首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
潘延  张洋  李舒婷 《气象科学》2022,42(4):440-456
本文评估了36个CMIP5模式和39个CMIP6模式对近期观测中揭示的北半球冬季大气环流与高原冬春气温之间的相关关系的模拟能力。利用最大协方差(MCA)分析方法,计算并比较了观测和模式中冬季北半球200 hPa位势高度场与同后期青藏高原近地面气温的耦合关系。整体而言,大部分CMIP模式能够模拟出显著的冬季北半球大气环流与青藏高原气温之间的相关关系,且CMIP6模式模拟相关特征和作用机制的能力较CMIP5均有所提升。与观测相比,历史情景下36个CMIP5模式中有26个能够模拟出显著的大气环流与同后期高原气温之间的相关关系,其中对于相关的位势高度场空间模态的模拟明显好于对高原气温异常场空间模态的模拟。同情景下39个CMIP6模式中有37个能模拟出显著相关关系,且CMIP6模式更能模拟出观测中MCA模态的位势高度场上北极涛动(AO)和西太平洋遥相关型(WP)反相位叠加的大气环流特征。在对MCA模态时间变率的模拟上,大部分模式都能重现青藏高原整体变暖的趋势,部分模式能够模拟出观测中位势高度场时间主成分的年际变率,并且CMIP6表现要优于CMIP5。对耦合环流型的动力诊断显示,相比CMIP5模式,CMIP6中有更多模式可以模拟出极地—高原之间的遥相关波列,且对波列结构的模拟更完整。  相似文献   

2.
As the first leading mode of upper-tropospheric circulation in observations, the meridional displacement of the East Asian westerly jet (EAJ) varies closely with the East Asian rainfall in summer. In this study, the interannual variation of the EAJ meridional displacement and its relationship with the East Asian summer rainfall are evaluated, using the historical simulations of CMIP5 (phase 5 of the Coupled Model Intercomparison Project). The models can generally reproduce the meridional displacement of the EAJ, which is mainly manifested as the first principal mode in most of the simulations. For the relationship between the meridional displacement of the EAJ and East Asian rainfall, almost all the models depict a weaker correlation than observations and exhibit considerably large spread across the models. It is found that the discrepancy in the interannual relationship is closely related to the simulation of the climate mean state, including the climatological location of the westerly jet in Eurasia and rainfall bias in South Asia and the western North Pacific. In addition, a close relationship between the simulation discrepancy and intensity of EAJ variability is also found: the models with a stronger intensity of the EAJ meridional displacement tend to reproduce a closer interannual relationship, and vice versa.  相似文献   

3.
The climatological mean state,seasonal variation and long-term upward trend of 1979–2005 latent heat flux(LHF) in historical runs of 14 coupled general circulation models from CMIP5(Coupled Model Intercomparison Project Phase 5) are evaluated against OAFlux(Objectively Analyzed air–sea Fluxes) data. Inter-model diversity of these models in simulating the annual mean climatological LHF is discussed. Results show that the models can capture the climatological LHF fairly well,but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF match well with observations with overestimated amplitudes. The possible origins of these biases are wind speed biases in the CMIP5 models. Inter-model diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific region,and the meridional variability of LHF,are the two most notable diversities of the CMIP5 models. Regression analysis indicates that the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity.Comparing the observed long-term upward trend,the trends of LHF and wind speed are largely underestimated,while trends of SST and air specific humidity are grossly overestimated,which may be the origins of the model biases in reproducing the trend of LHF.  相似文献   

4.
State-of-the-art coupled global climate models are evaluated for their simulation of the Atlantic Warm Pool (AWP). Historical runs from 17 coupled climate models included in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) serve as the basis for this model evaluation study. The model simulations are directly compared to observations and reanalysis data to evaluate the climatological features and variability of the AWP within each individual model. Results reveal that a select number of models—namely the GISS-E2-R, CSIRO-Mk3.6, and MPI-ESM-LR—are successful at resolving an appropriately sized AWP with some reasonable climatological features. However, these three models exhibit an erroneously broad seasonal peak of the AWP, and its variability is significantly underestimated. Furthermore, all of the CMIP5 models exhibit a significant cold bias across the tropical Atlantic basin, which hinders their ability to accurately resolve the AWP.  相似文献   

