首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes a new performance-based approach for evaluating the return period of seismic soil liquefaction based on standard penetration test (SPT) and cone penetration test (CPT) data. The conventional liquefaction evaluation methods consider a single acceleration level and magnitude and these approaches fail to take into account the uncertainty in earthquake loading. The seismic hazard analysis based on the probabilistic method clearly shows that a particular acceleration value is being contributed by different magnitudes with varying probability. In the new method presented in this article, the entire range of ground shaking and the entire range of earthquake magnitude are considered and the liquefaction return period is evaluated based on the SPT and CPT data. This article explains the performance-based methodology for the liquefaction analysis – starting from probabilistic seismic hazard analysis (PSHA) for the evaluation of seismic hazard and the performance-based method to evaluate the liquefaction return period. A case study has been done for Bangalore, India, based on SPT data and converted CPT values. The comparison of results obtained from both the methods have been presented. In an area of 220 km2 in Bangalore city, the site class was assessed based on large number of borehole data and 58 Multi-channel analysis of surface wave survey. Using the site class and peak acceleration at rock depth from PSHA, the peak ground acceleration at the ground surface was estimated using probabilistic approach. The liquefaction analysis was done based on 450 borehole data obtained in the study area. The results of CPT match well with the results obtained from similar analysis with SPT data.  相似文献   

2.
Soil liquefaction evaluation using shear wave velocity   总被引:1,自引:0,他引:1  
A reasonably good relationship between shear wave velocity (SWV) and standard penetration resistance (SPT) of granular soils in agreement with previous studies was obtained from field tests. A similar correlation between SWV and cone penetration resistance of granular soils was also obtained. Using Seed's Standard Penetration Test (SPT)-based soil liquefaction charts, new charts of soil liquefaction evaluation based on SWV data were developed for various magnitude earthquakes.  相似文献   

3.
胡明鉴  汪稔  孟庆山  刘观仕 《岩土力学》2006,27(9):1549-1553
砾石土因其级配宽、不均匀系数大、透水性强等特点在工程防渗中得到广泛的应用,其强度和力学性质受粗细粒含量和粒间咬合程度、黏接状态等影响。通过人工降雨原型试验、模型试验、室内试验及理论分析,研究松散砾石土斜坡在降雨作用下坡面土体的形态特征和土体性状的变化以及斜坡稳定性和该过程中可能出现的临界状态,探索坡面松散砾石土触变液化的过程和机理。试验结果表明,砾石土斜坡在降雨过程中,坡面土体形态、坡面径流泥沙含量具有阶段性特性;各典型现象土体含水量分布具有区段性;土体强度和斜坡稳定性随着土体含水量的增加均存在明显的临界特征。  相似文献   

4.
文章利用高分辨率激光粒度仪MS2000对我国典型地区5种沉积类型滑坡的滑带(面)土和滑坡细粒堆积物的粒度多组分分布特征进行了系统、深入研究,总结了不同沉积类型滑坡滑带(面)土与滑坡堆积物的粒度多组分分布特征及差异性,其对于认识滑坡的成因机制具有重要的理论和实践意义。研究认为:(1)不同沉积类型的滑坡滑带(面)土和滑坡堆积物的粒度一般含有4个组分,其分别为风成的细、中、粗粒组分和水成的悬浮组分; (2)不同地区不同沉积类型的滑坡其滑带(面)土粒度与滑坡堆积物的粒度多组分具有不同的分布特征; (3)同一地区滑坡的滑带(面)土与滑坡堆积物的粒度多组分分布特征有较大差异,主要受控于滑坡本身的形成演化过程。  相似文献   

