwelling. Overall, surfclam settlement was higher inshore than offshore. The results indicate that spatial and temporal variation in larval surfclam supply was controlled by upwelling and downwelling circulation and that surfclam settlement was influenced by larval supply. Bottom flows across Beach Haven Ridge during a storm may have reduced larval surfclam settlement on the upcurrent side of the ridge, affecting initial densities on a small (∼1 km) scale.  相似文献   

13.
Data from seven oceanographic cruises in the southern Gulf of California from 1997 to 2002 are used to describe the thermohaline variability and the geostrophic circulation. Baroclinic patterns exhibited spatial and temporal variability. A deepening of isotherms at the center of the section was evident in February 1999, suggesting anticyclonic flow. In May 1998 and November 1997, cyclonic flow was suggested by shoaling of isotherms at the center of the section. Other cruises showed alternating cores of flow into and out of the Gulf (August 1998, September 1997 and October 2002). Neither a seasonal nor a spatial pattern in geostrophic flows was apparent, suggesting that the exchange of waters between the cyclonic flow of Pescadero basin and the interior of the Gulf is complex. Relatively high salinities were recorded during most of the cruises indicating that Gulf of California Water (GCW) was present most of the year. Higher salinities were observed during winter and spring, although during summer, relatively high and low salinities were both observed as surface and subsurface cores. Temperature and salinity characteristics of California Current waters were observed only in August 1995 when they reached as far north as Cerralvo Island at ∼50 dbar. During El Niño conditions in November 1997, a mixed layer (∼70 dbar) and deepening of the thermocline (∼50 dbar) characterized anomalous conditions; during this cruise an asymmetric salinity pattern was observed with low salinities characteristic of Tropical Surface waters at the center and east of the section, while maximum salinities (34.9<S<35.0) and Gulf waters were located in an 80 km wide core next to the Baja California Sur shelf as far north as San Jose Island.  相似文献   

14.
Size-fractionated chlorophyll-a and carbon incorporation rates were determined on a series of 13 cruises carried out from 1992 to 2001with the aim of investigating the patterns and causes of variability in phytoplankton chlorophyll and production in the Eastern North Atlantic Subtropical Gyral Province (NASE). Averaged (±SE) integrated chlorophyll-a concentration and primary production rate were 17±1 mg m−2 and 253±22 mg C m−2 d−1. Small-sized cells (<2 μm) formed the bulk of phytoplankton biomass (71%) and accounted for 54% of total primary production. A clear latitudinal gradient in these variables was not detected. By contrast, large seasonal variability was detected in terms of primary production, although integrated phytoplankton biomass, as estimated from chlorophyll-a concentration, remained rather constant and did not display significant changes with time. Variability in primary production (PP) was related mainly to variability in surface temperature and surface chlorophyll-a concentration. The control exerted by surface temperature was related to nutrient availability. By contrary, euphotic-zone depth, depth of maximum concentration of chlorophyll-a and integrated chlorophyll-a did not contribute significantly to the high variability in primary production observed in this oligotrophic region.  相似文献   