5.
This paper introduces the experimental designs and outputs of the Diagnostic,Evaluation and Characterization of Klima(DECK),historical,Scenario Model Intercomparison Project(MIP),and Paleoclimate MIP(PMIP)experiments from the Nanjing University of Information Science and Technology Earth System Model version 3(NESM3).Results show that NESM3 reasonably simulates the modern climate and the major internal modes of climate variability.In the Scenario MIP experiment,changes in the projected surface air temperature(SAT)show robust“Northern Hemisphere(NH)warmer than Southern Hemisphere(SH)”and“land warmer than ocean”patterns,as well as an El Ni?o-like warming over the tropical Pacific.Changes in the projected precipitation exhibit“NH wetter than SH”and“eastern hemisphere gets wetter and western hemisphere gets drier”patterns over the tropics.These precipitation patterns are driven by circulation changes owing to the inhomogeneous warming patterns.Two PMIP experiments show enlarged seasonal cycles of SAT and precipitation over the NH due to the seasonal redistribution of solar radiation.Changes in the climatological mean SAT,precipitation,and ENSO amplitudes are consistent with the results from PMIP4 models.The NESM3 outputs are available on the Earth System Grid Federation nodes for data users.  相似文献   

6.
本文基于NOAA再分析逐日降水数据和22个CMIP6模式的降水模拟数据,选取了6个极端降水指数,从气候态和相对变率两个角度对CMIP6模式在中亚地区极端降水方面的模拟能力开展了评估。结果表明,在气候态方面,中亚地区降水的空间分布表现为由西南向东北递增,其东南部山地迎风侧降水偏多;多模式集合对SDII(简单降水强度)和CDD(最大无雨期)模拟的平均误差分别为-5.43%和0.45%,对PRCPTOT(年总降水量)、R1mm(有雨日数)、Rx5day(最大连续五日降水)和CWD(最大雨期)的模拟结果存在明显高估,且在中亚东南部高海拔地区误差偏高。在相对变率方面,多模式集合模拟的中亚极端降水的相对变率偏小,其中对CWD的模拟效果相对较好,平均误差为-4.78%;对R1mm的模拟效果最差,平均误差为-36.16%。模式间进行比较,TaiESM1、EC-Earth3-Veg-LR和GFDL-ESM为22个CMIP6模式中模拟能力最好的前3个模式。  相似文献   

7.
The natural sea surface temperature (SST) variability in the global oceans is evaluated in simulations of the Climate Model Intercomparison Project Phase 3 (CMIP3) and CMIP5 models. In this evaluation, we examine how well the spatial structure of the SST variability matches between the observations and simulations on the basis of their leading empirical orthogonal functions-modes. Here we focus on the high-pass filter monthly mean time scales and the longer 5 years running mean time scales. We will compare the models and observations against simple null hypotheses, such as isotropic diffusion (red noise) or a slab ocean model, to illustrate the models skill in simulating realistic patterns of variability. Some models show good skill in simulating the observed spatial structure of the SST variability in the tropical domains and less so in the extra-tropical domains. However, most models show substantial deviations from the observations and from each other in most domains and particularly in the North Atlantic and Southern Ocean on the longer (5 years running mean) time scale. In many cases the simple spatial red noise null hypothesis is closer to the observed structure than most models, despite the fact that the observed SST variability shows significant deviations from this simple spatial red noise null hypothesis. The CMIP models tend to largely overestimate the effective spatial number degrees of freedom and simulate too strongly localized patterns of SST variability at the wrong locations with structures that are different from the observed. However, the CMIP5 ensemble shows some improvement over the CMIP3 ensemble, mostly in the tropical domains. Further, the spatial structure of the SST modes of the CMIP3 and CMIP5 super ensemble is more realistic than any single model, if the relative explained variances of these modes are scaled by the observed eigenvalues.  相似文献   