5.
回顾了1994年美国Northridge地震、1995年日本阪神地震、1999年土耳其Kocaeli地震、1999年台湾集集地震、2008年中国汶川地震、2010年智利Maule地震、2010~2011新西兰Darfield地震及余震、2011年东日本地震中大量的、不同类型的液化实例调查与研究,发现这些地震的液化具有以下特点:(1)罕见的特大地震(Mw9.0)使远离震中300~400 km的新近人工填土发生严重的大规模液化;(2)特大地震(Ms8.0、Mw8.8)使远离震中的低烈度Ⅴ~Ⅵ度地区发生严重液化;(3)海岸、河岸附近地区的新近沉积冲积、湖积土,填筑时间不到50年的含细粒、砂砾人工填土,容易发生严重液化;(4)天然的砂砾土层液化发生严重液化;(5)发生了深达20 m的土层液化现象;(6)松散土层液化后可以恢复到震前状态并再次发生液化;(7)高细粒(粒径≤75 ?m)含量≥50%或高黏粒(粒径≤5 ?m)含量≥25%的低-中塑性土严重液化,对介于类砂土与类黏土之间的过渡性态土,有时地表未见液化现象;(8)液化土层的深度较深或厚度较小时,容易出现地面裂缝而无喷砂现象;有较厚的上覆非液化土层时,场地液化不一定伴随地表破坏。液化实例证明,第四系晚更新世Q3地层可以发生严重液化;黏粒含量不是评价细粒土液化可能性的一个可靠指标;低液限、高含水率的细粒土易发生液化,采用塑性指数PI、含水率wc与液限LL之比作为细粒土液化可能性评价的指标是适宜的。综合Boulanger和Idriss、Bray和Sincio、Seed和Cetin等的液化实例调查与室内试验研究成果,建议细粒土液化可能性的评价准则如下:PI <12且wc/LL>0.85的土为易液化土,12<PI≤20和/wc/LL≥0.80的土为可液化土;PI >20或wc/LL<0.80的土为不液化土。  相似文献   

6.
2008年汶川Mw7.9地震的强地面震动在龙门山前地区造成大量的砂土液化、喷砂冒水等地震灾害现象。震后野外调查发现,砂土液化点主要分布于地下水位只有几米深的山前河流的低阶地处,以大面积砾性土液化为特征,约58%的液化点位于距北川断层20~35km的范围内。对喷水高度及喷水过程进行了详细记录,喷水高度与峰值加速度并没有明显的相关性,喷水高度异常点(2m)集中于山前断裂系统近地表投影处。汶川地震中喷水高度异常、砾性土液化的位置与山前断裂系统的吻合性说明,沉积盆地内的地质构造可能在砂土液化强度和与震动相关的地震灾害方面起到促进作用,所以在类似的地质和水文环境中,除主震的断层错动外,应考虑地质构造在地震危险性评估和建筑物抗震设计中的重要作用。  相似文献   

7.
In a number of recent case studies, the liquefaction of silty sands has been reported. To investigate the undrained shear and deformation behaviour of Chlef sand–silt mixtures, a series of monotonic and stress-controlled cyclic triaxial tests were conducted on sand encountered at the site. The aim of this laboratory investigation is to study the influence of silt contents, expressed by means of the equivalent void ratio on undrained residual shear strength of loose, medium dense and dense sand–silt mixtures under monotonic loading and liquefaction potential under cyclic loading. After an earthquake event, the prediction of the post-liquefaction strength is becoming a challenging task in order to ensure the stability of different types of earth structures. Thus, the choice of the appropriate undrained residual shear strength of silty sandy soils that are prone to liquefaction to be used in engineering practice design should be established. To achieve this, a series of undrained triaxial tests were conducted on reconstituted saturated silty sand samples with different fines contents ranging from 0 to 40 %. In all tests, the confining pressure was held constant at 100 kPa. From the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not characterize the actual behaviour of the soil as well. The equivalent void ratio expressing the fine particles participation in soil strength is then introduced. A linear relationship between the undrained shear residual shear strength and the equivalent void ratio has been obtained for the studied range of the fines contents. Cyclic test results confirm that the increase in the equivalent void ratio and the fines content accelerates the liquefaction phenomenon for the studied stress ratio and the liquefaction resistance decreases with the increase in either the equivalent void ratio or the loading amplitude level. These cyclic tests results confirm the obtained monotonic tests results.  相似文献   

