首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
We have jointly analysed space gravimetry data from the GRACE space mission, satellite altimetry data and precipitation over the East African Great Lakes region, in order to study the spatiotemporal variability of hydrological parameters (total water storage, lake water volume and rainfall). We find that terrestrial water storage (TWS) from GRACE and precipitation display a common mode of variability at interannual time scale, with a minimum in late 2005, followed by a rise in 2006–2007. We argue that this event is due to forcing by the strong 2006 Indian Ocean Dipole (IOD) on East African rainfall. We also show that GRACE TWS is linked to the El Niño-Southern Oscillation cycle. Combination of the altimetry-based lake water volume with TWS from GRACE over the lakes drainage basins allows estimating soil moisture and groundwater volume variations. Comparison with the WGHM hydrological model outputs is performed and discussed.  相似文献   

2.
Based on satellite observations of Earth’s time variable gravity field from the Gravity Recovery and Climate Experiment (GRACE), it is possible to derive variations in terrestrial water storage, which includes groundwater, soil moisture, and snow. Given auxiliary information on the latter two, one can estimate groundwater storage variations. GRACE may be the only hope for groundwater depletion assessments in data-poor regions of the world. In this study, soil moisture and snow were simulated by the Global Land Data Assimilation System (GLDAS) and used to isolate groundwater storage anomalies from GRACE water storage data for the Mississippi River basin and its four major sub-basins. Results were evaluated using water level records from 58 wells set in the unconfined aquifers of the basin. Uncertainty in the technique was also assessed. The GRACE-GLDAS estimates compared favorably with the well based time series for the Mississippi River basin and the two sub-basins that are larger than 900,000 km2. The technique performed poorly for the two sub-basins that have areas of approximately 500,000 km2. Continuing enhancement of the GRACE processing methods is likely to improve the skill of the technique in the future, while also increasing the temporal resolution.  相似文献   

3.
In recent years, drought has become a global issue, especially in arid and semi-arid areas. It is without doubt that the identification and monitoring of the drought phenomenon can help to reduce the damages that would occur. In addition, rain is one of the factors which directly affect the water levels of underground water reservoirs. This research applied a linear gradient regression method developed on the basis of GRACE, CHIRPS, and data from monitoring wells to investigate the groundwater storage changes.These data have been analyzed on the Google Earth Engine platform. In order to conduct temporal and spatial analyses, the water levels of the aquifer were generated from the monitoring wells and zoned into five classes. Also, the amount of water storage and rain from the year 2003 to 2017 in the West Azerbaijan Province were investigated using the GRACE satellite and the CHIRPS data, respectively. The results obtained from the GRACE satellite data show that the average water level in the underground reservoirs in Iran had started to decrease since 2008 and reached its peak in 2016 with an average decrease of 16 cm in that year. The average annual decline of groundwater level in the studied time period was 5 cm. A chart developed from the CHIRPS annual rainfall data indicates that the biggest decline in rainfall occurred in 2008, and the declining trend has remained steady. Linear analyses were made on GRACE with CHIRPS results and monitoring wells data separately, from which the correlation coefficients are between 86% and 97%, showing generally high correlations. Furthermore, the results obtained from the zoning of the aquifer showed that in the period of 2004 to 2016, due to the decrease in rainfall and the excessive withdrawal of groundwater, the water levels also decreased.  相似文献   