8.
CMIP5模式对冬季北极涛动的模拟和预估   总被引:1,自引:0,他引:1  
基于NCEP/NCAR再分析资料和CMIP5的19个模式结果,从异常模态、年代际趋势和周期特征等方面评估了CMIP5耦合模式对冬季北极涛动(Arctic Oscillation,AO)的模拟能力,并对未来RCP4.5、RCP8.5两种浓度路径下AO的可能变化趋势给出了定性的预估。CMIP5模式历史试验结果显示,大多数模式都能够模拟出AO模态的基本结构,但是对中心位置、强度的模拟存在较大的偏差,其中MPI-ESM-LR和Had GEM2-AO能较好地模拟出AO整体模态来。在历史演变和周期特征的刻画方面,模式的冬季海平面气压经验正交函数分解第一模态时间序列(Principal Component,PC1)基本能够反映出1950~1970年以来的减弱趋势,但对1970年以后的增长趋势模拟并不明显,而北半球环状模指数(Zonal Index,ZI)序列对两个阶段的趋势均可模拟出来,模式的PC1和ZI序列总体表现为正的变化趋势。有一半以上的模式对2~3 a高频周期模拟较好,但对20 a左右的周期模拟较差,其中仅有Can ESM2、CNRM-CM5、GFDL-ESM2G这3个模式对ZI指数的两个周期变化模拟较好。在RCP4.5和RCP8.5两种浓度路径下,ZI序列有显著的上升趋势,从长期趋势系数看RCP4.5路径下有14个模式呈现正的变化趋势,其中有10个模式通过了检验。RCP8.5浓度路径下,16个模式为正变化趋势,有11个模式通过了检验,集合平均结果正变化趋势较为显著。两种浓度路径下不同时段的海平面气压变化趋势表明,ZI序列的年代际变化明显,存在3个不同的变化阶段——2006~2039年、2070~2100年为两个上升阶段,2040~2069年为缓慢下降阶段。  相似文献   

9.
Three forms of atmospheric energy, i.e., internal, potential, and latent, are analyzed based on the historical simulations of 32 Coupled Model Intercomparison Project Phase 5(CMIP5) models and two reanalysis datasets(NCEP/NCAR and ERA-40). The spatial pattern of climatological mean atmospheric energy is well reproduced by all CMIP5 models. The variation of globally averaged atmospheric energy is similar to that of surface air temperature(SAT) for most models. The atmospheric energy from both simulation and reanalysis decreases following the volcanic eruption in low-latitude zones. Generally, the climatological mean of simulated atmospheric energy from most models is close to that obtained from NCEP/NCAR, while the simulated atmospheric energy trend is close to that obtained from ERA-40. Under a certain variation of SAT, the simulated global latent energy has the largest increase ratio, and the increase ratio of potential energy is the smallest.  相似文献   

10.
Future change of global monsoon in the CMIP5   总被引:5,自引:1,他引:4  
This study investigates future changes of Global Monsoon (GM) under anthropogenic global warming using 20 coupled models that participated in the phase five of Coupled Model Intercomparison Project (CMIP5) by comparing two runs: the historical run for 1850–2005 and the Representative Concentration Pathway (RCP) 4.5 run for 2006–2100. A metrics for evaluation of models’ performance on GM is designed to document performance for 1980–2005 and best four models are selected. The four best models’ multi-model ensemble (B4MME) projects the following changes in the twenty-first century under the RCP4.5 scenario. (1) Monsoon domain will not change appreciably but land monsoon domain over Asia tends to expand westward by 10.6 %. (2) The annual mean and range of GM precipitation and the percentage of local summer rainfall will all amplify at a significant level over most of the global region, both over land and over ocean. (3) There will be a more prominent northern-southern hemispheric asymmetry and eastern-western hemispheric asymmetry. (4) Northern Hemisphere (NH) monsoon onset will be advanced and withdrawal will be delayed. (5) Changes in monsoon precipitation exhibits huge differences between the NH and the Southern hemisphere (SH). The NH monsoon precipitation will increase significantly due to increase in temperature difference between the NH and SH, significant enhancement of the Hadley circulation, and atmospheric moistening, against stabilization of troposphere. There is a slight decrease of the Walker circulation but not significant against the inter-model spread. There are important differences between the CMIP 3 and CMIP5 results which are discussed in detail.  相似文献   

