首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two strong earthquakes occurred in the region of Chlef (north western part of Algeria) during the last century. From the geological context, there were several great masses of sandy soil ejections on to the ground surface level and severe damages to civil and hydraulic structures. These damages were due to the soil liquefaction phenomenon. The objective of this laboratory investigation is to study the effect of low plastic fines and gradation characteristics on the undrained shear strength (liquefaction resistance) response of sand-silt mixture samples. For this purpose, a series of undrained monotonic triaxial tests were carried out on reconstituted saturated silty sand samples with different fines content ranging from 0 to 50?% at two initial relative densities (Dr?=?20 and 91?%). The initial confining pressure was kept at 100?kPa. The evaluation of the data indicates that the undrained shear strength at the peak (qpeak) can be correlated to the undrained residual strength (Sus), the excess pore pressure (Δu), the fines content (Fc) and the intergranular void ratio (es). The test results indicate also that the undrained shear strength at the peak decreases with the increment of the coefficient of uniformity and fines content as well as with the decrement of the mean grain size in the range of 0–50?% fines content for both relative densities (Dr?=?20 and 91?%).  相似文献   

2.
The hydraulic conductivity represents an important indicator parameter in the generation and redistribution of excess pore pressure of sand–silt mixture soil deposits during earthquakes. This paper aims to determine the relationship between the undrained shear strength (liquefaction resistance) and the saturated hydraulic conductivity of the sand–silt mixtures and how much they are affected by the percentage of low plastic fines (finer than 0.074 mm) and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests carried out on samples reconstituted from Chlef river sand with 0, 10, 20, 30, 40, and 50 % non-plastic silt at an effective confining pressure of 100 kPa and two initial relative densities (D r = 20, 91 %) are presented and discussed. It was found that the undrained shear strength (liquefaction resistance) can be correlated to the fines content, intergranular void ratio and saturated hydraulic conductivity. The results obtained from this study reveal that the saturated hydraulic conductivity (k sat) of the sand mixed with 50 % low plastic fines can be, in average, four orders of magnitude smaller than that of the clean sand. The results show also that the global void ratio could not be used as a pertinent parameter to explain the undrained shear strength and saturated hydraulic conductivity response of the sand–silt mixtures.  相似文献   

3.
In this paper, the shear strength of saturated pure sand and sand–silt mixture is evaluated by monotonic undrained triaxial tests that were carried out on reconstituted specimens at same relative densities and a constant confining pressure (σ 3?=?300 kPa). The test results were used to conclude on the effect of low non-plastic contents (0–20 %) and grading characteristics on the liquefaction resistance of the sand. The test results indicate that the undrained residual strength reduced with the increase of non-plastic fine content. Also, shear strength of gap-graded sand mixed with low non-plastic fine content increases with decrease in effective size (D 50). In other words, in this state, we can use the D 50 as a parameter to control of silty sand’s undrained resistance. Besides, the undrained residual strength of pure sand specimens with same effective size increases due to increase of coefficient of uniformity (C u).  相似文献   

4.
In a number of recent case studies, the liquefaction of silty sands has been reported. To investigate the undrained shear and deformation behaviour of Chlef sand–silt mixtures, a series of monotonic and stress-controlled cyclic triaxial tests were conducted on sand encountered at the site. The aim of this laboratory investigation is to study the influence of silt contents, expressed by means of the equivalent void ratio on undrained residual shear strength of loose, medium dense and dense sand–silt mixtures under monotonic loading and liquefaction potential under cyclic loading. After an earthquake event, the prediction of the post-liquefaction strength is becoming a challenging task in order to ensure the stability of different types of earth structures. Thus, the choice of the appropriate undrained residual shear strength of silty sandy soils that are prone to liquefaction to be used in engineering practice design should be established. To achieve this, a series of undrained triaxial tests were conducted on reconstituted saturated silty sand samples with different fines contents ranging from 0 to 40 %. In all tests, the confining pressure was held constant at 100 kPa. From the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not characterize the actual behaviour of the soil as well. The equivalent void ratio expressing the fine particles participation in soil strength is then introduced. A linear relationship between the undrained shear residual shear strength and the equivalent void ratio has been obtained for the studied range of the fines contents. Cyclic test results confirm that the increase in the equivalent void ratio and the fines content accelerates the liquefaction phenomenon for the studied stress ratio and the liquefaction resistance decreases with the increase in either the equivalent void ratio or the loading amplitude level. These cyclic tests results confirm the obtained monotonic tests results.  相似文献   