4.
The data acquired by Gravity Recovery and Climate Experiment (GRACE) satellite provides a new way for monitoring groundwater storage changes in China. It is vital to understand its applications in China. This paper systematically reviewed the research progress of groundwater storage monitoring in China based on GRACE data. First, we used the bibliometric analysis and quantitative analysis to clarify trends and characteristics of related studies. Then, we elaborated on the basic principles, methods and uncertainties of groundwater monitoring based on GRACE data. Furthermore, we reviewed the research progress from the aspects of spatial range, accuracies and findings. It was found that the groundwater storage monitoring in China based on GRACE data has gradually received more attention, and the numbers of relevant publications and total citations in both Chinese and English showed an increasing trend. The methods mainly include the principle of water balance and calibration of hydrological models using GRACE satellite data. Most of the relevant studies focused on the North China Plain. The monitoring results are in good agreement with the measured groundwater data, and their correlation coefficients are higher than 0.6. We suggested that the challenges such as low spatial resolution of GRACE data and the uncertainties in monitoring should be considered. In the future, global positioning system, interferometric synthetic aperture radar and groundwater level observation data can be integrated to improve the reliability of groundwater storage monitoring in China.  相似文献   

5.
Gravity Recovery and Climate Experiment (GRACE) level two (L2) data is used in estimating the groundwater storage changes (GWSC) in the Nubian Sandstone Aquifer System (NSAS). This set of data consists of spherical harmonics coefficients with specific degree and order. The GRACE data is de-correlated using a sixth degree polynomial in order to reduce the effect of the noise error resulting from the correlation between the spherical harmonics coefficients with the same degree parity. The GRACE estimates of GWSC are smoothed using Gaussian filter with half width of 1000 km. This half width is chosen in order to maximize the correlation between the GRACE estimates of GWSC and previous modeling results of the NSAS. The loss in groundwater storage occurring in each of the four countries sharing the NSAS is calculated to assess the sustainability of using the NSAS as a water resource in each country. The overarching finding in this study is that NSAS is losing its groundwater storage at a very high rate. Also, it is found that Egypt is the fastest in losing its groundwater storage from the NSAS. This loss of groundwater storage in Egypt may not necessarily be resulting from in-country extractions because of the trans-boundary nature of this aquifer. The GRACE-based estimates are found to be close to available data and previous modeling results of the NSAS.  相似文献   

6.
The Middle East and North Africa (MENA) region is the world’s most water-stressed region, with its countries constituting 12 of the 15 most water-stressed countries globally. Because of data paucity, comprehensive regional-scale assessments of groundwater resources in the MENA region have been lacking. The presented study addresses this issue by using a distributed ArcGIS model, parametrized with gridded data sets, to estimate groundwater storage reserves in the region based on generated aquifer saturated thickness and effective porosity estimates. Furthermore, monthly gravimetric datasets (GRACE) and land surface parameters (GLDAS) were used to quantify changes in groundwater storage between 2003 and 2014. Total groundwater reserves in the region were estimated at 1.28 × 106 cubic kilometers (km3) with an uncertainty range between 816,000 and 1.93 × 106 km3. Most of the reserves are located within large sedimentary basins in North Africa and the Arabian Peninsula, with Algeria, Libya, Egypt, and Saudi Arabia accounting for approximately 75% of the region’s total freshwater reserves. Alternatively, small groundwater reserves were found in fractured Precambrian basement exposures. As for groundwater changes between 2003 and 2014, all MENA countries except for Morocco exhibited declines in groundwater storage. However, given the region’s large groundwater reserves, groundwater changes between 2003 and 2014 are minimal and represent no immediate short-term threat to the MENA region, with some exceptions. Notwithstanding this, the study recommends the development of sustainable and efficient groundwater management policies to optimally utilize the region’s groundwater resources, especially in the face of climate change, demographic expansion, and socio-economic development.  相似文献   