8.
In this study attempt has been made to understand in-situ void ratio in Indo-Gangetic basin (IGB) and to form empirical relations between void ratio and shear wave velocity (Vs), N values considering subsoil investigation data. Multichannel analysis of surface wave (MASW) test and standard penetration test was carried out along with soil property measured at 25 locations. The general soil profile varied from silty sand to clay of low compressibility, ground water level fluctuated between 1-27 m, depth of borehole varied from 20-40 m. Regression analysis was conducted on 202 data sets of void ratio and shear wave velocity, 293 data sets of void ratio and SPT- N value, which resulted in inverse correlations between void ratio and Vs, SPT N value. The datas were segregated into fine, coarse grained data based on engineering classification and relations were developed separately. Until now, no studies have related in-situ void ratio to Vs and SPT N. These correlations will be useful to predict void ratio for sites having measured values of Vs and N value. These void ratios can be further used to assess liquefaction susceptibility.  相似文献   

9.
刘启  张泽  张圣嵘  恽晴飞  付峻松 《冰川冻土》2022,44(6):1820-1832
Seasonally frozen soils are widely distributed in China in terms of area,and the freeze-thaw cycle effect generated by the alternation of cold and warmth is one of the causes of engineering damage in cold areas during construction,and it is particularly important to restore the nature and state of the soil when it is subjected to freeze-thaw action. Therefore,sandy soil specimens with different numbers of freeze-thaw cycles were prepared,and the long-term strength of frozen sandy soil was tested using a spherical template indenter. Using fractal theory and the microstructure image processing software ImageJ,the change law of grain group and long-term strength of two frozen sandy soils under different numbers of freeze-thaw cycles were studied. The results show that:for fine sand(FS),the fractal dimension DB has a highly significant positive correlation with the long-term strength variation,among which ≥0. 15~0. 20 mm and ≥0. 25~0. 40 mm have the best fit with the long-term strength,and are the dominant grain classes of FS. For medium sand(MS),the fractal dimension DB is slightly positively correlated with the long-term strength,and the variation shows a“vertical N”trend,in which the grain size content of ≥0. 30~0. 40 mm and ≥0. 40 mm fits better with the long-term strength,and is the dominant grain class for MS. The content of other grain groups did not correlate significantly with the long-term strength change. The freeze-thaw action changed the content ratios of coarse and fine grain agglomerates in the soil. With the increase of the overall particle size interval,the dominant particle size also increases,which shows that the long-term strength of frozen sandy soil tends to decrease and then increase with the increase of the content of some particle sizes. The results of the study can provide theoretical reference for the determination of long-term strength in areas subject to freeze-thaw action. © 2022 Science Press (China).  相似文献   

10.
The roughness, i.e. general shape and surface irregularity, of particulate soil is an important characteristic that affects the mass behavior of the soil. Characterization of roughness has typically been limited to visual comparison of particles to standard charts, although other more quantitative methods such as Fourier analysis have also been used. Particle size distribution is another important mass-behavioral characteristic of granular soils, and similar to roughness, is defined within limited boundaries. Fractal geometry can be applied to irregular or fragmented patterns such as roughness and grain size distribution to provide quantifying and unique numerical values. This paper presents an evaluation of the applicability of fractal dimensioning techniques to the quantification of both physical particle roughness and grain size distribution of granular soil. The divider and the area-perimeter fractal dimensioning techniques are used to quantify roughness of planar profiles of individual sand grains. The characterization of the size distribution of granular material using fractal geometry is evaluated through Korcak's fragmentation theory. As shown herein, both the divider and the area-perimeter fractal dimensioning techniques are useful in characterizing soil particle roughness, and the results confirm the importance of differentiating between textural and structural aspects of roughness. Fractal geometry can also be used to quantify the size distribution of granular soils with relatively well-graded size distributions.  相似文献   