5.
For feasibility studies and preliminary design estimates, field measurements of shear wave velocity, V s, may not be economically adequate and empirical correlations between V s and more available penetration measurements such as cone penetration test, CPT, data turn out to be potentially valuable at least for initial evaluation of the small-strain stiffness of soils. These types of correlations between geophysical (Vs) and geotechnical (N-SPT, q c-CPT) measurements are also of utmost importance where a great precision in the calculation of the deposit response is required such as in liquefaction evaluation or earthquake ground response analyses. In this study, the stress-normalized shear wave velocity V s1 (in m/s) is defined as statistical functions of the normalized dimensionless resistance, Q tn-CPT, and the mean effective diameter, D 50 (in mm), using a data set of different uncemented soils of Holocene age accumulated at various sites in North America, Europe, and Asia. The V s1Q tn data exhibit different trends with respect to grain sizes. For soils with mean grain size (D 50) < 0.2 mm, the V s1/Q tn 0.25 ratio undergoes a significant reduction with the increase in D 50 of the soil. This trend is completely reversed with further increase in D 50 (D 50 > 0.2 mm). These results corroborate earlier results that stressed the use of different CPT-based correlations with different soil types, and those emphasized the need to impose particle-size limits on the validity of the majority of available correlations.  相似文献   

6.
颗粒级配对粒状材料不排水力学特性的影响   总被引:1,自引:0,他引:1  
为了研究颗粒级配对粒状材料不排水力学特性的影响,采用两种形状自相似度很高的材料(玻璃球和Hostun砂)进行了一系列传统三轴不排水压缩试验。对于每种材料,保持相近的相对密实度制作了6个不同颗粒级配(不均匀系数 1.1~20)的试样,然后进行剪切。试验结果表明,颗粒级配对粒状材料的不排水力学性能存在明显影响:两种材料试样的偏应力水平随着不均匀系数的增加而降低,抗剪强度随着材料的不均匀系数 的增加而降低,并在 5后呈现出趋稳势态。基于不排水剪切试验中颗粒集合体二阶功的演化规律,对材料受荷载过程中出现不稳定性的条件进行分析。结果表明,在相同密实度下,粒状材料的静态液化潜能随着材料不均匀系数 的提高而增强,高不均匀系数的材料变得不稳定。  相似文献   

7.
Recent earthquake case histories have revealed the liquefaction of mixtures of sand and fine particles during earthquakes. Different from earlier studies which placed an emphasis on characterisation of liquefaction in terms of the induced shear stress required to cause liquefaction, this study adopted a strain approach because excess pore-water pressure generation is controlled mainly by the level of induced shear strains. The current study includes the results of a set of laboratory tests carried out on sand specimens with the same relative densities and variation in the plastic fines (kaolinite or bentonite) contents ranging from 0 to either 30 % and consolidated at mean confining pressure of 100, 200 and 300 kPa using static triaxial test apparatus, in order to study the influence of fine content and other parameters on the undrained shear strength and liquefaction potential of clayey sand specimens; also, pore-water pressures in the specimens are discussed. Results of tests show that the peak strength decreases as the fines (kaolinite or bentonite) content increases up to a threshold content of fines (FCth) after which, increases in plastic fine content lead to improve the peak shear strength of specimens, and also the ultimate steady-state strength has been improved due to the increased in plastic fines content. Also, pore pressure build-up in clayey sands is generally slower than that observed in pure sand.  相似文献   

8.
The liquefaction vulnerability of fine- to coarse-graded saturated sand and gravelly sand is evaluated by stress control cyclic triaxial laboratory tests. Cyclic triaxial test on reconstituted specimens is carried out with relative density of 45 %. Cyclic triaxial tests performed by sinusoidal wave form with 1-Hz frequency and with the effective consolidation pressure equal to 100 kPa. Cyclic stress ratio which caused initial liquefaction in 15 cycles recognized as the liquefaction resistance in cyclic triaxial test of present study. The result had been used to find a relationship between liquefaction resistance and the grading characteristics (e.g., coefficient of curvature and coefficient of uniformity) of various graded sands and gravelly sands. Then, it is realized that a relationship between liquefaction resistance and any of the sizes (i.e., D 10, D 30, D 50, D 60) appears to be more practical.  相似文献   