7.
Amidst changing climates, understanding the world’s water resources is of increasing importance. In Ontario, Canada, low water conditions are currently assessed using only precipitation and watershed-based stream gauges by the Conservation Authorities in Ontario and the Ministry of Natural Resources and Forestry. Regional groundwater-storage changes in Ontario are not currently measured using satellite data by research institutes. In this study, contributions from the Gravity Recovery and Climate Experiment (GRACE) data are compared to a hydrogeological database covering southern Ontario from 2003 to 2013, to determine the suitability of GRACE total water storage estimates for monitoring groundwater storage in this location. Terrestrial water storage data from GRACE were used to determine monthly groundwater storage (GWS) anomaly values. GWS values were also determined by multiplying groundwater-level elevations (from the Provincial Groundwater Monitoring Network wells) by specific yield. Comparisons of GRACE-derived GWS to well-based GWS data determined that GRACE is sufficiently sensitive to obtain a meaningful signal in southern Ontario. Results show that GWS values produced by GRACE are useful for identifying regional changes in groundwater storage in areas with limited available hydrogeological characterization data. Results also indicate that GRACE may have an ability to forecast changes in groundwater storage, which will become useful when monitoring climate shifts in the near future.  相似文献   

8.
Potential pathways in the subsurface may allow upwardly migrating gaseous CO2 from deep geological storage formations to be released into near surface aquifers. Consequently, the availability of adequate methods for monitoring potential CO2 releases in both deep geological formations and the shallow subsurface is a prerequisite for the deployment of Carbon Capture and Storage technology. Geoelectrical surveys are carried out for monitoring a small-scale and temporally limited CO2 injection experiment in a pristine shallow aquifer system. Additionally, the feasibility of multiphase modeling was tested in order to describe both complex non-linear multiphase flow processes and the electrical behavior of partially saturated heterogeneous porous media. The suitability of geoelectrical methods for monitoring injected CO2 and geochemically altered groundwater was proven. At the test site, geoelectrical measurements reveal significant variations in electrical conductivity in the order of 15?C30?%. However, site-specific conditions (e.g., geological settings, groundwater composition) significantly influence variations in subsurface electrical conductivity and consequently, the feasibility of geoelectrical monitoring. The monitoring results provided initial information concerning gaseous CO2 migration and accumulation processes. Geoelectrical monitoring, in combination with multiphase modeling, was identified as a useful tool for understanding gas phase migration and mass transfer processes that occur due to CO2 intrusions in shallow aquifer systems.  相似文献   

9.
Wu  Peipeng  Shu  Longcang  Comte  Jean-Christophe  Zuo  Qiting  Wang  Mei  Li  Fulin  Chen  Huawei 《Hydrogeology Journal》2021,29(6):2107-2125

Understanding the role of geological heterogeneity on the performance of managed aquifer recharge (MAR) in terms of effective groundwater storage is crucial to design MAR systems. Natural aquifers are affected by a variety of geologic strata and structures at different scales, which are responsible for wide ranging hydraulic properties. This study combines physical experiments and numerical modeling to investigate the effect of geologic structures commonly encountered in sedimentary environments, on MAR-induced groundwater flow patterns using injection wells. Models were conceptualized and parametrized based on the hydrogeological conditions of Tailan River basin in arid NW China, which hosts a typical, structurally complex, alluvial-fan aquifer system affected by sediment layering, clay lenses and anticline barriers, and is extensively studied for the strategic potential of MAR in addressing water shortages in the region. Results showed that, compared to a homogeneous scenario, high-permeability aquifer layers shortened groundwater ages, decreased the thickness of the artificially recharged water lenses (ARWLs), and shifted the stagnation points downstream. Clay lenses increased groundwater residence times but had little effect on spatial flow patterns due to their elongation parallel-to-flow direction. Overall groundwater ages, as well as the thickness of ARWLs created through injection on the upstream side of an anticline, increased, and this to a larger extent than through injection on the downstream side, which did not increase significantly compared to the homogeneous scenario. Results provide insights for MAR optimization in naturally heterogeneous aquifer systems, along with a benchmark tool for application to a wide range of typical geological conditions.