11.
利用第五次耦合模式比较计划(Coupled Model Intercomparison Project Phase 5,简称CMIP5)月平均资料,从季节变化角度,对热带太平洋、印度洋海温变化与降水变化的关系及其成因进行了初步分析。20个模式集合平均结果表明:在全球增暖背景下,热带太平洋年平均的海温变化与降水变化符合"warmer-get-wetter"型特征,而季节平均与年平均存在明显的差异;冬季和春季,海温增暖最大区和降水增加区之间存在东西向和南北向的位置偏差;夏季和秋季,二者只存在明显的南北位置偏差,且与冬季和春季的情况相反。热带印度洋的冬季和春季海温变化与降水变化也存在位置偏差。两个热带大洋季节平均的降水变化均是"warmer-get-wetter"和"wet-get-wetter"两个机制共同作用的结果。  相似文献   

12.
East Asia summer rainfall is of great social–economic importance. Based on observations, reanalysis and simulations of 16 Coupled Models Intercomparison Project phase 5 (CMIP5) models, the responses of East Asia summer precipitation, as well as some relevant features, to global warming are investigated. The CMIP5 historical simulation reasonably reproduces the climatology of summer rainfall, the associated circulation, the moisture and its transportation, and the mid-troposphere horizontal advection of temperature as well. Under global warming, the rainfall enhancement is robustly projected in the state-of-the-art models over North China, Northeast China, northern coast of Japan and the Kuroshio. As well, the total summer rainfall over East Asia is consistently increased in the models. For the consistent responses, the moisture budget analysis based on the simulations shows that two factors are responsible: one is increased moisture. As East Asia is a climatological ascent region in northern summer, increased moisture induced by global warming leads to more moisture transported upward and thus the rainfall rise. The other is enhanced evaporation, which may be caused by surface warming and provides more precipitable water to the atmosphere column. Furthermore, the results may provide some implications to the long-term variability of East Asia summer rainfall over the last several decades.  相似文献   

13.
In this study, the El Nino-Southern Oscillation (ENSO) phase-locking to the boreal winter in CMIP3 and CMIP5 models is examined. It is found that the models that are poor at simulating the winter ENSO peak tend to simulate colder seasonal-mean sea-surface temperature (SST) during the boreal summer and associated shallower thermocline depth over the eastern Pacific. These models tend to amplify zonal advection and thermocline depth feedback during boreal summer. In addition, the colder eastern Pacific SST in the model can reduce the summertime mean local convective activity, which tends to weaken the atmospheric response to the ENSO SST forcing. It is also revealed that these models have more serious climatological biases over the tropical Pacific, implying that a realistic simulation of the climatological fields may help to simulate winter ENSO peak better. The models that are poor at simulating ENSO peak in winter also show excessive anomalous SST warming over the western Pacific during boreal winter of the El Nino events, which leads to strong local convective anomalies. This prevents the southward shift of El Nino-related westerly during boreal winter season. Therefore, equatorial westerly is prevailed over the western Pacific to further development of ENSO-related SST during boreal winter. This bias in the SST anomaly is partly due to the climatological dry biases over the central Pacific, which confines ENSO-related precipitation and westerly responses over the western Pacific.  相似文献   

14.
CMIP5多模式对阿留申低压气候特征的模拟检验与预估   总被引:2,自引:0,他引:2  
利用观测的海温资料和海平面气压资料,检验了CMIP5(Coupled Model Intercomparison Project 5,CMIP5)多模式对阿留申低压(Aleutian Low,AL)特征指数的时空分布和变化的模拟能力;从AL周期及变化趋势等方面,分析了CMIP5模式预估的未来AL的变化特征。结果表明,CMIP5模式及其集合平均能够很好地模拟AL的环流结构,对AL的气候态有着较强的模拟能力,尤其是模式对于东太平洋海表温度的模拟能力直接影响其对于AL的模拟效果。模式的集合平均对变率强度的模拟偏强,且对于变率的模拟效果逊于对气候态的模拟。22个模式中的16个模式能模拟出AL强度指数的年代际变化周期,对年代际周期有着较好的刻画能力。Historical试验下对于AL的变化趋势存在着较大的不确定性,而相对于两种不同排放情景,随着排放的增加,AL更加偏北,强度增强,年际、年代际周期变得更加显著。在两种排放情景下模式的集合平均以及多数模式模拟出AL有着向北和增强的趋势。  相似文献   

