首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50–90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.  相似文献   

2.
屋顶雨水回灌裂隙岩溶含水层连通示踪试验   总被引:1,自引:0,他引:1  
雨水回灌后对岩溶水的影响分析和效果需要对回灌井和下游的观测井监测数据说明。由于岩溶含水层中岩溶发育极不均匀,在测定地下水位并判定出地下水流向的基础上,连通示踪试验是选择与回灌井相对应的观测井的有效办法。用氯化钠作为示踪剂,监测不同测井不同埋深地下水电导率随时间变化的方法确定了岩溶水观测井选址、岩溶含水层的结构及水文地质条件。示踪试验结果表明,3#观测井(西院井)可用来监测雨水回灌效果,并计算出该地区的地下水势流速在9 m/h~20 m/h之间。该成果对北方地区岩溶含水层回灌和环境评价具有重要的参考价值。  相似文献   

3.
Amidst changing climates, understanding the world’s water resources is of increasing importance. In Ontario, Canada, low water conditions are currently assessed using only precipitation and watershed-based stream gauges by the Conservation Authorities in Ontario and the Ministry of Natural Resources and Forestry. Regional groundwater-storage changes in Ontario are not currently measured using satellite data by research institutes. In this study, contributions from the Gravity Recovery and Climate Experiment (GRACE) data are compared to a hydrogeological database covering southern Ontario from 2003 to 2013, to determine the suitability of GRACE total water storage estimates for monitoring groundwater storage in this location. Terrestrial water storage data from GRACE were used to determine monthly groundwater storage (GWS) anomaly values. GWS values were also determined by multiplying groundwater-level elevations (from the Provincial Groundwater Monitoring Network wells) by specific yield. Comparisons of GRACE-derived GWS to well-based GWS data determined that GRACE is sufficiently sensitive to obtain a meaningful signal in southern Ontario. Results show that GWS values produced by GRACE are useful for identifying regional changes in groundwater storage in areas with limited available hydrogeological characterization data. Results also indicate that GRACE may have an ability to forecast changes in groundwater storage, which will become useful when monitoring climate shifts in the near future.  相似文献   

4.
南皮县淡水资源严重短缺,制约工农业与经济社会的发展.春季开采浅层地下水包括微咸水和半咸水抗旱灌溉,腾出地下含水层空间;汛期增加降雨入渗,减少径流流失,防渍防涝,把时空分布不均的天然降雨转化为地下水资源;秋冬利用河道沟渠引蓄河水补源,淡化地下水质,增加地下水可采量.地上水地下水联合运用,保持水资源采补平衡.实现旱涝碱咸综合治理、水资源可持续利用与经济社会可持续发展.  相似文献   

5.
Terrestrial water storage (TWS), a sum total of water stored on or beneath the earth’s surface, transits in response to hydroclimatic processes such as precipitation, evapo-transpiration, runoff etc. and serves an indicator of hydrological condition of a region. We analyse spatio-temporal variance of water storage in Krishna Basin, India, derived from in-situ groundwater data and Gravity Recovery and Climate Experiment (GRACE) satellite data in order to determine physical causes of variations, and compare the variance with climatic factors such as Cumulative Rainfall Departure (CRD) and drought index i.e. Standardized Precipitation Index (SPI). GRACE satellite based TWS is found to reflect insitu groundwater changes and also shows a relationship with drought patterns as indicated by a good correlation with SPI. The largest part of TWS represents seasonal flux, and at an interannual scale, TWS depicts spatio-temporal variability in response to drought index viz. SPI. We infer that the groundwater storage derived from GRACE time-variable gravity solutions can be utilised to complement in-situ observations at basin scale and it reflects climatic forcing quite well.  相似文献   

6.
岩溶湿地是西南岩溶生态系统的重要调节器,对该地区的可持续发展有重要意义,而水循环作为维系岩溶湿地健康运转的核心因素,已经成为当前的研究热点。2020年4月15日—5月30日野外监测了桂林会仙湿地狮子岩地下河系统参数,采用水文动态分析与水均衡等方法,开展了地下河系统水循环研究。结果表明:(1)地表径流、土壤水、表层岩溶带...  相似文献   

7.