15.
The abundance, carbon isotopic composition (Δ14C and δ13C), and lipid biomarker (alkenones and saturated fatty acids) distributions of suspended particulate organic matter were investigated at three stations centered on the 2000, 3000, and 3500 m isobaths over the New England slope in order to assess particulate carbon sources and dynamics in this highly productive and energetic region. Transmissometry profiles reveal that particle abundances exhibit considerable fine structure, with several distinct layers of elevated suspended particulate matter concentration at intermediate water depths in addition to the presence of a thick bottom nepheloid layer at each station. Excluding surface water samples, the Δ14C values of particulate organic carbon (POC) indicated the presence of a pre-aged component in the suspended POC pool (Δ14C<+38‰). The Δ14C values at the 3000 m station exhibited greater variability and generally were lower than those at the other two stations where the values decreased in a more systematic matter with increasing sampling depth. These lower Δ14C values were consistent with higher relative abundances of terrigenous long-chain fatty acids at this station than at the other two stations. Two scenarios were considered regarding the potential provenances of laterally transported POC: cross-shelf transport of shelf sediment (Δ14C=?140‰) and along-slope transport of the slope sediment proximal to the sampling locations (Δ14C=?260‰). Depending on the scenario, isotopic mass balance calculations indicate allochthonous POC contributions ranging between 15% and 54% in the meso- and bathy-pelagic zone, with the highest proportions at the 3000 m station. Alkenone-derived temperatures recorded on suspended particles from surface waters closely matched in-situ temperatures at each station. However, alkenone-derived temperatures recorded on particles from the subsurface layer down to 250 m were lower than those of overlying surface waters, especially at the 3000 m station, implying supply of phytoplankton organic matter originally produced in cooler surface waters. AVHRR images and temperature profiles indicate that the stations were under the influence of a warm-core ring during the sampling period. The low alkenone-derived temperatures in the subsurface layer coupled with the lower Δ14C values for the corresponding POC suggests supply of OC on resuspended sediments underlying cooler surface waters distal to the study area, possibly further north or west. Taken together, variations in Δ14C values, terrigenous fatty acid abundances, and alkenone-derived temperatures among the stations suggest that input of laterally advected OC is a prominent feature of POC dynamics on the NW Atlantic margin, and is spatially heterogeneous on a scale smaller than the distance between the stations (<150 km).  相似文献   

16.
The mid-domain effect was tested to evaluate the bathymetric patterns of the polychaete species richness in the Upper and Lower Gulf of California as a possible hypothesis to explain the species richness gradient, exploring the overlapping of species depth ranges towards the middle continental shelf. The bathymetric gradient of the number of species was estimated with the depth ranges of 554 polychaete species, and the mid-domain effect was tested using a Monte Carlo simulation program at bands of 10 m depth. The Upper (251 species) and Lower (491 species) Gulf regions showed clear differences in their faunal composition (Jaccard similarity index = 0.34); the species richness pattern was characterized by a highly significant presence of polychaetes with short depth ranges (< 10 m). The richness distribution could be described as a cubic polynomial curve, but the maximum values in both Gulf regions (141 and 317 species, respectively for Upper and Lower Gulf regions) are strongly biased to shallow waters (40 m). This is not consistent with the peak of diversity at 60–70 m predicted by the model. The observed patterns cannot be reproduced by the mid-domain effect, suggesting the existence of non-random factors affecting the species richness gradients in the Gulf.  相似文献   

17.
We investigated zooplankton distribution in September 2006/2007 at eight stations across Fram Strait in contrasting water masses ranging from cold Polar water to warm Atlantic water. Our main objectives were: (1) to describe the plankton community in the upper 200 m during autumn, and (2) to investigate the importance of small-sized copepods and protozooplankton in an arctic ecosystem when the majority of the large Calanus species had entered diapause. We sampled both with a WP-2 net and Go-Flo bottle and show that small copepods <1 mm are significantly undersampled using a WP-2 net with 90 μm mesh.Small copepods and protozooplankton made a significant contribution both in terms of abundance and total zooplankton biomass at all stations in September, when the large calanoid copepods had left the upper 200 m. The dominating group in the upper 60 m at all stations was Oithona spp. nauplii and their daily estimated grazing potential on the <10 μm phytoplankton ranged from 0.1% to 82% of the standing stock. Both Oithona copepodites and nauplii biomass showed a significantly positive relation with temperature, but not with potential food. Heterotrophic protozooplankton, on the other hand, were most likely bottom-up regulated by the availability of phytoplankton <10 μm. We hypothesise that Oithona nauplii and protozooplankton compete for food and conclude that there was a strong link between the zooplankton community and the microbial food web in Fram Strait.  相似文献   