9.
《Engineering Geology》2002,63(1-2):169-185
Heavy rainfall from 26 to 31 August 1998 triggered many landslides in Nishigo Village of southern Fukushima Prefecture, Japan. The Hiegaesi landslide, a long-runout landslide with travel angle of 11°, which occurred in loamy volcanic-ash/pumice layer and was deposited in a nearby rice paddy, was investigated. In an observation pit dug in the middle part of the landslide deposit, the sliding zone just above the deflected rice plants was observed, and it was confirmed that grain crushing occurred in the sliding zone. The triggering and sliding mechanisms of this landslide then were investigated by ring-shear tests in laboratory. For the triggering mechanism, one saturated naturally drained test (test A: torque-controlled test) and one saturated undrained test (test B: speed-controlled test) were conducted on the samples taken from the source area of the landslide. Even in the naturally drained test opening the upper drain valve of the shear box, a temporary liquefaction occurred. In the undrained test, excess pore-pressure was generated along with shearing, and “sliding-surface liquefaction” phenomenon was observed. The effective stress and shear resistance finally decreased to near zero. These results can explain the observed phenomenon of small friction resistance like a flow of liquid when the sliding mass slid out of the source area. For the sliding mechanism of the landslide in the rice paddy, saturated undrained test (test C: speed-controlled test) was performed on soil sample above the deflected rice plants. The apparent friction angle obtained in this test was 8°. In addition, the residual friction angle measured after test B and test C was the same value of 41°. Combining with the observation on the shear zone in the ring-shear box after test C, it is concluded that, during the sliding in rice paddy, the undrained shear strength of the soil layer itself mainly influenced the high mobility of the landslide, probably because the friction between rice plants and soils is greater than the undrained shear strength inside the soil mass.  相似文献   

10.
Undrained shear strength (su) of foundation soil of Marquette interchange near Milwaukee, Wisconsin was evaluated from the results of a number of pressuremeter tests conducted on normally consolidated (NC) organic silts and overconsolidated (OC) silty clay. The su-values were interpreted from traditional closed-form methods. The pressuremeter geometry and test sequence as well as response of the soil profiles were also simulated using axisymmetric finite element (FE) method with Cam-Clay soil model. The Cam-Clay model parameters were estimated from laboratory tests on undisturbed soil samples. Results show that the su estimated from the rate of cavity pressure change with volumetric strain (referred to as direct traditional method) is almost twice the su estimated from an indirect traditional method that estimates su from shear modulus, in situ horizontal stress, and ultimate cavity pressure obtained from the cavity pressure curves. The su-values predicted from the FE models are lower than those estimated from the traditional methods and shows that the assumption of infinite pressuremeter length in traditional methods results in overprediction of undrained shear strength by a factor of 1.5 for NC clay and 2.2 for OC clay. The results of finite element analysis considering Cam-Clay soil model and finite length for pressuremeters suggest the undrained shear strength of 63 ± 7 kPa for NC organic silt and 259 ± 68 kPa for OC silty clay.  相似文献   

11.
During the last mid-century, the Chlef area was strongly affected by two earthquakes. From the geological context, there were numerous ejections onto the ground level of great masses of sandy soils and large displacements of various forms of some building foundations. These damages are due to soil liquefaction problem. This loss of shear strength can be attributed to many factors. History of recent cases indicates that sand deposited with silt content is much more liquefiable than clean sand. Therefore, a deep understanding of silty sand behavior is needed for the liquefaction assessment of silty sandy soils. Moreover, during seismic shaking, the post-liquefaction behavior of silty sand and, consequently, the stability of structures founded on liquefied soil depend on the steady-state shear strength of soil. The objective of this laboratory investigation is to show the effect of silt contents and the relative density on the mechanical behavior of such soils in monotonic loading. In this context, a series of undrained triaxial tests were performed on reconstituted saturated silty sand samples with different fines content ranging from 0% to 40%. In all tests, the confining pressure was held constant to 100 kPa. The fines content and the global void ratio are expressed by means of the equivalent void ratio. Linear correlations relating the undrained residual shear strength of loose, medium dense, and dense (D r?=?12%, 50%, and 90% before consolidation) sand–silt mixtures to the equivalent void ratio are obtained. The concept of the equivalent void ratio will then be used as a key parameter to express the dilatancy behavior of both clean and silty sand soils. Moreover, from the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not represent the actual behavior of the soil as well.  相似文献   

