首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this study, the regional variations of climate extremes and its possible impact on rice yield in Jiangsu province, southeast China were investigated. A total of 18 climate extremes indices (CEI) of rice-growing period (May–October) based on the daily climate records and rice yield data at 52 stations during 1961–2012 were calculated and analyzed. The main findings were as follows: (1) due to the remarked regional differences of climate extremes, Jiangsu could be divided into six climatic subregions: westernmost, northwest, north, southwest, south, and southeast corner; (2) trends of 18 indices in the six subregions using Mann–Kendall test indicated that Jiangsu was dominated by an obvious wetting and warming tendency, especially in the southern area; (3) correlation analysis between rice yield and CEI using first-difference and climate-induced yield method showed that the negative influences of precipitation extremes were more notable compared to temperature extremes; (4) P95 [precipitation due to very wet days (> 95th percentile)] should be selected as a key meteorological disasters indicator affecting rice yield in the northwest, north, southwest, and south Jiangsu; (5) the increase of P95 since 1990s was detected in most of Jiangsu, which would bring huge risks to rice growing.  相似文献   

2.
图尔盖—阿克苏河谷近数百年冰川作用和气候变化研究   总被引:1,自引:1,他引:1  
С.  ОН М.  НГ 《冰川冻土》1991,13(3):201-212
  相似文献   

3.
祁连山区能量场特征与降水分布的关系分析   总被引:4,自引:3,他引:1  
陈乾  陈添宇  张逸轩 《冰川冻土》2011,33(5):1046-1054
采用祁连山地形云野外观测的资料,分西南气流移动、西南气流阻塞、西北和平直西风气流型,用三维插值方法分型计算湿静力总温度Tσ场和总降水场,分析了不同的大尺度流型下冷龙岭西段降水分布与能量场特征的关系.对比山脉南北坡与山外同高度Tσ的日变化,发现山坡Tσ全天高于山外,山脉呈高能岛其外围有能量锋,不同流型下南北坡能量锋强度和...  相似文献   

4.
本文采用华山东峰、西峰和南峰的华山松树轮宽度差值年表重建了1500年以来中国陕西关中及周边地区的初夏干燥指数序列,对重建序列进行了统计特征分析,并同大尺度大气环流场进行了相关分析。结果表明:华山年表的变化与该地区初夏平均干燥指数序列的变化具有很好的一致性,可用来重建该地区的初夏干燥指数序列;该地区在1502~1511年、1570~1580年以及1807~1814年间的初夏季节存在3次较为严重的干旱;该地区初夏干燥指数变化存在着较为明显的周期特征,其中以13a左右和4a左右的周期最为显著,但周期特征在不同的历史阶段存在着明显的差异;重建序列在1784年前后发生了一次较大幅度的方差变化,而1587年前后的均值突变则表现为干燥指数值的急剧降低;该地区初夏季节的干燥程度可能与前期极涡的中心强度及冷空气活动有关。  相似文献   

5.
In recent years in Mexico and around the world, the scientific community has shown great interest in acquiring knowledge regarding the behavior of extreme climate events due to their increasing number and intensity. The objective of this research was to analyze variations in extreme temperature events using extreme climate indices. We conducted a case study for the municipality of Apizaco, Tlaxcala, Mexico, using data sets of the daily maximum and minimum temperatures for the period from 1952 to 2003. Six indices related to maximum and minimum temperatures were calculated: frost days, summer days, warm days, cool days, warm nights and cool nights. All of the index results were evaluated annually and only four of the indices were analyzed according to the seasons. A trend based on a linear least squares regression model was fit to the indices to determine their behavior. The index results showed that extreme events related to maximum temperatures corresponded to greater changes and an increased number of summer days and decreased cool days. Additionally, there was an increase of frost days, associated with a greater number of days with minimum temperatures below 0 °C. In general, the results indicated that warmer and colder extreme temperatures are occurring. The detection of those trends in the extreme events can be seen as a first step in any study of the attribution of those observed changes (e.g., land use change, regional climate change, etc.). This attribution aspect will not be discussed in the present study.  相似文献   

