首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we propose a 3D acoustic full waveform inversion algorithm in the Laplace domain. The partial differential equation for the 3D acoustic wave equation in the Laplace domain is reformulated as a linear system of algebraic equations using the finite element method and the resulting linear system is solved by a preconditioned conjugate gradient method. The numerical solutions obtained by our modelling algorithm are verified through a comparison with the corresponding analytical solutions and the appropriate dispersion analysis. In the Laplace‐domain waveform inversion, the logarithm of the Laplace transformed wavefields mainly contains long‐wavelength information about the underlying velocity model. As a result, the algorithm smoothes a small‐scale structure but roughly identifies large‐scale features within a certain depth determined by the range of offsets and Laplace damping constants employed. Our algorithm thus provides a useful complementary process to time‐ or frequency‐domain waveform inversion, which cannot recover a large‐scale structure when low‐frequency signals are weak or absent. The algorithm is demonstrated on a synthetic example: the SEG/EAGE 3D salt‐dome model. The numerical test is limited to a Laplace‐domain synthetic data set for the inversion. In order to verify the usefulness of the inverted velocity model, we perform the 3D reverse time migration. The migration results show that our inversion results can be used as an initial model for the subsequent high‐resolution waveform inversion. Further studies are needed to perform the inversion using time‐domain synthetic data with noise or real data, thereby investigating robustness to noise.  相似文献   

2.
In order to account for the effects of elastic wave propagation in marine seismic data, we develop a waveform inversion algorithm for acoustic‐elastic media based on a frequency‐domain finite‐element modelling technique. In our algorithm we minimize residuals using the conjugate gradient method, which back‐propagates the errors using reverse time migration without directly computing the partial derivative wavefields. Unlike a purely acoustic or purely elastic inversion algorithm, the Green's function matrix for our acoustic‐elastic algorithm is asymmetric. We are nonetheless able to achieve computational efficiency using modern numerical methods. Numerical examples show that our coupled inversion algorithm produces better velocity models than a purely acoustic inversion algorithm in a wide variety of cases, including both single‐ and multi‐component data and low‐cut filtered data. We also show that our algorithm performs at least equally well on real field data gathered in the Korean continental shelf.  相似文献   

3.
Full waveform inversion algorithms are widely used in the construction of subsurface velocity models. In the following study, we propose a Laplace–Fourier-domain waveform inversion algorithm that uses both Laplace-domain and Fourier-domain wavefields to achieve the reconstruction of subsurface velocity models. Although research on the Laplace–Fourier-domain waveform inversion has been published recently that study is limited to fluid media. Because the geophysical targets of marine seismic exploration are usually located within solid media, waveform inversion that is approximated to acoustic media is limited to the treatment of properly identified submarine geophysical features. In this study, we propose a full waveform inversion algorithm for isotropic fluid–solid media with irregular submarine topography comparable to a real marine environment. From the fluid–solid system, we obtained P and S wave velocity models from the pressure data alone. We also suggested strategies for choosing complex frequency bands constructed of frequencies and Laplace coefficients to improve the resolution of the restored velocity structures. For verification, we applied our Laplace–Fourier-domain waveform inversion for fluid–solid media to synthetic data that were reconstructed for fluid–solid media. Through this inversion test, we successfully restored reasonable velocity structures. Furthermore, we successfully extended our algorithm to a field data set.  相似文献   

4.
Elastic waves, such as Rayleigh and mode‐converted waves, together with amplitude versus offset variations, serve as noise in full waveform inversion using the acoustic approximation. Heavy preprocessing must be applied to remove elastic effects to invert land or marine data using the acoustic inversion method in the time or frequency domains. Full waveform inversion using the elastic wave equation should be one alternative; however, multi‐parameter inversion is expensive and sensitive to the starting velocity model. We implement full acoustic waveform inversion of synthetic land and marine data in the Laplace domain with minimum preprocessing (i.e., muting) to remove elastic effects. The damping in the Laplace transform can be thought of as an automatic time windowing. Numerical examples show that Laplace‐domain acoustic inversion can yield correct smooth velocity models even with the noise originating from elastic waves. This offers the opportunity to develop an accurate smooth starting model for subsequent inversion in the frequency domain.  相似文献   