18.
Below the sill depth (at about 2400 m) of the Alpha-Mendeleyev ridge complex, the waters of the Canada Basin (CB) of the Arctic Ocean are isolated, with a 14C isolation age of about 500 yr. The potential temperature θ decreases with depth to a minimum θm≈−0.524°C near 2400 m, increases with depth through an approximately 300 m thick transition layer to θh≈−0.514°C, and then remains uniform from about 2700 m to the bottom at 3200–4000 m. The salinity increases monotonically with depth through the deep θm and transition layer from about 34.952 to about 34.956 and then remains uniform in the bottom layer. A striking staircase structure, suggestive of double-diffusive convection, is observed within the transition layer. The staircase structure is observed for about 1000 km across the basin and has been persistent for more than a decade. It is characterized by 2–3 mixed layers (10–60 m thick) separated by 2–16 m thick interfaces. Standard formulae, based on temperature and salinity jumps, suggest a double-diffusive heat flux through the staircase of about 40 mW m−2, consistent with the measured geothermal heat flux of 40–60 mW m−2. This is to be expected for a scenario with no deep-water renewal at present as we also show that changes in the bottom layer are too small to account for more than a small fraction of the geothermal heat flux. On the other hand, the observed interfaces between mixed layers in the staircase are too thick to support the required double-diffusive heat flux, either by molecular conduction or by turbulent mixing, as there is no evidence of sufficiently vigorous overturns within the interfaces. It therefore seems, that while the staircase structure may be maintained by a very weak heat flux, most of the geothermal heat flux is escaping through regions of the basin near lateral boundaries, where the staircase structure is not observed. The vertical eddy diffusivity required in these near-boundary regions is O(10−3) m2 s−1. This implies Thorpe scales of order 10 m. We observe what may be Thorpe scales of this magnitude in boundary-region potential temperature profiles, but cannot tell if they are compensated by salinity. The weak stratification of the transition layer means that the large vertical mixing rate implies a local dissipation rate of only O(10−10) W kg−1, which is not ruled out by plausible energy budgets. In addition, we discuss an alternative scenario of slow, continuous renewal of the CB deep water. In this scenario, we find that some of the geothermal heat flux is required to heat the new water and vertical fluxes through the transition layer are reduced.  相似文献   

19.
Iron has been shown to limit phytoplankton growth in high-nutrient low-chlorophyll (HNLC) regions such as the NE subarctic Pacific. We report size-fractionated Fe-uptake rates by the entire plankton community in short (6–8 h) light and dark incubations along an E–W transect from P04 (a coastal ocean station) to OSP (an open-ocean HNLC station) during August–September 1997. Size-fractionated primary productivity and chl a were measured to monitor algal Fe : C uptake ratios and Fe-uptake relative to phytoplankton biomass. The >5.0 μm size-class, which consisted mostly of large diatoms, had the highest Fe-uptake rate at nearshore stations (P04 and P8), but Fe-uptake rates for this size class decreased despite increases in biomass and primary productivity when transecting westwards to HNLC waters. Fe-uptake rates of the small size class (0.2–1.0 μm, including heterotrophic bacteria and autotrophs) were inversely related to the >5.0 μm size-class uptake rates, in that stations with high dissolved Fe (DFe) concentrations had relatively low uptake rates compared to those in the low-Fe offshore region. The 1.0–5.0 μm size-class Fe-uptake rates were low, relatively invariant along the transect, and differed little between light and dark incubations. Dark Fe-uptake rates averaged 10–20% less than those in the light for the >5.0 μm size class. Dark uptake rates however, were higher than light uptake rates for the 0.2–1.0 μm size class at all stations. Fe : C uptake ratios were high for all size classes at P04, but decreased as DFe concentrations decreased offshore. The prokaryote-dominated 0.2–1.0 μm size class had the highest Fe : C uptake ratios at all stations. These data suggest that prokaryotic organisms make an important contribution to biological Fe uptake in this region. Our experiments support the results of previous culture work, suggesting higher Fe : C ratios in coastal phytoplankton compared to open-ocean species, and demonstrate that light can have a large effect on Fe partitioning between size classes in subarctic Pacific HNLC waters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号