6.
Floods and associated landslides account for the largest number of natural disasters and affect more people than any other type of natural disaster. With the availability of satellite rainfall analyses at fine time and space resolution, it has also become possible to mitigate such hazards on a near-global basis. In this article, a framework to detect floods and landslides related to heavy rain events in near-real-time is proposed. Key components of the framework are: a fine resolution precipitation acquisition system; a comprehensive land surface database; a hydrological modeling component; and landslide and debris flow model components. A key precipitation input dataset for the integrated applications is the NASA TRMM-based multi-satellite precipitation estimates. This dataset provides near real-time precipitation at a spatial-temporal resolution of 3 h and 0.25° × 0.25°. In combination with global land surface datasets it is now possible to expand regional hazard modeling components into a global identification/monitoring system for flood/landslide disaster preparedness and mitigation.  相似文献   

7.
赣江流域TRMM降水数据的误差特征与成因   总被引:1,自引:0,他引:1       下载免费PDF全文
阐明TRMM 3B42V6(Tropical rainfall measuring mission 3B42 version 6)的误差特征及成因,对于合理使用该卫星降水数据,并完善其降水反演算法具有重要意义。在赣江流域0.25°×0.25°空间尺度上,对比了TRMM 3B42V6、TRMM 3B42RTV6和CMORPH的精度特征。结果表明,3B42V6的系统偏差远低于3B42RTV6、CMORPH,但平均绝对值偏差、效率系数和探测率均明显劣于CMORPH。TRMM 3B42V6的系统偏差较低的原因主要在于该数据采用地面月降水量进行了校准,而其绝对值偏差、效率系数和探测率明显劣于CMORPH的主要原因在于所采用的热红外/被动微波降水联合反演算法不及后者有效。今后有必要对TRMM 3B42的精度进行全面评估,并改进该数据的热红外/微波降水反演算法及与地面降水信息的融合算法。  相似文献   

8.
In recent years, drought has become a global issue, especially in arid and semi-arid areas. It is without doubt that the identification and monitoring of the drought phenomenon can help to reduce the damages that would occur. In addition, rain is one of the factors which directly affect the water levels of underground water reservoirs. This research applied a linear gradient regression method developed on the basis of GRACE, CHIRPS, and data from monitoring wells to investigate the groundwater storage changes.These data have been analyzed on the Google Earth Engine platform. In order to conduct temporal and spatial analyses, the water levels of the aquifer were generated from the monitoring wells and zoned into five classes. Also, the amount of water storage and rain from the year 2003 to 2017 in the West Azerbaijan Province were investigated using the GRACE satellite and the CHIRPS data, respectively. The results obtained from the GRACE satellite data show that the average water level in the underground reservoirs in Iran had started to decrease since 2008 and reached its peak in 2016 with an average decrease of 16 cm in that year. The average annual decline of groundwater level in the studied time period was 5 cm. A chart developed from the CHIRPS annual rainfall data indicates that the biggest decline in rainfall occurred in 2008, and the declining trend has remained steady. Linear analyses were made on GRACE with CHIRPS results and monitoring wells data separately, from which the correlation coefficients are between 86% and 97%, showing generally high correlations. Furthermore, the results obtained from the zoning of the aquifer showed that in the period of 2004 to 2016, due to the decrease in rainfall and the excessive withdrawal of groundwater, the water levels also decreased.  相似文献   