5.
We present a new workflow for imaging damped three‐dimensional elastic wavefields in the Fourier domain. The workflow employs a multiscale imaging approach, in which offset lengths are laddered, where frequency content and damping of the data are changed cyclically. Thus, the inversion process is launched using short‐offset and low‐frequency data to recover the long spatial wavelength of the image at a shallow depth. Increasing frequency and offset length leads to the recovery of the fine‐scale features of the model at greater depths. For the fixed offset, we employ (in the imaging process) a few discrete frequencies with a set of Laplace damping parameters. The forward problem is solved with a finite‐difference frequency‐domain method based on a massively parallel iterative solver. The inversion code is based upon the solution of a least squares optimisation problem and is solved using a nonlinear gradient method. It is fully parallelised for distributed memory computational platforms. Our full‐waveform inversion workflow is applied to the 3D Marmousi‐2 and SEG/EAGE Salt models with long‐offset data. The maximum inverted frequencies are 6 Hz for the Marmousi model and 2 Hz for the SEG/EAGE Salt model. The detailed structures are imaged successfully up to the depth approximately equal to one‐third of the maximum offset length at a resolution consistent with the inverted frequencies.  相似文献   

6.
To simulate the seismic signals that are obtained in a marine environment, a coupled system of both acoustic and elastic wave equations is solved. The acoustic wave equation for the fluid region simulates the pressure field while minimizing the number of degrees of freedom of the impedance matrix, and the elastic wave equation for the solid region simulates several elastic events, such as shear waves and surface waves. Moreover, by combining this coupled approach with the waveform inversion technique, the elastic properties of the earth can be inverted using the pressure data obtained from the acoustic region. However, in contrast to the pure acoustic and elastic cases, the complex impedance matrix for the coupled media does not have a symmetric form because of the boundary (continuity) condition at the interface between the acoustic and elastic elements. In this study, we propose a manipulation scheme that makes the complex impedance matrix for acoustic–elastic coupled media to take a symmetric form. Using the proposed symmetric matrix, forward and backward wavefields are identical to those generated by the conventional approach; thus, we do not lose any accuracy in the waveform inversion results. However, to solve the modified symmetric matrix, LDLT factorization is used instead of LU factorization for a matrix of the same size; this method can mitigate issues related to severe memory insufficiency and long computation times, particularly for large‐scale problems.  相似文献   

7.
In order to correctly interpret marine exploration data, which contain many elastic signals such as S waves, surface waves and converted waves, we have developed both a frequency-domain modeling algorithm for acoustic-elastic coupled media with an irregular interface, and the corresponding waveform inversion algorithm. By applying the continuity condition between acoustic (fluid) and elastic (solid) media, wave propagation can be properly simulated throughout the coupled domain. The arbitrary interface is represented by tessellating square and triangular finite elements. Although the resulting complex impedance matrix generated by finite element methods for the acoustic-elastic coupled wave equation is asymmetric, we can exploit the usual back-propagation algorithm used in the frequency domain through modern sparse matrix technology. By running numerical experiments on a synthetic model, we demonstrate that our inversion algorithm can successfully recover P- and S-wave velocity and density models from marine exploration data (pressure data only).  相似文献   

8.
Refraction-traveltime tomography is the most common approach and widely used for estimating velocity models with rugged topography and strongly variant near-surface geology. However, for complex geographical structures, there is often a restriction to the application of the conventional approach because the refracted energy can be trapped by the near-surface structure, which leads to limited depth penetration. To solve this problem, we propose a velocity estimation algorithm for foothill areas using Laplace-domain full waveform inversion (FWI) with irregular finite elements. Because the Laplace-domain FWI uses wavefields damped exponentially in time, the acoustic wave equation can be applied to foothill datasets without suppressing various types of elastic noise. In this study, irregular finite elements are generated to depict complicated surface topography using a Delaunay triangulation and tetrahedralization algorithm. Furthermore, adaptive mesh generation that formulates larger size elements with greater depth is used for minimizing the intensive computational costs in solving the full wave equation in the 2D and 3D domains. The validity of our proposed algorithm is demonstrated for 2D and 3D synthetic datasets and a 2D real exploration dataset acquired in the complex Aquio field foothill area in Bolivia.  相似文献   

9.
Elastic full waveform inversion of seismic reflection data represents a data‐driven form of analysis leading to quantification of sub‐surface parameters in depth. In previous studies attention has been given to P‐wave data recorded in the marine environment, using either acoustic or elastic inversion schemes. In this paper we exploit both P‐waves and mode‐converted S‐waves in the marine environment in the inversion for both P‐ and S‐wave velocities by using wide‐angle, multi‐component, ocean‐bottom cable seismic data. An elastic waveform inversion scheme operating in the time domain was used, allowing accurate modelling of the full wavefield, including the elastic amplitude variation with offset response of reflected arrivals and mode‐converted events. A series of one‐ and two‐dimensional synthetic examples are presented, demonstrating the ability to invert for and thereby to quantify both P‐ and S‐wave velocities for different velocity models. In particular, for more realistic low velocity models, including a typically soft seabed, an effective strategy for inversion is proposed to exploit both P‐ and mode‐converted PS‐waves. Whilst P‐wave events are exploited for inversion for P‐wave velocity, examples show the contribution of both P‐ and PS‐waves to the successful recovery of S‐wave velocity.  相似文献   