12.
13.
Soil improvement using fibres is widely used in soil stabilisation to prevent sand liquefaction. In order to study the undrained behaviour and liquefaction resistance of sand reinforced with polypropylene fibres, a series of triaxial compressive tests were conducted on unreinforced and reinforced Chlef sand with different contents of polypropylene fibres (0, 0.3, 0.5 and 0.8%). Samples were prepared at 30% and 80% relative densities representing loose and dense states respectively, and triaxial tests were performed at confining pressures of 50, 100 and 200 kPa. Tests results show that fibre inclusion has a significant effect on the shear strength and dilation of sandy soil. The increase in strength is function of fibre content, relative density and confining pressure. The maximum strength improvement for both loose and dense fibre-reinforced sand is more pronounced at higher confining pressure and at higher fibre content.  相似文献   

14.
Flow-competence assessments of floods have been based on the largest particle sizes transported, and yield either the mean flow stress, mean velocity, or discharge per unit flow width. The use of extreme particle sizes has potential problems in that they may have been transported by debris flows rather than by the flood, it may be difficult to locate the largest particles within the flood deposits, and there are questions concerning how representative one or a few large particles might be of the transported sediments and therefore of the flood hydraulics. Such problems would be eliminated for the most part if competence evaluations are based on median grain sizes of transported sediments, or perhaps on some coarse percentile that is established by a reasonable number of grains. In order to examine such issues, the gravel-transport data of Milhous from Oak Creek, Oregon, and of Carling from Great Eggleshope Beck, England, have been analysed in terms of changing grain-size percentiles with varying flow stresses. A comparison between these two data sets is of added interest because the bed material in Oak Creek is segregated into well-developed pavement and subpavement layers, while such a layering of bed materials is largely absent in Great Eggleshope Beck. The analyses show that the trend of increasing sizes of the largest particles in the bedload samples (diameter Dm) with increasing flow stresses is consistent with similar dependencies based on sieve percentiles ranging from the medians (D50) to the 95th percentiles (D95). This indicates that the largest particles are an integral part of the overall distributions of bedload grain sizes, and respond to changing flow hydraulics along with the rest of the size distribution. In Oak Creek, the median grain size shows the largest change with increasing flow stresses, followed by D60, and so on to D95 which shows the smallest change. The variations in Dm continue this trend, and are similar to those for D95. This systematic variation of grain-size percentiles in Oak Creek is consistent with changes in the overall distributions which tend to be symmetrical and Gaussian for low discharges, but become skewed Rosin distributions for high discharges. In contrast, in Great Eggleshope Beck the several percentiles and Dm show the same rate of shift to coarser sizes as flow stresses increase. This results in part from differences in sampling techniques wherein the bedload samples from Great Eggleshope Beck represent a complete flood event, while shorterterm samples at a specific flow stage were obtained in Oak Creek. As a result of the integrated sampling in Great Eggleshope Beck, the bedload grain-size distributions are more complex, commonly with a bimodal pattern. However, after accounting for differences in sampling schemes in the two streams, contrasting patterns in changing grain-size distributions remain, and these are concluded to reflect grain sorting differences as the bedload grain-size distributions approach the distributions of the bed materials. It is surprising that if criteria commonly employed to demonstrate the equal mobility of different grain sizes are used in the comparison, then Great Eggleshope Beck is far closer to this condition in spite of its minimal development of a pavement. It is concluded that the respective shapes of the bed-material grain-size distributions, in particular their degrees of skewness, are more important to the observed sorting patterns than are the effects of a pavement layer regulating grain entrapment to produce an equal mobility of different grain sizes. Therefore, the comparison has established that flow-competence relationships will differ from one stream to another, depending on the pattern of grain sorting which is a function of the bedmaterial grain-size distribution.  相似文献   