11.
During the last mid-century, the Chlef area was strongly affected by two earthquakes. From the geological context, there were numerous ejections onto the ground level of great masses of sandy soils and large displacements of various forms of some building foundations. These damages are due to soil liquefaction problem. This loss of shear strength can be attributed to many factors. History of recent cases indicates that sand deposited with silt content is much more liquefiable than clean sand. Therefore, a deep understanding of silty sand behavior is needed for the liquefaction assessment of silty sandy soils. Moreover, during seismic shaking, the post-liquefaction behavior of silty sand and, consequently, the stability of structures founded on liquefied soil depend on the steady-state shear strength of soil. The objective of this laboratory investigation is to show the effect of silt contents and the relative density on the mechanical behavior of such soils in monotonic loading. In this context, a series of undrained triaxial tests were performed on reconstituted saturated silty sand samples with different fines content ranging from 0% to 40%. In all tests, the confining pressure was held constant to 100 kPa. The fines content and the global void ratio are expressed by means of the equivalent void ratio. Linear correlations relating the undrained residual shear strength of loose, medium dense, and dense (D r?=?12%, 50%, and 90% before consolidation) sand–silt mixtures to the equivalent void ratio are obtained. The concept of the equivalent void ratio will then be used as a key parameter to express the dilatancy behavior of both clean and silty sand soils. Moreover, from the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not represent the actual behavior of the soil as well.  相似文献   

12.
The 1999 Kocaeli earthquake of Turkey (Mw = 7.4) caused great destruction to buildings, bridges and other facilities, and a death tall of about 20,000. During this earthquake, severe damages due to soil liquefaction and associated ground deformations also occurred widespread in the eastern Marmara Region of Turkey. Soil liquefaction was commonly observed along the shorelines. One of these typical sites is Sapanca town founded on the shore of Lake Sapanca. This study was undertaken as quantitative measurement of ground deformations induced by liquefaction along the southern shore of Lake Sapanca. The permanent lateral ground deformation was measured through the aerial photogrammetry technique at several locations both along the shoreline and in the town. In situ soil profiles and material properties at Sapanca area were obtained based on the data from 55 borings and standard penetration tests (SPT), and laboratory tests, respectively. The data and the empirical methods recommended by an NCEER workshop were employed to evaluate the liquefaction resistance of the soils. In addition, simple shaking tests on a limited number of samples were also performed. The permanent ground displacements were estimated from the existing empirical models, sliding block method and residual visco-elastic finite element methods. Then these estimations were compared with the observed ground displacements. The assessments suggested that liquefaction at Sapanca have occurred within Quaternary alluvial fan deposits at depths 1 and 14 m, and the major regions of liquefaction and associated ground deformations were located along the shore and creeks. The evaluations also indicated that for sites with no sand boils but with ground displacement greater than 1 m, thickness of the non-liquefiable layer was large. It is also noted that no liquefaction-induced ground surface disruption is expected at the site when the thickness of the liquefiable and non-liquefiable layers vary between 0.5 and 1.5 m, and 3.5 and 5.5 m, respectively. Except one model, all the empirical models employed in the study over-predicted the observed lateral ground displacements, while sliding block method and residual visco-elastic finite element methods yielded reasonably good results if the known properties of liquefied soils are used.  相似文献   

13.
砂土的密度和应力状态对其刚度有很大的影响。计算岩土工程中许多硬化土体模型都是基于邓肯−张模型得出的,没有考虑到密度对砂土刚度的影响。而在极致密或松散的砂土的三轴压缩过程中,剪切应变的上升会引起密度的显著变化。为了评估粒径分布、密度及应力状态对砂土刚度的影响,使用统计和回归方法对来自莫斯科和明斯克的15个建筑工地的962个土壤样本的各向同性三轴试验数据进行分析。基于密度和应力状态参数的影响,提出了评估不同粒径砂土刚度的经验方程。对来自欧洲、印度和美国的冲积土和陆地土试验的比较分析表明,其砂土的刚度与莫斯科和明斯克的砂土在同一范围。所提出的方程可用于初步估计有限元法计算里的刚度参数,也可应用于岩土工程模型(允许考虑刚度的变化、水平和垂直分布)。此外,还提出了基于邓肯−张模型的半经验关系。当密度的变化影响土的刚度时,该半经验关系可为受到大变形和(或)复杂加载路径影响的松散和非常致密的砂土提供更为真实的结果。一般来说,岩土工程师可将获得的结果应用于更为复杂的土体模型设计中。  相似文献   