10.
The wavefield in the Laplace domain has a very small amplitude except only near the source point. In order to deal with this characteristic, the logarithmic objective function has been used in many Laplace domain inversion studies. The Laplace-domain waveform inversion using the logarithmic objective function has fewer local minima than the time- or frequency domain inversion. Recently, the power objective function was suggested as an alternative to the logarithmic objective function in the Laplace domain. Since amplitudes of wavefields are very small generally, a power <1 amplifies the wavefields especially at large offset. Therefore, the power objective function can enhance the Laplace-domain inversion results. In previous studies about synthetic datasets, it is confirmed that the inversion using a power objective function shows a similar result when compared with the inversion using a logarithmic objective function. In this paper, we apply an inversion algorithm using a power objective function to field datasets. We perform the waveform inversion using the power objective function and compare the result obtained by the logarithmic objective function. The Gulf of Mexico dataset is used for the comparison. When we use a power objective function in the inversion algorithm, it is important to choose the appropriate exponent. By testing the various exponents, we can select the range of the exponent from 5 × 10?3 to 5 × 10?8 in the Gulf of Mexico dataset. The results obtained from the power objective function with appropriate exponent are very similar to the results of the logarithmic objective function. Even though we do not get better results than the conventional method, we can confirm the possibility of applying the power objective function for field data. In addition, the power objective function shows good results in spite of little difference in the amplitude of the wavefield. Based on these results, we can expect that the power objective function will produce good results from the data with a small amplitude difference. Also, it can partially be utilized at the sections where the amplitude difference is very small.  相似文献   

11.
Seismic waves propagate through the earth as a superposition of different wave modes. Seismic imaging in areas characterized by complex geology requires techniques based on accurate reconstruction of the seismic wavefields. A crucial component of the methods in this category, collectively known as wave‐equation migration, is the imaging condition that extracts information about the discontinuities of physical properties from the reconstructed wavefields at every location in space. Conventional acoustic migration techniques image a scalar wavefield representing the P‐wave mode, in contrast to elastic migration techniques, which image a vector wavefield representing both the P‐ and S‐waves. For elastic imaging, it is desirable that the reconstructed vector fields are decomposed into pure wave modes, such that the imaging condition produces interpretable images, characterizing, for example, PP or PS reflectivity. In anisotropic media, wave mode separation can be achieved by projection of the reconstructed vector fields on the polarization vectors characterizing various wave modes. For heterogeneous media, because polarization directions change with position, wave mode separation needs to be implemented using space‐domain filters. For transversely isotropic media with a tilted symmetry axis, the polarization vectors depend on the elastic material parameters, including the tilt angles. Using these parameters, we separate the wave modes by constructing nine filters corresponding to the nine Cartesian components of the three polarization directions at every grid point. Since the S polarization vectors in transverse isotropic media are not defined in the singular directions, e.g., along the symmetry axes, we construct these vectors by exploiting the orthogonality between the SV and SH polarization vectors, as well as their orthogonality with the P polarization vector. This procedure allows one to separate all three modes, with better preserved P‐wave amplitudes than S‐wave amplitudes. Realistic synthetic examples show that this wave mode separation is effective for both 2D and 3D models with strong heterogeneity and anisotropy.  相似文献   

12.
We developed a frequency‐domain acoustic‐elastic coupled waveform inversion based on the Gauss‐Newton conjugate gradient method. Despite the use of a high‐performance computer system and a state‐of‐the‐art parallel computation algorithm, it remained computationally prohibitive to calculate the approximate Hessian explicitly for a large‐scale inverse problem. Therefore, we adopted the conjugate gradient least‐squares algorithm, which is frequently used for geophysical inverse problems, to implement the Gauss‐Newton method so that the approximate Hessian is calculated implicitly. Thus, there was no need to store the Hessian matrix. By simultaneously back‐propagating multi‐components consisting of the pressure and displacements, we could efficiently extract information on the subsurface structures. To verify our algorithm, we applied it to synthetic data sets generated from the Marmousi‐2 model and the modified SEG/EAGE salt model. We also extended our algorithm to the ocean‐bottom cable environment and verified it using ocean‐bottom cable data generated from the Marmousi‐2 model. With the assumption of a hard seafloor, we recovered both the P‐wave velocity of complicated subsurface structures as well as the S‐wave velocity. Although the inversion of the S‐wave velocity is not feasible for the high Poisson's ratios used to simulate a soft seafloor, several strategies exist to treat this problem. Our example using multi‐component data showed some promise in mitigating the soft seafloor effect. However, this issue still remains open.  相似文献   