9.
黄翀  张强  陈晓宏  肖名忠 《水文》2017,37(5):12-20
利用模糊C-均值聚类算法、皮尔逊相关和滑动相关分析等方法,对珠江流域做了气候一致性分析,在此基础上,研究了珠江流域不同分区年降水和干湿季降水变化的时空特征,分析了区域干湿变化与厄尔尼诺-南方涛动(ENSO)、北大西洋涛动(NAO)、印度洋偶极子(IOD)和太平洋10年涛动(PDO)等主要气候因子的遥相关关系,探讨了珠江流域干湿变化的气候成因。在此基础上,进一步研究上述气候指标对不同时间尺度干湿变化影响的平稳性与差异性。除此之外,还研究了气候指标的冷暖期对基于6个月SPI值的珠江流域干湿状态的影响。研究表明:(1)IOD、NAO和ENSO分别是导致珠江流域年降水、湿季降水和干季降水发生变化的主要影响因素,且对当年及下一年降水的影响是相反的。(2)珠江流域不同时间尺度的降水与对其有显著影响的气候指标(年降水与IOD,湿季降水与NAO,干季降水与ENSO),两者之间不同时期的滑动相关往往具有较强的相关性和前后相关一致性。(3)各气候指标对珠江流域不同时间尺度降水的影响在空间分布上不太均匀。(4)不同位相下气候指标对珠江流域干湿状态的影响存在较大差异。总体而言,当处于各气候指标暖期时珠江流域出现湿润期的概率较冷期时更大且在空间分布上更均匀。  相似文献   

10.
1961-2010年西北干旱区极端降水指数的时空变化分析   总被引:3,自引:0,他引:3  
结合绝对阈值和百分位法定义极端降水事件的优点,提出了一种更灵敏的检测极端降水事件的方法. 该方法不仅能检测出常用降水指数无法检测到的降水量稀少地区尤其干旱区的极端降水事件,同时也能过滤掉其检测到的降水量丰富地区的虚假极端降水事件. 此方法首次被应用于统计1961年1月至2010年2月西北干旱区72个气象站点的年和季节的极端降水指数(大降水和强降水指数),并分析了极端降水指数的时间变化趋势及其空间分布特征. 结果表明:西北干旱区春(3-5月)、秋(9-11月)、冬(12月至次年2月)三季极端降水指数无显著(P>0.05)变化趋势,夏季(6-8月)大降水的频率和降水量以及大降水降水量占总降水量的比重都显著增加;新疆地区极端降水指数为增加趋势的区域基本都分布在海拔较高(约海拔1 000 m以上)的地区;西北干旱区东部极端降水指数变化趋势的空间分布有明显的季节差异,表现为夏、秋季大部分地区为增加趋势,冬、春季大部分地区为减小趋势.  相似文献   

11.
Method for prediction of landslide movements based on random forests   总被引:4,自引:3,他引:1  
Prediction of landslide movements with practical application for landslide risk mitigation is a challenge for scientists. This study presents a methodology for prediction of landslide movements using random forests, a machine learning algorithm based on regression trees. The prediction method was established based on a time series consisting of 2 years of data on landslide movement, groundwater level, and precipitation gathered from the Kostanjek landslide monitoring system and nearby meteorological stations in Zagreb (Croatia). Because of complex relations between precipitations and groundwater levels, the process of landslide movement prediction is divided into two separate models: (1) model for prediction of groundwater levels from precipitation data and (2) model for prediction of landslide movements from groundwater level data. In a groundwater level prediction model, 75 parameters were used as predictors, calculated from precipitation and evapotranspiration data. In the landslide movement prediction model, 10 parameters calculated from groundwater level data were used as predictors. Model validation was performed through the prediction of groundwater levels and prediction of landslide movements for the periods from 10 to 90 days. The validation results show the capability of the model to predict the evolution of daily displacements, from predicted variations of groundwater levels, for the period up to 30 days. Practical contributions of the developed method include the possibility of automated predictions, updated and improved on a daily basis, which would be an important source of information for decisions related to crisis management in the case of risky landslide movements.  相似文献   