  相似文献   

10.
Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.  相似文献   

11.
The applicability of the Gravity Recovery and Climate Experiment (GRACE) to adequately represent broad-scale patterns of groundwater storage (GWS) variations and observed trends in groundwater-monitoring well levels (GWWL) is examined in the Canadian province of Alberta. GWS variations are derived over Alberta for the period 2002–2014 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models. Twelve mean monthly GWS variation maps are generated from the 139 monthly GWS variation grids to characterize the annual GWS variation pattern. These maps show that, overall, GWS increases from February to June, and decreases from July to October, and slightly increases from November to December. For 2002–2014, the GWS showed a positive trend which increases from west to east with a mean value of 12 mm/year over the province. The resulting GWS variations are validated using GWWLs in the province. For the purpose of validation, a GRACE total water storage (TWS)-based correlation criterion is introduced to identify groundwater wells which adequately represent the regional GWS variations. GWWLs at 36 wells were found to correlate with both the GRACE TWS and GWS variations. A factor f is defined to up-scale the GWWL variations at the identified wells to the GRACE-scale GWS variations. It is concluded that the GWS variations can be mapped by GRACE and the GLDAS models in some situations, thus demonstrating the conditions where GWS variations can be detected by GRACE in Alberta.  相似文献   

12.
Despite advanced development in computational techniques, the issue of how to adequately calibrate and minimize misfit between system properties and corresponding measurements remains a challenging task in groundwater modeling. Two important features of the groundwater regime, hydraulic conductivity (k) and specific yield (S y), that control aquifer dynamic vary spatially within an aquifer system due to geologic heterogeneity. This paper provides the first attempt in using an advanced swarm-intelligence-based optimization algorithm (cuckoo optimization algorithm, COA) coupled with a distributed hydrogeology model (i.e., MODFLOW) to calibrate aquifer hydrodynamic parameters (S y and k) over an arid groundwater system in east Iran. Our optimization approach was posed in a single-objective manner by the trade-off between sum of absolute error and the adherent swarm optimization approach. The COA optimization algorithm further yielded both hydraulic conductivity and specific yield parameters with high performance and the least error. Estimation of depth to water table revealed skillful prediction for a set of cells located at the middle of the aquifer system whereas showed unskillful prediction at the headwater due to frequent water storage changes at the inflow boundary. Groundwater depth reduced from east toward west and southwest parts of the aquifer because of extensive pumping activities that caused a smoothening influence on the shape of the simulated head curve. The results demonstrated a clear need to optimize arid aquifer parameters and to compute groundwater response across an arid region.  相似文献   

13.
Most studies using GRACE (Gravity Recovery and Climate Experiment) data for examining water storage anomalies have rich hydrogeological databases. Here, GRACE data are analyzed for southern Mali, Africa, a region with sparse hydrogeological data. GRACE data (2002?C2008) did not overlap with observed groundwater-level data (1982?C2002). Terrestrial water storage from GRACE was corrected for soil moisture using the Global Land Data Assimilation System (GLDAS) model to obtain monthly groundwater storage anomalies and annual net recharge. Historical storage anomalies and net recharge were determined using the water-table fluctuation method for available observation wells. Average annual net recharge averaged 149.1?mm (or 16.4% of annual rainfall) and 149.7?mm (14.8%) from historical water level and GRACE data, respectively. Monthly storage anomaly lows and peaks were observed in May and September, respectively, but have a shift in peak to November using the corrected GRACE data, suggesting that the GLDAS model may poorly predict the timing of soil-water storage in this region. Notwithstanding problems with the GLDAS model, the soil moisture-corrected GRACE data accurately predict the relative timing and magnitude of groundwater-storage changes, suggesting that GRACE data are valuable for identifying long-term regional changes in groundwater storage in areas with sparse hydrogeological data.  相似文献   