15.
The present study aims at evaluating and comparing precipitation over the Amazon in two sets of historical and future climate simulations based on phase 3 (CMIP3) and 5 (CMIP5) of the Coupled Model Intercomparison Project. Thirteen models have been selected in order to discuss (1) potential improvements in the simulation of present-day climate and (2) the potential reduction in the uncertainties of the model response to increasing concentrations of greenhouse gases. While several features of present-day precipitation—including annual cycle, spatial distribution and co variability with tropical sea surface temperature (SST)—have been improved, strong uncertainties remain in the climate projections. A closer comparison between CMIP5 and CMIP3 highlights a weaker consensus on increased precipitation during the wet season, but a stronger consensus on a drying and lengthening of the dry season. The latter response is related to a northward shift of the boreal summer intertropical convergence zone in CMIP5, in line with a more asymmetric warming between the northern and southern hemispheres. The large uncertainties that persist in the rainfall response arise from contrasted anomalies in both moisture convergence and evapotranspiration. They might be related to the diverse response of tropical SST and ENSO (El Niño Southern Oscillation) variability, as well as to spurious behaviours among the models that show the most extreme response. Model improvements of present-day climate do not necessarily translate into more reliable projections and further efforts are needed for constraining the pattern of the SST response and the soil moisture feedback in global climate scenarios.  相似文献   

16.
The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian-Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated. Based on climatology of the twentieth-century simulations, most of models have a reasonably realistic representation of summer monsoon WVT characterized by southeast water vapor conveyor belt over the South Indian Ocean and southwest belt from the Arabian Sea to the East Asian. The correlation coefficients between NCEP reanalysis and simulations of BCC-CSM1-1, BNU-ESM, CanESM2, FGOALS-s2, MIROC4h and MPI-ESM-LR are up to 0.8. The simulated CEF depicted by the meridional wind along the equator includes the Somali jet and eastern CEF in low atmosphere and the reverse circulation in upper atmosphere, which were generally consistent with NCEP reanalysis. Multi-model ensemble means (MME) can reproduce more reasonable climatological features in spatial distribution both of WVT and CEF. Ten models with more reasonable WVT simulations were selected for future projection studies, including BCC-CSM1-1, BNU-ESM, CanESM2, CCSM4, FGOALS-s2, FIO-ESM, GFDL-ESM2G, MRIOC5, MPI-ESM-LR and NorESM-1M. Analysis based on the future projection experiments in RCP (Representative Concentration Pathway) 2.6, RCP4.5, RCP6 and RCP8.5 show that the global warming forced by different RCP scenarios will results in enhanced WVT over the Indian area and the west Pacific and weaken WVT in the low latitudes of tropical Indian Ocean.  相似文献   

17.
Freshwater flux (FWF) directly affects sea surface salinity (SSS) and hence modulates sea surface temperature (SST) in the tropical Pacific. This paper quantifies a positive correlation between FWF and SST using observations and simulations of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to analyze the interannual variability in the tropical Pacific. Comparisons among the displacements of FWF, SSS and SST interannual variabilities illustrate that a large FWF variability is located in the west-central equatorial Pacific, covarying with a large SSS variability, whereas a large SST variability is located in the eastern equatorial Pacific. Most CMIP5 models can reproduce the fact that FWF leads to positive feedback to SST through an SSS anomaly as observed. However, the difference in each model's performance results from different simulation capabilities of the CMIP5 models in the magnitudes and positions of the interannual variabilities, including the mixed layer depth and the buoyancy flux in the equatorial Pacific. SSS anomalies simulated from the CMIP5 multi-model are sensitive to FWF interannual anomalies, which can lead to differences in feedback to interannual SST variabilities. The relationships among the FWF, SSS and SST interannual variabilities can be derived using linear quantitative measures from observations and the CMIP5 multi-model simulations. A 1 mm d-1 FWF anomaly corresponds to an SSS anomaly of nearly 0.12 psu in the western tropical Pacific and a 0.11°C SST anomaly in the eastern tropical Pacific.  相似文献   