15.
Use of scrap tyres in isolation systems for seismic damping, requires a knowledge of the engineering properties of sand–rubber mixtures (SRM). The primary objective of this study is to assess the influence of granulated rubber and tyre chips size and the gradation of sand on the strength behaviour of SRM by carrying out large-scale direct shear tests. A large direct shear test has been carried out on SRM considering different granulated rubber and tyre chip sizes and compositions. The following properties were investigated to know the effect of granulated rubber on dry sand; peak shear stress, cohesion, friction angle, secant modulus and volumetric strain. From the experiments, it was determined that the major factors influencing the above-mentioned properties were granulated rubber and tyre chip sizes, percentage of rubber in SRM and the normal stress applied. It was observed that the peak strength was significantly increased with increasing granulated rubber size up to rubber size VI (passing 12.5 mm and retained on 9.5 mm), and by adding granulated rubber up to 30%. This study shows that granulated rubber size VI gives maximum shear strength values at 30% rubber content. It was also found that more uniformly graded sand gives an improved value of shear strength with the inclusion of granulated rubber when compared to poorly graded sand.  相似文献   

16.
The influence of mineral grain and grain boundary strength is investigated using a calibrated intact (non-jointed) brittle rock specimen subjected to direct shear with a particle-based distinct element method and its embedded grain-based method. The adopted numerical approach allows one to independently control the grain boundary and mineral grain strength. The investigation reveals that, in direct shear, the normal stress (σ n) applied to a rock specimen relative to its uniaxial compressive strength (UCS) determines the resulting rupture mechanism, the ultimate rupture zone geometry, and thus its shear stress versus horizontal displacement response. This allows one to develop a rupture matrix based on this controlling parameter (i.e., σ n/UCS). Mineral grain strength reductions result in the lowering of the apparent cohesion intercept of the peak linear Coulomb strength envelope, while grain boundary strength reductions change the peak linear Coulomb strength envelope to a bi-linear or curved shape. The impact of grain boundary strength is only relevant at σ n/UCS ratios <0.17 where tensile and dilatant rupture mechanisms dominate. Once shear rupture begins to be the dominant rupture mechanism in a brittle rock (i.e., at σ n/UCS ratios >0.17), the influence of weakened grain boundaries is minimized and strength is controlled by that of the mineral grains.  相似文献   

17.
A solution is developed for the build‐up, steady and post‐arrest dissipative pore fluid pressure fields that develop around a blunt penetrometer that self‐embeds from freefall into the seabed. Arrest from freefall considers deceleration under undrained conditions in a purely cohesive soil, with constant shear strength with depth. The resulting decelerating velocity field is controlled by soil strength, geometric bearing capacity factors, and inertial components. At low impact velocities the embedment process is controlled by soil strength, and at high velocities by inertia. With the deceleration defined, a solution is evaluated for a point normal dislocation penetrating in a poroelastic medium with a prescribed decelerating velocity. Dynamic steady pressures, PD, develop relative to the penetrating tip geometry with their distribution conditioned by the non‐dimensional penetration rate, UD, incorporating impacting penetration rate, consolidation coefficient and penetrometer radius, and the non‐dimensional strength, ND, additionally incorporating undrained shear strength of the sediment. Pore pressures develop to a steady peak magnitude at the penetrometer tip, and drop as PD=1/xD with distance xD behind the tip and along the shaft. Peak induced pressure magnitudes may be correlated with sediment permeabilities, post‐arrest dissipation rates may be correlated with consolidation coefficients, and depths of penetration may be correlated with shear strengths. Together, these records enable strength and transport parameters to be recovered from lance penetrometer data. Penetrometer data recorded off La Palma in the Canary Islands (J. Volcanol. Geotherm. Res. 2000; 101 :253) are used to recover permeabilities and consolidation coefficients from peak pressure and dissipation response, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The objective of this study was to evaluate the effect of mine tailings composition on shear behavior and shear strength of co-mixed mine waste rock and tailings (WR&T). Crushed gravel was used as a synthetic waste rock and mixed with four types of tailings: (1) fine-grained garnet, (2) coarse-grained garnet, (3) copper, and (4) soda ash. Co-mixed WR&T specimens were prepared to target mixture ratios of mass of waste rock to mass of tailings (R) such that tailings “just filled” interparticle void space of the waste rock (i.e., optimum mixture ratio, R opt). Triaxial compression tests were conducted on waste rock, tailings, and mixed waste at effective confining stresses (\(\sigma_{\text{c}}^{{\prime }}\)) ranging from 5 to 40 kPa to represent stresses anticipated in final earthen covers for waste containment facilities. Waste rock and co-mixed WR&T specimens were 150 mm in diameter by 300 mm tall, whereas tailings specimens were 38 mm in diameter by 76 mm tall. Shear strength was quantified using effective stress friction angles (?′) from undrained tests: ?′ for waste rock was 37°, ?′ for tailings ranged from 34° to 41°, and ?′ for WR&T mixtures ranged from 38° to 40°. Thus, shear strength of co-mixed WR&T was comparable to waste rock regardless of tailings composition. Shear behavior of WR&T mixtures was a function of R and tailings composition. Tailings influenced shear behavior for R < R opt and when tailings predominantly were silt. Shear behavior was influenced by waste rock for R ≥ R opt and when tailings predominantly were sand or included clay particles.  相似文献   