14.
Gravity Recovery and Climate Experiment (GRACE) derived groundwater storage (GWS) data are compared with in-situ groundwater levels from five groundwater basins in Jordan, using newly gridded GRACE GRCTellus land data. It is shown that (1) the time series for GRACE-derived GWS data and in-situ groundwater-level measurements can be correlated, with R 2 from 0.55 to 0.74, (2) the correlation can be widely ascribed to the seasonal and trend component, since the detrended and deseasonalized time series show no significant correlation for most cases, implying that anomalous signals that deviate from the trend or seasonal behaviour are overlaid by noise, (3) estimates for water losses in Jordan based on the trend of GRACE data from 2003 to 2013 could be up to four times higher than previously assumed using estimated recharge and abstraction rates, and (4) a significant time-lagged cross correlation of the monthly changes in GRACE-derived groundwater storage and precipitation data was found, suggesting that the conventional method for deriving GWS from GRACE data probably does not account for the typical conditions in the study basins. Furthermore, a new method for deriving plausible specific yields from GRACE data and groundwater levels is demonstrated.  相似文献   

15.
High arsenic levels in groundwater of the aquifers, belonging to the Pliocene terrestrial layers and Quaternary alluvial sediments, have become a significant problem for the inhabitants living in Sarkisla (Turkey). The main objective of this study was to determine the origin and arsenic contamination mechanisms of the Sarkisla drinking water aquifer systems. The highest arsenic concentrations were found in Pliocene layers and alluvial sediments with concentrations ranging from 2.1 to 155 mg/kg. These rocks are the main aquifers in the study area, and most of the drinking groundwater demand is met by these aquifers. Groundwater from the Pliocene aquifer is mainly Ca-HCO3 and Ca-SO4 water type with high EC values reaching up to 3,270 μS/cm, which is due to the sulfate dissolution in some parts of the alluvial aquifer. Stable isotope values showed that the groundwater was of meteoric origin. Tritium values for the groundwater were between 8.31 and 14.06 TU, representing a fast circulation in the aquifer. Arsenic concentrations in the aquifers were between 0.5 and 345 μg/L. The highest arsenic concentrations detected in the Pliocene aquifer system reached up to 345 μg/L with an average value of 60.38 μg/L. The arsenic concentrations of the wells were high, while the springs had lower arsenic concentrations. These springs are located in the upper parts of the study area where the rocks are less weathered. The hydrogeochemical properties demonstrated that the water–rock interaction processes in sulfide-bearing rocks were responsible for the remarkably high groundwater arsenic contamination in the study area. In the study area, the arsenic levels determined in groundwater exceeded the levels recommended by the WHO. Therefore, it is suggested that this water should not be used for drinking purposes and new water sources should be investigated.  相似文献   

16.
《Applied Geochemistry》2000,15(6):819-832
In this paper the groundwater in-situ generation of dissolved organic carbon (DOC) is discussed based on the origin of groundwaters, their physico-chemical and isotopic properties, chemical composition and the dissolved inorganic carbon (DIC) concentration and its 13C content. Three aquifer systems are investigated. Two of these have relatively well defined hydrological and geochemical conditions (Fuhrberg and Munich) and are used as reference systems. The third aquifer (Gorleben) is a complex system containing DOC concentrations up to 200 mg C/L in deep groundwaters. From this aquifer system 19 groundwaters from different hydrogeochemical conditions are analyzed. The in-situ generation of DOC is found to occur in conjunction with the microbiologically mediated mineralization of sedimentary organic carbon (SOC). Thereby, SO4 is reduced and phosphate is released into the groundwater. Where SO4 is depleted, the mineralization of SOC occurs via fermentation, resulting in CH4 generation.  相似文献   