Particularly in arid and semiarid areas, more and more populations rely almost entirely on imported water. However, the extent to which intentional discharge into transiting river systems and unintentional leakage may be augmenting water resources for communities along and down gradient of the water transfer scheme has not previously been subject to research. The objective of this study was to assess both the potential of a large-scale water transfer (WT) scheme to increase groundwater availability by channel transmission losses in a large dryland aquifer system (2,166 km²) in Brazil, and the capability of the receiving streams to transport water downstream under a prolonged drought. An integrated surface-water/groundwater model was developed to improve the estimation of the groundwater resources, considering the spatio-temporal variability of infiltrated rainfall for aquifer recharge. Aquifer recharge from the WT scheme was simulated under prolonged drought conditions, applying an uncertainty analysis of the most influential fluxes and parameters. The annual recharge (66 mm/year) was approximately twice the amount of water abstracted (1990–2016); however, the annual recharge dropped to 13.9 mm/year from 2012 to 2016, a drought period. Under similar drought conditions, the additional recharge (6.89 × 106 m³/year) from the WT scheme did not compensate for the decrease in groundwater head in areas that do not surround the receiving streams. Actually, the additional recharge is counteracted by a decrease of 25% of natural groundwater recharge or an increase of 50% in pumping rate; therefore, WT transmission losses alone would not solve the issue of the unsustainable management of groundwater resources.

  相似文献   

8.
Groundwater accounts for about half of the water use for irrigation in India.The fluctuation pattern of the groundwater level is examined by observing rainfall replenishment and monitoring wells.The southern part of Rajasthan has experienced abrupt changes in rainfall and has been highly dependent on groundwater over decades.This study presents the impact of over-dependence on groundwater usage for irrigation and other purposes,spatially and temporally.Hence,the objective of this study is to examine the groundwater level trend by using statistical analysis and geospatial technique.Rainfall factor was also studied in groundwater level fluctuation during 2009-2019.To analyze the influence of each well during recharge or withdrawal of groundwater,thiessien polygonswere generated from them.In the Jakham River basin,75 wells have been identified for water level trend study using the Mann-Kendall statistical test.The statistics of trend analysis show that 15%wells are experiencing water level decline in pre-monsoon,while very low percentage of wells have such trend during post-monsoon season.The average rate of water level decline is 0.245 m/a in pre-monsoon and 0.05 m/a in post-monsoon.The aquifer recharge potential is also decreasing by year.it is expected that such type of studies will help the policy makers to adopt advanced management practices to ensure sustainable groundwater resource management.  相似文献   

9.
The data acquired by Gravity Recovery and Climate Experiment (GRACE) satellite provides a new way for monitoring groundwater storage changes in China. It is vital to understand its applications in China. This paper systematically reviewed the research progress of groundwater storage monitoring in China based on GRACE data. First, we used the bibliometric analysis and quantitative analysis to clarify trends and characteristics of related studies. Then, we elaborated on the basic principles, methods and uncertainties of groundwater monitoring based on GRACE data. Furthermore, we reviewed the research progress from the aspects of spatial range, accuracies and findings. It was found that the groundwater storage monitoring in China based on GRACE data has gradually received more attention, and the numbers of relevant publications and total citations in both Chinese and English showed an increasing trend. The methods mainly include the principle of water balance and calibration of hydrological models using GRACE satellite data. Most of the relevant studies focused on the North China Plain. The monitoring results are in good agreement with the measured groundwater data, and their correlation coefficients are higher than 0.6. We suggested that the challenges such as low spatial resolution of GRACE data and the uncertainties in monitoring should be considered. In the future, global positioning system, interferometric synthetic aperture radar and groundwater level observation data can be integrated to improve the reliability of groundwater storage monitoring in China.  相似文献   

10.
昆明翠湖九龙池泉群断流原因及恢复措施   总被引:2,自引:2,他引:0  
九龙池岩溶水系统分布于昆明盆地北部,岩溶含水层由蛇山裸露岩溶山区延伸至盆地底部松散土层覆盖区,在翠湖一带因上覆松散盖层薄,下游存在碎屑岩地层阻水,使地下水位壅高呈股状溢出地表,形成九龙池泉群。九龙池泉群是翠湖的源泉,也是滇池水源之一。九龙池泉群的断流,反映出滇池水环境的急剧变化。通过20世纪60年代以来地下水观测资料的分析研究,结合钻井开采地下水、工程开挖疏排地下水、地下水补给山区石漠化演化等对比评价,得出不合理的人类开发建设活动是导致九龙池泉群断流的主要原因。封停开采井、人防工程封闭止水、调水入滇池等直接或间接的措施,已经取得了明显的效果,使泉群周围地区地下水位呈现持续上升的态势。   相似文献   

11.
We have jointly analysed space gravimetry data from the GRACE space mission, satellite altimetry data and precipitation over the East African Great Lakes region, in order to study the spatiotemporal variability of hydrological parameters (total water storage, lake water volume and rainfall). We find that terrestrial water storage (TWS) from GRACE and precipitation display a common mode of variability at interannual time scale, with a minimum in late 2005, followed by a rise in 2006–2007. We argue that this event is due to forcing by the strong 2006 Indian Ocean Dipole (IOD) on East African rainfall. We also show that GRACE TWS is linked to the El Niño-Southern Oscillation cycle. Combination of the altimetry-based lake water volume with TWS from GRACE over the lakes drainage basins allows estimating soil moisture and groundwater volume variations. Comparison with the WGHM hydrological model outputs is performed and discussed.  相似文献   