19.
In-situ Rock Spalling Strength near Excavation Boundaries   总被引:2,自引:0,他引:2  
It is widely accepted that the in-situ strength of massive rocks is approximately 0.4 ± 0.1 UCS, where UCS is the uniaxial compressive strength obtained from unconfined tests using diamond drilling core samples with a diameter around 50 mm. In addition, it has been suggested that the in-situ rock spalling strength, i.e., the strength of the wall of an excavation when spalling initiates, can be set to the crack initiation stress determined from laboratory tests or field microseismic monitoring. These findings were supported by back-analysis of case histories where failure had been carefully documented, using either Kirsch’s solution (with approximated circular tunnel geometry and hence σ max =  1 3) or simplified numerical stress modeling (with a smooth tunnel wall boundary) to approximate the maximum tangential stress σ max at the excavation boundary. The ratio of σ max /UCS is related to the observed depth of failure and failure initiation occurs when σ max is roughly equal to 0.4 ± 0.1 UCS. In this article, it is suggested that these approaches ignore one of the most important factors, the irregularity of the excavation boundary, when interpreting the in-situ rock strength. It is demonstrated that the “actual” in-situ spalling strength of massive rocks is not equal to 0.4 ± 0.1 UCS, but can be as high as 0.8 ± 0.05 UCS when surface irregularities are considered. It is demonstrated using the Mine-by tunnel notch breakout example that when the realistic “as-built” excavation boundary condition is honored, the “actual” in-situ rock strength, given by 0.8 UCS, can be applied to simulate progressive brittle rock failure process satisfactorily. The interpreted, reduced in-situ rock strength of 0.4 ± 0.1 UCS without considering geometry irregularity is therefore only an “apparent” rock strength.  相似文献   

20.
Two types of modeled rockfill materials were collected from Renuka dam site, Himachal Pradesh, India and Salma dam site, Afghanistan. The rockfill material collected from Renuka dam site is rounded to sub-rounded in shape and the rockfill material collected from Salma dam site is angular to sub-angular in shape. The prototype gradation rockfill material consists maximum particle size larger than 1,000 mm. Therefore, for carrying out laboratory testing and modeling the bahaviour, the prototype rockfill material is scaled down to the maximum particle size (dmax) of 25, 50 and 80 mm for both projects material using parallel gradation technique. Triaxial compression and Index properties tests were conducted on both project rockfill materials and are presented. From the triaxial behaviour, it is observed that the stress–strain behaviour is non-linear, inelastic and stress dependent for both the materials. The material compresses during the initial shearing and shows dilation effect with further shearing. It is observed that the ?-value for alluvial rockfill material increases with increase in dmax and reverse trend is observed for blasted quarried rockfill material which shows the importance of the type of material. The stress–strain-volume change behaviour of both projects modeled rockfill material was predicted by using hierarchical single surface (HISS) model based on elasto plasticity and compared with the laboratory test results. From the comparison, it is observed that both results match closely. It is, therefore, suggested that the behaviour of both types of rockfill materials can be characterized successfully using HISS model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号