17.
Patchy occurrences of elevated As are often encountered in groundwater from the shallow aquifers (<50 m) of the Bengal Delta Plain (BDP). A clear understanding of various biogeochemical processes, responsible for As mobilization, is very important to explain this patchy occurrence and thus to mitigate the problem. The present study deals with the periodical monitoring of groundwater quality of five nested piezometeric wells between December 2008 and July 2009 to investigate the temporal changes in groundwater chemistry vis-a-vis the prevalent redox processes in the aquifer. Geochemical modeling has been carried out to identify key phases present in groundwater. A correlation study among different aqueous redox parameters has also been performed to evaluate prevailing redox processes in the aquifer. The long term monitoring of hydrochemical parameters in the multilevel wells together with hydrogeochemical equilibrium modeling has shown more subtle differences in the geochemical environment of the aquifer, which control the occurrence of high dissolved As in BDP groundwater. The groundwater is generally of Ca-HCO3 type. The dissolved As concentration in groundwater exceeded both WHO and National drinking water standard (Bureau of Indian Standards; BIS, 10 μg L−1) throughout the sampling period. The speciation of As and Fe indicate persistent reducing conditions within the aquifer [As(III): 87-97% of AsT and Fe(II): 76-96% of FeT]. The concentration of major aqueous solutes is relatively high in the shallow aquifer (wells A and B) and gradually decreases with increasing depth in most cases. The calculation of SI indicates that groundwater in the shallow aquifer is also relatively more saturated with carbonate minerals. This suggests that carbonate mineral dissolution is possibly influencing the groundwater chemistry and thereby controlling the mobilization of As in the monitored shallow aquifer. Hydrogeochemical investigation further suggests that Fe and/or Mn oxyhydroxide reduction is the principal process of As release in groundwater from deeper screened piezometric wells. The positive correlations of U and V with As, Fe and Mn indicate redox processes responsible for mobilization of As in the deeper screened piezometric wells are possibly microbially mediated. Thus, the study advocates that mobilization of As is depth dependent and concentrations of As in groundwater depends on single/combined release mechanisms.  相似文献   

18.
地下水年龄结构是了解一个地区地下水资源开采可持续性的重要基础。穆兴平原地下水开采量增加以及地下水环境恶化,对该地区可持续发展有一定制约,为此在2016年采集CFCs样品31组和3H样品60组,估算了研究区地下水年龄。结果表明,穆兴平原北部地下水年龄为21年到大于65年,由西北部和穆棱河向平原中部及乌苏里江逐渐变老,更新性变差,主要受到大气降水和地表河水补给,但是由于地表覆盖一层黏性土,地下水中缺失小于10年的水;不同井深样品中二者及NO_3~-浓度的变化,表明在60 m以上地下水的防污性能较差,而在100 m以下则较好,饮用水源井深需超过100 m。  相似文献   

19.
The Grombalia aquifer (NE Tunisia) is an example of an important source of water supply for regional and national development, where the weak controls over abstraction, fertilizer application and waste disposal, coupled with limited knowledge of aquifer dynamics, is causing aquifer over-exploitation and water quality degradation. Assessing the key role of groundwater in water-resources security is therefore of paramount importance to support new actions to preserve water quality and quantity in the long-run. This study presents one of the first investigations targeted at a complete assessment of aquifer dynamics in the Grombalia aquifer. A multi-tracer hydrogeochemical and isotopic (δ2H, δ18O and 3H) approach was used to study the influence of seasonal variation on piezometric levels, chemical and isotopic compositions, and groundwater recharge. A total of 116 samples were collected from private wells and boreholes during three periods in a 1 year monitoring campaign (February–March 2014, September 2014 and February 2015). Results revealed the overall unsuitability of groundwater for drinking and irrigation purposes (NO3?>?50 mg/L in 51% of the wells; EC >1,000 μS/cm in 99% of the wells). Isotopic balance coupled to piezometric investigation indicated the contribution of the shallow aquifer to deep groundwater recharge. The study also revealed the weakness of ‘business as usual’ management practices, highlighting possible solutions to tackle water-related challenges in the Grombalia region, where climate change, population growth and intensive agricultural activities have generated a large gap between demand and available water reserves, hence becoming a possible driver for social insecurity.  相似文献   

20.
Geochemical detection of carbon dioxide in dilute aquifers   总被引:1,自引:0,他引:1  

Background  

Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号