13.
Prediction of elastic full wavefields is required for reverse time migration, full waveform inversion, borehole seismology, seismic modelling, etc. We propose a novel algorithm to solve the Navier wave equation, which is based on multi‐block methodology for high‐order finite‐difference schemes on curvilinear grids. In the current implementation, the blocks are subhorizontal layers. Smooth anisotropic heterogeneous media in each layer can have strong discontinuities at the interfaces. A curvilinear adaptive hexahedral grid in blocks is generated by mapping the original 3D physical domain onto a parametric cube with horizontal layers and interfaces. These interfaces correspond to the main curvilinear physical contrast interfaces of a subhorizontally layered formation. The top boundary of the parametric cube handles the land surface with smooth topography. Free‐surface and solid–solid transmission boundary conditions at interfaces are approximated with the second‐order accuracy. Smooth media in the layers are approximated up to sixth‐order spatial schemes. All expected properties of the developed algorithm are demonstrated in numerical tests using corresponding parallel message passing interface code.  相似文献   

14.
基于对数目标函数的跨孔雷达频域波形反演   总被引:2,自引:1,他引:1       下载免费PDF全文
波形反演在探地雷达领域的应用已有十余年历史,但绝大部分算例属于时间域波形反演.频率域波形反演由于能够灵活地选择迭代频率并可以使用不同类型的目标函数,因而更加多样化.本文的频率域波形反演基于时间域有限差分(FDTD)法,采用对数目标函数,可在每一次迭代过程中同时或者单独反演介电常数和电导率.文中详细推导了频率域波形反演的理论公式,给出对数目标函数下的梯度表达式,并使用离散傅氏变换(DFT)实现数据的时频变换,能够有效地减少大模型反演的内存需求.在后向残场源的时频域转换过程中,提出仅使用以当前频点为中心的一个窄带数据,可以消除高频无用信号的干扰,获得可靠的反演结果.为加速收敛,采用每迭代十次则反演频率跳跃一定频带宽度的反演策略.实验证明适当的频率跳跃能够在不降低分辨率的基础上有效地提高反演效率.通过两组不同情形下合成数据反演的分析对比,证明基于对数目标函数的波形反演结果准确可靠.最后,将该方法应用到一组实际数据,得到较好的反演结果.  相似文献   

15.
Recently, an effective and powerful approach for simulating seismic wave propagation in elastic media with an irregular free surface was proposed. However, in previous studies, researchers used the periodic condition and/or sponge boundary condition to attenuate artificial reflections at boundaries of a computational domain. As demonstrated in many literatures, either the periodic condition or sponge boundary condition is simple but much less effective than the well‐known perfectly matched layer boundary condition. In view of this, we intend to introduce a perfectly matched layer to simulate seismic wavefields in unbounded models with an irregular free surface. We first incorporate a perfectly matched layer into wave equations formulated in a frequency domain in Cartesian coordinates. We then transform them back into a time domain through inverse Fourier transformation. Afterwards, we use a boundary‐conforming grid and map a rectangular grid onto a curved one, which allows us to transform the equations and free surface boundary conditions from Cartesian coordinates to curvilinear coordinates. As numerical examples show, if free surface boundary conditions are imposed at the top border of a model, then it should also be incorporated into the perfectly matched layer imposed at the top‐left and top‐ right corners of a 2D model where the free surface boundary conditions and perfectly matched layer encounter; otherwise, reflections will occur at the intersections of the free surface and the perfectly matched layer, which is confirmed in this paper. So, by replacing normal second derivatives in wave equations in curvilinear coordinates with free surface boundary conditions, we successfully implement the free surface boundary conditions into the perfectly matched layer at the top‐left and top‐right corners of a 2D model at the surface. A number of numerical examples show that the perfectly matched layer constructed in this study is effective in simulating wave propagation in unbounded media and the algorithm for implementation of the perfectly matched layer and free surface boundary conditions is stable for long‐time wavefield simulation on models with an irregular free surface.  相似文献   