12.
Most studies using GRACE (Gravity Recovery and Climate Experiment) data for examining water storage anomalies have rich hydrogeological databases. Here, GRACE data are analyzed for southern Mali, Africa, a region with sparse hydrogeological data. GRACE data (2002?C2008) did not overlap with observed groundwater-level data (1982?C2002). Terrestrial water storage from GRACE was corrected for soil moisture using the Global Land Data Assimilation System (GLDAS) model to obtain monthly groundwater storage anomalies and annual net recharge. Historical storage anomalies and net recharge were determined using the water-table fluctuation method for available observation wells. Average annual net recharge averaged 149.1?mm (or 16.4% of annual rainfall) and 149.7?mm (14.8%) from historical water level and GRACE data, respectively. Monthly storage anomaly lows and peaks were observed in May and September, respectively, but have a shift in peak to November using the corrected GRACE data, suggesting that the GLDAS model may poorly predict the timing of soil-water storage in this region. Notwithstanding problems with the GLDAS model, the soil moisture-corrected GRACE data accurately predict the relative timing and magnitude of groundwater-storage changes, suggesting that GRACE data are valuable for identifying long-term regional changes in groundwater storage in areas with sparse hydrogeological data.  相似文献   

13.
依据乾安县2006至2016年地下水位动态监测资料,分别选择潜水观测井和承压水观测井进行研究,总结出研究区潜水地下水位动态变化特征为降雨渗入-径流-蒸发型,承压水地下水位动态变化特征为越流-径流型、径流-开采型和开采型。潜水地下水位动态变化受气象等自然因素影响明显,承压水地下水位动态变化受开采人为因素影响明显。近十年来,研究区地下水位呈现整体下降,特别是在集中开采区,地下水位降幅最大。研究结果可为地下水资源合理开发利用提供科学依据。  相似文献   

14.
袁忠玉  彭淑惠 《中国岩溶》2013,32(3):313-317
茨坝-岗头村富水块段位于蛇山断裂东侧盘龙江谷地,东以黑龙潭东支断裂、玄武岩为隔水边界,南以陡坡寺组泥质粉砂岩为隔水边界,面积16.07 km2。富水块段岩溶含水层主要以二叠系和石炭系的灰岩、白云岩为主,埋深2.5~173.92 m。块段内岩溶地下水由北向南,由西向东径流,于山前缓坡边缘以泉排泄,部分向深部径流,形成承压区。为弄清近年富水块段岩溶地下水位持续下降的原因,在查明富水块段水文地质条件的基础上,对比分析了该富水块段近3年(2009—2011年)降雨量与多年平均降雨量及其地下水补给、开采减少量和地下水位的变幅。结果表明,降雨量偏少是导致地下水补给量减少,进而造成茨坝-岗头村富水块段在关闭部分开采井及减少开采量后,地下水位仍然持续下降的主要原因。   相似文献   

15.
利用GRACE重力卫星数据反演黑河流域地下水变化   总被引:9,自引:0,他引:9  
干旱区地表水资源有限, 地下水资源被超采利用, 黑河流域是西北干旱区典型内陆河流域, 有同样的地下水资源利用问题. 然而由于监测地下水变化的测井数目有限且分布不均, 难以从流域尺度上把握地下水资源的时空变化. 利用GRACE重力测量卫星数据反演黑河流域2003-2008年间的地下水时空变化, 为合理分配利用水资源提供科学依据, 为掌握无资料区域地下水水资源及其变化趋势提供了计算方法. 为验证GRACE反演结果的可靠性, 首先将计算出的黑河中上游地下水的变化, 与该区域实测地下水变化数据进行对比分析, 结果显示二者之间相关性较好, 在一定程度上表明GRACE数据具备反演整个黑河流域水储量变化及其各个组分的能力. 此后, 利用GRACE数据反演了全黑河流域的地下水变化, 对其时空变化进行了分析和讨论. 结果表明: 黑河流域2003-2004年间地下水减少的幅度越来越少, 2005年夏季期间地下水资源量增加量最多, 自此地下水增加幅度逐渐减少, 至2008年趋于平衡. 空间上流域局部变化波动较大, 2003-2004年间黑河上游地下水资源量处于减少状态, 2005年相对于6 a地下水平均含量有轻微增加趋势, 2006年处于6 a平均值状态, 2007-2008年有稍微上升趋势; 中游在2005年有略微的上升, 之后3 a下降; 下游地下水含量在6 a中整体呈上升趋势.  相似文献   