12.
In August 2010, extreme rainfall affected the north of the Czech Republic and caused regional floods and landslides. Three torrential debris flows originated in the Jizerské hory Mts., close to Bílý Potok on the north slope of the Smědavská hora Mt. The rainfall situation which triggered the debris flow was analyzed and compared with the rainfall situation in 1958 when a debris flow occurred in the same area. The rainfall data were obtained from rain gauges of the Czech Hydrometeorological Institute. Four rain gauges were chosen close to the Smědavská hora Mt. with data of daily amounts from 1983 to 2013 and 10-min intensity or hourly amounts from the specific period. The data from 1958 were available from three different rain gauges (only daily amounts). The data series were not complete so linear regression was applied to interpolate them. A number of analyses were carried out including daily rainfall, 2-day/3-day moving values, antecedent precipitation index (API) of 5/10/30 days, 10-min intensity, and hourly amounts, and the trigger factor of the debris flow in the study area was also investigated. It was determined that for the triggering of debris flows, both high API values as well as high-intensity short-duration rainfall is needed. It was documented that in cases of solely high API indices or high-intensity short-duration rainfalls, no debris flows were initiated.  相似文献   

13.
气象数据是水文过程研究的关键要素,再分析数据的发展为资料缺乏地区的径流模拟提供了新的解决方案。为研究ERA5-Land再分析数据集在径流模拟中的适用性,本文以玛纳斯河流域肯斯瓦特水文站以上流域为研究区,选取多个评价指标对ERA5-Land降水和温度进行准确性评价,并采用经验模态分解(EOF)分析其在研究区内的分布特点。在准确性方面,ERA5-Land与实测数据具有较好相关性,降水探测率为0.96,能反映大多数的降水事件,但与实测数据相比总体偏高21.81%,气温准确性好于降水,总体拟合效果较好,最优范围为-520 ℃,在极值部分不确定性有所增加。EOF决定性模态表明研究区内降水、气温变化趋势基本一致,即易受大尺度天气系统影响。利用该数据集驱动SWAT模型在月、日尺度上对玛纳斯河流域进行径流模拟,在验证期纳什系数(NSE)分别为0.88和0.82,具有较好的模拟效果。ERA5-Land再分析数据集可为西北缺乏实测气象资料地区径流模拟提供参考。  相似文献   

14.
卫星降雨数据在高山峡谷地区的代表性与可靠性   总被引:1,自引:0,他引:1       下载免费PDF全文
以长江上游金沙江流域典型高山峡谷地区为研究对象,用该区域地面观测降雨量数据对TRMM PR 3B42 V6产品进行了3 h、日、月3个时间尺度的有效性评估,旨在为开展区域卫星与地面降水数据融合的流域水文模拟及预报奠定数据基础。分别采用了线性回归方法分析降雨量相关性、经验正交函数-奇异值分解方法(EOF-SVD)分析降雨量主要模态空间分布特征、相对偏差Bias、错报率RFA和探测率PD指标对该卫星产品进行了精度评定。研究结果表明:研究区该卫星产品与地面观测数据在3个时间尺度存在显著的线性时间和空间相关性,但相关程度随时间尺度的减小而减弱;二者在空间分布上总体具有一致性特征,但在高海拔、大坡度区域表现出较为显著的差异;相对偏差指标显示2008-2010年降雨量均值相对偏差在±10%的概率密度百分数为36.08%;随高程的增加,卫星数据RFA呈逐渐增加趋势变化,PD呈逐渐减小趋势变化;总体上小雨对误差的贡献最大,大雨峰值误差贡献次之,时段降雨量偏差随时间尺度的增加逐渐减小,而随高程的增加卫星数据的探测精度下降。因此,对于类似的高山峡谷流域,要应用该卫星产品进行日、3 h尺度水文模拟及预报,有必要对流域卫星数据和地面观测数据进行融合,充分发挥两种数据的优势。  相似文献   