14.
Liquefaction of soils is a natural phenomenon associated with a dramatic loss of the soil shear strength in undrained conditions due to a development of excess pore water pressure. It usually causes extensive damages to buildings and infrastructures during earthquakes. Thus, it is important to evaluate extent of influential parameters on the liquefaction phenomenon of soils in order to clearly understand the different mechanisms leading to its triggering. The soil gradation is one of the most important parameters affecting the liquefaction phenomenon. In this context, a series of undrained compression triaxial tests were carried out on eighteen natural loose (Dr = 25%) sandy samples containing low plastic fines content of 2% (Ip = 5%) considering different extreme sizes (1.6 mm ≤ Dmax ≤ 4 mm and 0.001 mm ≤ Dmin ≤ 0.63 mm) and two mean grain size ranges (0.25 mm ≤ D50 ≤ 1.0 mm) and (1.0 mm ≤ D50 ≤ 2.5 mm). The initial confining pressure for all tests was kept constant (P′c = 100 kPa). The obtained test results indicate that the mean grain size (D50) and extreme grain sizes (Dmax and Dmin) have a significant influence on the undrained shear strength (known as liquefaction resistance) and appear as pertinent factors for the prediction of the undrained shear strength for the soil gradation under study. The undrained shear strength and the excess pore water pressure can be correlated to the extreme grain sizes (Dmax and Dmin) and the mean grain size (D50) of tested wet deposited samples.  相似文献   

15.
The paper pertains to the study of steady state or residual strength of sandy soils (Yamuna sand lying in the Indo-Gangetic alluvial plains) by consolidated rebounded drained triaxial test with volume change measurements and strain-controlled consolidated undrained test as well. The observed behavior obtained from these two tests is then compared to check their comparative merit. The same was also compared with those of Ganga and Toyoura sand, and with the predicted behavior obtained by using a semi empirical model. The results obtained from rebounded drained and undrained tests are found to be in good agreement. The curvature of ultimate steady state line of Yamuna sand is similar in trend to Ganga and Toyoura sand in the initial mean effective principle stress range; but the experimental observations with reference to Yamuna sand is not in good agreement with the model predictions in the region of higher mean normal stress. A semi empirical general model has been developed fitting the data for better prediction of the steady state behavior.  相似文献   

16.
Three identical model boxes were made from transparent plexiglass and angle iron. Using the method of sinking water and according to the sedimentary rhythm of saturated calcium carbonate(lime-mud) intercalated with cohesive soil,calcites with particle sizes diameters of ≤ 5 μm,10–15 μm and 23–30 μm as well as cohesive soil were sunk alternatively in water of three boxes to build three test models,each of which has a specific size of calcite. Pore water pressure gauges were buried in lime-mud layers at different depths in each model,and connected with a computer system to collect pore water pressures. By means of soil tests,physical property parameters and plasticity indices(Ip) were obtained for various grain-sized saturated lime-muds. The lime-muds with Ip ranging from 6.3 to 8.5(lower than 10) are similar to liquid saturated silt in the physical nature,indicating that saturated silt can be liquefied once induced by a strong earthquake. One model cart was pushed quickly along the length direction of the model so that its rigid wheels collided violently with the stone stair,thus generating an artificial earthquake with seismic wave magnitude greater than VI degree. When unidirectional cyclic seismic load of horizontal compression-tension-shear was imposed on the soil layers in the model,enough great pore water pressure has been accumulated within pores of lime-mud,resulting in liquefaction of lime-mud layers. Meanwhile,micro-fractures formed in each soil layer provided channels for liquefaction dewatering,resulting in formation of macroscopic liquefaction deformation,such as liquefied lime-mud volcanoes,liquefied diapir structures,vein-like liquefied structures and liquefied curls,etc. Splendid liquefied lime-mud eruption lasted for two to three hours,which is similar to the sand volcano eruption induced by strong earthquake. However,under the same artificial seismic conditions,development of macroscopic liquefied structures in three experimental models varied in shape,depth and quantity,indicating that excess pore water pressure ratios at initial liquefaction stage and complete liquefaction varied with depth. With size increasing of calcite particle in lime-mud,liquefied depth and deformation extent increase accordingly. The simulation test verifies for the first time that strong earthquakes may cause violent liquefaction of saturated lime-mud composed of micron-size calcite particles,uncovering the puzzled issue whether seafloor lime-mud can be liquefied under strong earthquake. This study not only provides the latest simulation data for explaining the earthquake-induced liquefied deformations of saturated lime-mud and seismic sedimentary events,but also is of great significance for analysis of foundation stability in marine engineering built on the soft calcium carbonate layers in neritic environment.  相似文献   