16.
张盼  邢贞贞  胡勇 《地球物理学报》2019,62(10):3974-3987
在常规地震采集中,被动源地震波场往往被视为噪声而去除,这就造成了部分有用信息的丢失.在目标区进行主动源和被动源弹性波地震数据的多分量混合采集,并对两种数据进行联合应用,使其在照明和频带上优势互补,能显著提高成像和反演的质量.本文针对两种不同类型的主被动源混采地震数据,分别提出了相应的联合全波形反演方法.首先,针对主动源与瞬态被动源弹性波混采地震数据,为充分利用被动源对深部照明的优势,同时有效压制被动震源点附近的成像异常值,提出了基于动态随机组合的弹性波被动源照明补偿反演策略.然后,针对低频缺失主动源与背景噪声型被动源弹性波混采地震数据,为充分利用被动源波场携带的低频信息,并避免对被动源的定位和子波估计,提出了基于地震干涉与不依赖子波算法的弹性波主被动源串联反演策略.最后,分别将两种方法在Marmousi模型上进行反演测试.结果说明,综合利用主动源和被动源弹性波混采地震数据,不仅能增强深部弹性参数反演效果,还能更好地构建弹性参数模型的宏观结构,并有助于缓解常规弹性波全波形反演的跳周问题.  相似文献   

17.
In the second paper of this three part series, we studied the case of conventional and logarithmic phase‐only approaches to full‐waveform inversion. Here, we concentrate on deriving amplitude‐only approaches for both conventional‐ and logarithmic‐based methods. We define two amplitude‐only objective functions by simply assuming that the phase of the modelled wavefield is equal to that of the observed wavefield. We do this for both the conventional least‐squares approach and the logarithmic approach of Shin and Min. We show that these functions can be optimized using the same reverse‐time propagation algorithm of the full conventional methodology. Although the residuals in this case are not really residual wavefields, they can both be considered and utilized in that sense. In contrast to the case for our phase‐only algorithms, we show through numerical tests that the conventional amplitude‐only inversion is better than the logarithmic method.  相似文献   

18.
Reflection full waveform inversion can update subsurface velocity structure of the deeper part, but tends to get stuck in the local minima associated with the waveform misfit function. These local minima cause cycle skipping if the initial background velocity model is far from the true model. Since conventional reflection full waveform inversion using two‐way wave equation in time domain is computationally expensive and consumes a large amount of memory, we implement a correlation‐based reflection waveform inversion using one‐way wave equations to retrieve the background velocity. In this method, one‐way wave equations are used for the seismic wave forward modelling, migration/de‐migration and the gradient computation of objective function in frequency domain. Compared with the method using two‐way wave equation, the proposed method benefits from the lower computational cost of one‐way wave equations without significant accuracy reduction in the cases without steep dips. It also largely reduces the memory requirement by an order of magnitude than implementation using two‐way wave equation both for two‐ and three‐dimensional situations. Through numerical analysis, we also find that one‐way wave equations can better construct the low wavenumber reflection wavepath without producing high‐amplitude short‐wavelength components near the image points in the reflection full waveform inversion gradient. Synthetic test and real data application show that the proposed method efficiently updates the background velocity model.  相似文献   

19.
We propose a robust approach for the joint inversion of PP‐ and PSV‐wave angle gathers along different azimuths for the elastic properties of the homogeneous isotropic host rock and excess compliances due to the presence of fractures. Motivated by the expression of fluid content indicator in fractured reservoirs and the sensitivity of Lamé impedances to fluid type, we derive PP‐ and PSV‐wave reflection coefficients in terms of Lamé impedances, density, and fracture compliances for an interface separating two horizontal transversely isotropic media. Following a Bayesian framework, we construct an objective function that includes initial models. We employ the iteratively reweighted least‐squares algorithm to solve the inversion problem to estimate unknown parameters (i.e., Lamé impedances, density, and fracture compliances) from PP‐ and PSV‐wave angle gathers along different azimuths. Synthetic tests reveal that the unknown parameters estimated using the joint inversion approach match true values better than those estimated using a PP‐wave amplitude inversion only. A real data test indicates that reasonable results for subsurface fracture detection are obtained from the joint inversion approach.  相似文献   

20.
The phase and group velocity surfaces are essential for wave propagation in anisotropic media. These surfaces have certain features that, especially, for shear waves result in complications for modelling and inversion of recorded wavefields. To analyse wave propagation in an anisotropic model, it is important to identify these features in both the phase and group domains. We propose few characteristics for this analysis: the energy flux angle, decomposed in the polar and azimuth angle correction angles and enhancement factor, which is able to characterize both singularity points and triplication zones. The very simple equation that controls the triplications is derived in the phase domain. The proposed characteristics are illustrated for elastic and acoustic anisotropic models of different symmetry classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号