15.
Iraq, the land of two rivers, has a history that extends back millennia and is the subject of much archaeological research. However, little environmental research has been carried out, and as such relatively little is known about the interaction between Iraq’s vegetation and climate. This research serves to fill this knowledge gap by investigating the relationship between the Normalized Difference Vegetation Index (NDVI) and two climatic factors (precipitation and air temperature) over the last decade. The precipitation and air temperature datasets are from the Water and Global Change Forcing Data ERA-Interim (WFDEI), and the NDVI dataset was extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m spatial resolution and 16 day temporal resolution. Three different climatic regions in Iraq, Sulaymaniyah, Wasit, and Basrah, were selected for the period of 2001–2015. This is the first study to compare these regions in Iraq, and one of only a few investigating vegetation’s relationship with multiple climatic factors, including precipitation and air temperature, particularly in a semi-arid region. The interannual, intra-annual and seasonal variability for each region is analysed to compare the different responses of vegetation growth to climatic factors. Correlations between NDVI and climatic factors are also included. Plotting annual cycles of NDVI and precipitation reveals a coherent onset, fluctuation (peak and decline), with a time lag of 4 months for Sulaymaniyah and Wasit (while for the Basrah region, high temperatures and a short rainy season was observed). The correlation coefficients between NDVI and precipitation are relatively high, especially in Sulaymaniyah, and the largest positive correlation was (0.8635) with a time lag of 4 months. The phenological transition points range between 3 and 4 month time lag; this corresponds to the duration of maturity of the vegetation. However, when correlated with air temperature, NDVI experiences an inverse relationship, although not as strong as that of NDVI and precipitation; the highest negative correlation was observed in Wasit with a time lag of 2 months (? 0.7562). The results showed that there is a similarity between temporal patterns of NDVI and precipitation. This similarity is stronger than that of NDVI and air temperature, so it can be concluded that NDVI is a sensitive indicator of the inter-annual variability of precipitation and that precipitation constitutes the primary factor in germination while the air temperature acts with a lesser effect.  相似文献   

16.
Changes in annual temperature extremes in the Carpathians since AD 1961   总被引:1,自引:1,他引:0  
The Carpathian Mountains region cover areas from seven countries of central and southeastern Europe, the mountain chain having major regional influences on the temperate climate, specific to latitudes between 43°N and 49°N. In order to identify changes in the annual temperature extremes, the Mann–Kendall nonparametric trend test has been applied to several thermal indices, recommended by the expert team on climate change detection and indices. The indices were computed from gridded daily datasets of minimum and maximum temperature at 0.1° resolution (~10 km), available online within the framework of the project CarpatClim (climate of the Carpathian region) for the period 1961–2010. The results show decreasing trends in cold-related indices, especially in the number of frost days, and increasing trends in warm-related ones. The trend patterns are consistent over the region, i.e., there are no mixed trends for a given index. Regional differences in climate extreme trends within the Carpathian region are related to altitude, rather than latitude. The number of summer days is increasing over the entire area, while the number of tropical nights presents upward trends mainly at lower elevations. The Warm Spell Duration Index presents upward trends over 60 % of the region. The (annual) East Atlantic pattern shows strong correlations with the warm-related indices. Our results are in agreement with previous temperature-related studies in the region.  相似文献   

17.
路红亚  杜军  袁雷  廖健 《冰川冻土》2014,36(3):563-572
利用西藏珠穆朗玛峰地区5个气象站点1971-2012年逐日降水量资料,采用滑动平均、线性回归、Mann-Kendall非参数检验和Morlet小波分析等方法,分析了珠穆朗玛峰地区极端降水事件的时空变化特征. 结果表明:1971-2012年42 a来,珠穆朗玛峰地区大部分极端降水指数呈现出自东向西逐渐增大的空间分布格局, 连续干旱日数、连续湿日和降水强度表现为增加趋势,其他极端降水指数趋于减少. 其中,强降水量、极强降水量和年降水总量减幅较大,分别为-5.74 mm·(10a)-1、-1.20 mm·(10a)-1和-5.32 mm·(10a)-1,在喜马拉雅山南坡的聂拉木站表现的最为明显. 大部分极端降水指数在21世纪最初的10 a减幅最大,在30 a际尺度上也表现为减少趋势. 除连续干旱日数外,极端降水与年降水总量关系密切. 各项极端降水指数都存在3~4 a显著周期,也存在10 a、12 a和15 a的周期. 在时间转折上,各项极端降水指数均未发生气候突变.  相似文献   