18.
To meet the low warming targets proposed in the 2015 Paris Agreement,substantial reduction in carbon emissions is needed in the future.It is important to know how surface climates respond under low warming targets.The present study investigates the surface temperature changes under the low-forcing scenario of Representative Concentration Pathways(RCP2.6)and its updated version(Shared Socioeconomic Pathways,SSP1-2.6)by the Flexible Global Ocean-Atmosphere-Land System(FGOALS)models participating in phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6,respectively).In both scenarios,radiative forcing(RF)first increases to a peak of 3 W m^?2 around 2045 and then decreases to 2.6 W m^?2 by 2100.Global mean surface air temperature rises in all FGOALS models when RF increases(RF increasing stage)and declines or holds nearly constant when RF decreases(RF decreasing stage).The surface temperature change is distinct in its sign and magnitude between the RF increasing and decreasing stages over the land,Arctic,North Atlantic subpolar region,and Southern Ocean.Besides,the regional surface temperature change pattern displays pronounced model-to-model spread during both the RF increasing and decreasing stages,mainly due to large intermodel differences in climatological surface temperature,ice-albedo feedback,natural variability,and Atlantic Meridional Overturning Circulation change.The pattern of tropical precipitation change is generally anchored by the spatial variations of relative surface temperature change(deviations from the tropical mean value)in the FGOALS models.Moreover,the projected changes in the updated FGOALS models are closer to the multi-model ensemble mean results than their predecessors,suggesting that there are noticeable improvements in the future projections of FGOALS models from CMIP5 to CMIP6.  相似文献   

19.
Climate drift in preindustrial control (PICTL) simulations can lead to spurious climate trends and large uncertainties in historical and future climate simulations in coupled models. This study examined the long-term behaviors and stabilities of the PICTL simulations in the two versions of FGOALS2 (the Flexible Global Ocean-Atmosphere-Land System model Version 2), which have been submitted to the Coupled Model Inter-comparison Project Phase 5 (CMIP5). As verified by examining time series of thermal fields and their linear trends, the PICTL simulations showed stable long-term integration behaviors and no obvious climate drift [the magnitudes of linear trends of SST were both less than 0.04oC (100 yr)-1] over multiple centuries. The changed SSTs in a century (that corresponded to the linear trends) were less than the standard deviations of annual mean values, which implied the internal variability was not affected. These trend values were less than 10% of those of global averaged SST from observations and historical runs during the periods of slow and rapid warming. Such stable long-term integration behaviors reduced the uncertainty of the estimation of global warming rates in the historical and future climate projections in the two versions of FGOALS2. Compared with the trends in the Northern Hemisphere, larger trends existed in the SST and sea ice extents at the middle to high latitudes of the Southern Hemisphere (SH). To estimate the historical and future climate trends in the SH or at some specific regions in FGOALS2, corrections needed to be carried out. The similar long-term behaviors in the two versions of FGOALS2 may be attributed to proper physical processes in the ocean model.  相似文献   

20.
We compare the ability of coupled global climate models from the phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6, respectively) in simulating the temperature and precipitation climatology and interannual variability over China for the period 1961–2005 and the climatological East Asian monsoon for the period1979–2005. All 92 models are able to simulate the geographical distribution of the above variables reasonably well.Compared with earlier CMIP5 models, current CMIP6 models have nationally weaker cold biases, a similar nationwide overestimation of precipitation and a weaker underestimation of the southeast–northwest precipitation gradient, a comparable overestimation of the spatial variability of the interannual variability, and a similar underestimation of the strength of winter monsoon over northern Asia. Pairwise comparison indicates that models have improved from CMIP5 to CMIP6 for climatological temperature and precipitation and winter monsoon but display little improvement for the interannual temperature and precipitation variability and summer monsoon. The ability of models relates to their horizontal resolutions in certain aspects. Both the multi-model arithmetic mean and median display similar skills and outperform most of the individual models in all considered aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号