16.
17.
Data on spatiotemporal variations in groundwater levels are crucial for understanding arsenic (As) behavior and dynamics in groundwater systems. Little is known about the influences of groundwater extraction on the transport and mobilization of As in the Hetao Basin, Inner Mongolia (China), so groundwater levels were recorded in five monitoring wells from 2011 to 2016 and in 57 irrigation wells and two multilevel wells in 2016. Results showed that groundwater level in the groundwater irrigation area had two troughs each year, induced by extensive groundwater extraction, while groundwater levels in the river-diverted (Yellow River) water irrigation area had two peaks each year, resulting from surface-water irrigation. From 2011 to 2016, groundwater levels in the groundwater irrigation area presented a decreasing trend due to the overextraction. Groundwater samples were taken for geochemical analysis each year in July from 2011 to 2016. Increasing trends were observed in groundwater total dissolved solids (TDS) and As. Owing to the reverse groundwater flow direction, the Shahai Lake acts as a new groundwater recharge source. Lake water had flushed the near-surface sediments, which contain abundant soluble components, and increased groundwater salinity. In addition, groundwater extraction induced strong downward hydraulic gradients, which led to leakage recharge from shallow high-TDS groundwater to the deep semiconfined aquifer. The most plausible explanation for similar variations among As, Fe(II) and total organic carbon (TOC) concentrations is the expected dissimilatory reduction of Fe(III) oxyhydroxides.  相似文献   

18.
The determination of space–time variation in groundwater accumulation in Colombia’s Eastern Llanos foreland basin from 2003 to 2014 was done using terrestrial water storage (TWS) anomalies identified in two versions of the Gravity Recovery and Climate Experiment (GRACE) data—from the Global Data Center for Space Research (CSR) at the University of Texas at Austin (USA) and from the Institute of Geodesy at the Graz University of Technology (ITSG, Austria)—and also soil moisture storage (SMS) data from the Global Land Data Assimilation System (GLDAS). These data were compared to changes in groundwater storage obtained using the water-budget equation, calculated based on recorded data from hydrometeorological stations. This study confirmed the viability of using satellite information to understand and monitor temporal variation in groundwater recharge in the study area. Temporal variations in TWS, SMS, and groundwater level were shown to correspond to regional rain and drought periods, which are sensitive to climate phenomena such as El Niño and La Niña. Comparing changes in TWS and groundwater level to changes in infiltration and recharge revealed correlation coefficients of 0.56 and 0.98 with CSR data and 0.71 and 0.86 with ITSG data, respectively.  相似文献   

19.
刘元章  武强  邢立亭  林沛  韩征  雷坤超 《水文》2013,33(6):42-46
通过对北京市平原区600余眼监测井水位动态资料的分析,2012年北京"7·21"特大暴雨后水位有明显响应的监测井仅有34处,约占总数的6%左右,比例较低,同时范围较为集中,且基本全为较浅的潜水井。反映出本次大暴雨对本区地下水位的直接影响总体程度不深。通过对这些监测点的分布规律加以分析,它们主要集中分布在各大河的上游河道沿线区域,地层渗透性较好。并认为发生大面积的漫水,即来水量较大是使得地下水位响应明显的另一重要条件。并对单次降水对水位影响较小的原因进行了分析,认为主要是由于粘土类地层的阻隔、地表人为硬化及地层的沉积压实,尤其是差异性压实,都会影响流场的畅通性,阻碍地下水的垂向入渗及水平方向的补给,从而会导致降水对地下水位的影响程度被大大减弱。  相似文献   

20.
Management of groundwater resources can be improved by using groundwater models to perform risk analyses and to improve development strategies, but a lack of extensive basic data often limits the implementation of sophisticated models. Dar es Salaam in Tanzania is an example of a city where increasing groundwater use in a Pleistocene aquifer is causing groundwater-related problems such as saline intrusion along the coastline, lowering of water-table levels, and contamination of pumping wells. The lack of a water-level monitoring network introduces a problem for basic data collection and model calibration and validation. As a replacement, local water-supply wells were used for measuring groundwater depth, and well-top heights were estimated from a regional digital elevation model to recalculate water depths to hydraulic heads. These were used to draw a regional piezometric map. Hydraulic parameters were estimated from short-time pumping tests in the local wells, but variation in hydraulic conductivity was attributed to uncertainty in well characteristics (information often unavailable) and not to aquifer heterogeneity. A MODFLOW model was calibrated with a homogeneous hydraulic conductivity field and a sensitivity analysis between the conductivity and aquifer recharge showed that average annual recharge will likely be in the range 80–100 mm/year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号