18.
Acknowledgement of Reviewers   总被引:2,自引:0,他引:2  
Variations in frequency and intensity of extreme events have substantial impact on water resources and environment, which in turn are reflected on agriculture, society, and economy. We assessed spatiotemporal changes in pattern of daily precipitation to identify drought- and flood-prone areas of Iran. To do this, we generated gridded daily precipitation for the period of 1962–2013 over Iran using measured daily precipitation and the Kriging approach. We applied 11 precipitation indices that were stated by the Expert Team on Climate Change Detection and Indices (ETCCDI) to identify significant changes in frequency and intensity of extreme precipitation events. According to significant changes of these 11 precipitation indices, drought- and flood-prone areas of Iran were, then, detected. We observed significant changes in pattern of daily precipitation over more than half of the country. 40% of the country, which were located in the elevated regions of Iran, particularly along Zagros Mountain, was identified as flood-prone areas. As a result, in these regions, there is a need for flood risk management based on changes in stormwater events such as runoff generated from rain on snow and snowmelt events. In addition, we detected drought-prone areas in large portion of the northwest of Iran and in the low elevated regions of the country that have semiarid or arid climate. This suggests that it is necessary to prepare a long-term drought plan to mitigate impacts of severe drought events.  相似文献   

19.
Rainfall is one of the pivotal climatic variables, which influence spatio-temporal patterns of water availability. In this study, we have attempted to understand the interannual long-term trend analysis of the daily rainfall events of ≥?2.5 mm and rainfall events of extreme threshold, over the Western Ghats and coastal region of Karnataka. High spatial resolution (0.25°?×?0.25°) daily gridded rainfall data set of Indian Meteorological Department was used for this study. Thirty-eight grid points in the study area was selected to analyze the daily precipitation for 113 years (1901–2013). Grid points were divided into two zones: low land (exposed to the sea and low elevated area/coastal region) and high land (interior from the sea and high elevated area/Western Ghats). The indices were selected from the list of climate change indices recommended by ETCCDI and are based on annual rainfall total (RR), yearly 1-day maximum rainfall, consecutive wet days (≥?2.5 mm), Simple Daily Intensity Index (SDII), annual frequency of very heavy rainfall (≥?100 mm), frequency of very heavy rainfall (≥?65–100 mm), moderate rainfall (≥?2.5–65 mm), frequency of medium rainfall (≥?40–65 mm), and frequency of low rainfall (≥?20–40 mm). Mann-Kendall test was applied to the nine rainfall indices, and Theil-Sen estimator perceived the nature and the magnitude of slope in rainfall indices. The results show contrasting trends in the extreme rainfall indices in low land and high land regions. The changes in daily rainfall events in the low land region primarily indicate statistically significant positive trends in the annual total rainfall, yearly 1-day maximum rainfall, SDII, frequency of very heavy rainfall, and heavy rainfall as well as medium rainfall events. Furthermore, the overall annual rainfall strongly correlated with all the rainfall indices in both regions, especially with indices that represent heavy rainfall events which is responsible for the total increase of rainfall.  相似文献   

20.
北大西洋涛动对青藏高原夏季降水的影响   总被引:4,自引:2,他引:2  
刘焕才  段克勤 《冰川冻土》2012,34(2):311-318
利用青藏高原中东部1961-2004年60个气象台站夏季(6-8月)降水资料,通过旋转经验正交函数分解发现青藏高原夏季降水存在南北反向变化的空间模态,分析表明这种变化模态与北大西洋涛动(NAO)密切相关.利用NCEP/NCAR再分析资料进行环流场分析,探讨了NAO对青藏高原这种降水空间变化模态的影响机制.结果表明:强NAO年份时,高原北部水汽输送通量强度增强,水汽辐合增强,而高原南部水汽输送通量强度减弱,此时高原切变线位置明显偏北,正是在这种水汽输送和环流形式配置下使得高原北部降水偏多而高原南部降水偏少;在弱NAO年份,上述情况基本相反.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号