17.
Effect of Cement Type on the Mechanical Behavior of a Gravely Sand   总被引:1,自引:0,他引:1  
The behavior of a cemented gravely sand was studied using triaxial compression tests. Gypsum, Portland cement and lime were used as the cementing agents in sample preparation. The samples with different cement types were compared in equal cement contents. Three cement contents of 1.5%, 3.0% and 4.5% were selected for sample preparation. Drained and undrained triaxial compression tests were conducted in a range of confining pressures from 25 kPa to 500 kPa. Failure modes, shear strength, stress–strain behavior, volume and pore pressure changes were considered. The gypsum cement induced the highest brittleness in soil among three cement types while the Portland cement was found to be the most ductile cementing agent. In lower cement contents and lower confining pressures the soil cemented with Portland cement showed the highest shear strength. However, in the same range of cement content, the soil cemented with gypsum showed highest shear strength for highest tested confining stress. For higher cement contents the shear strength of soil cemented with Portland cement is higher than that for the two other cement types for the range of confining pressures tested in the present study. The samples cemented with lime had the least peak and ultimate shear strength and the highest pore pressure generation in undrained tests. Contrary to the soil cemented with lime, the brittleness of soil cemented with gypsum and Portland cement reduces in undrained condition. Finally it was found that the effect of cement type on the shear strength of cemented soils is more profound in drained condition compared to undrained state.  相似文献   

18.
水电站坝的砂层地基地震液化可靠度研究   总被引:2,自引:1,他引:1  
对四川地区江河上数座水电站坝基砂层的26组动力三轴试验资料进行了统计分析,基于动剪应力比法的液化判别方法推导了的地震液化的极限状态方程,使用蒙特卡洛随机抽样的方法计算了砂层液化的失效概率,并对某水电站的厂房地基砂层的液化可靠度进行了计算分析。研究表明,统计按粉砂样总体和中细砂样总体划分较为合理;砂层的动剪应力比可采用正态分布;电站砂层地基地震液化的最危险工况为,闸坝盖重加稳定的向上渗流及遭遇Ⅶ度地震荷载,为高液化风险,其液化概率随埋深加大而增大,最危险部位为砂层底板,对坝基砂层应进行抗液化处理。  相似文献   

19.
Developing the pore water pressures in loose to medium sands below the water table may lead to liquefaction during earthquakes. The simulation of liquefaction (cyclic mobility and flow liquefaction) in sandy soils is one of the major challenges in constitutive modeling of soils. This paper presents the simulation of sand behavior using a critical state bounding surface plasticity model (Dafalias and Manzari’s model, 2004) during monotonic and cyclic loading. The drained, undrained, and cyclic triaxial tests were simulated using Dafalias and Manzari’s model. The simulation results showed that the model predicts behavior of sand, reasonably well. Also, for CSR?<?0.2, number of cycles for liquefaction is significantly increased. The residual strength of Babolsar sand is produced when it is deformed to an axial strain of 20 to 25%.  相似文献   

20.
与圆颗粒的标准砂相比较,片状结构的砂的动力特性更为复杂,用规范法进行液化判别时会误判。为了将砂土片状结构特性考虑到判别过程中,建议了一个更为合理的Ncr 的经验公式,并利用该公式对南京地铁玄武门-南京站区间的砂土层进行液化判别,该区间会发生中等程度为主的液化,最后,将液化判别结果与规范法和室内动力实验结果相比较,分析发现,在南京地铁进行液化判别时,必须考虑片状结构特性对于液化影响;同时,给出了平均液化势随深度的变化情况,以及考虑砂土结构特性对判别结果的影响系数随土层深度的关系,提高了判别的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号