首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Advances in seismics acquisition and processing and the widespread use of 4D seismics have made available reliable production‐induced subsurface deformation data in the form of overburden time‐shifts. Inversion of these data is now beginning to be used as an aid to the monitoring of a reservoir's effective stress. Past solutions to this inversion problem have relied upon analytic calculations for an unrealistically simplified subsurface, which can lead to uncertainties. To enhance the accuracy of this approach, a method based on transfer functions is proposed in which the function itself is calibrated using numerically generated overburden strain deformation calculated for a small select group of reference sources. This technique proves to be a good compromise between the faster but more accurate history match of the overburden strain using a geomechanical simulator and the slower, less accurate analytic method. Synthetic tests using a coupled geomechanical and fluid flow simulator for the South Arne field confirm the efficacy of the method. Application to measured time‐shifts from observed 4D seismics indicates compartmentalization in the Tor reservoir, more heterogeneity than is currently considered in the simulation model and moderate connectivity with the overlying Ekofisk formation.  相似文献   

2.
The frequent time‐lapse observations from the life of field seismic system across the Valhall field provide a wealth of information. The responses from the production and injection wells can be observed through time‐shift and amplitude changes. These observations can be compared to modelled synthetic seismic responses from a reservoir simulation model of the Valhall Field. The observed differences between the observations and the modelling are used to update and improve the history match of the reservoir model. The uncertainty of the resulting model is reduced and a more confident prediction of future reservoir performance is provided. A workflow is presented to convert the reservoir model to a synthetic seismic response and compare the results to the observed time‐lapse responses for any time range and area of interest. Correlation based match quality factors are calculated to quantify the visual differences. This match quality factor allows us to quantitatively compare alternative reservoir models to help identify the parameters that best match the seismic observations. Three different case studies are shown where this workflow has helped to reduce the uncertainty range associated with specific reservoir parameters. By updating various reservoir model parameters we have been able to improve the match to the observations and thereby improve the overall reservoir model predictability. The examples show positive results in a range of different reservoir modelling issues, which indicates the flexibility of this workflow and the ability to have an impact in most reservoir modelling challenges.  相似文献   

3.
Results of an experimental study of shear‐ and compressional‐wave propagation in an orthorhombically anisotropic medium are presented. The experiments were performed on a physical model consisting of two sets of fractures. The first set consisted of orientated rubber inclusions simulating weak material‐filled cracks. The second set consisted of a system of closely spaced parallel fractures simulated by thin plates of epoxy resin, superimposed orthogonally on the first set. Three cases of fracture orientations within the model were identified and studied. Case 1 is analogous to a jointed fracture reservoir with one vertical set of fluid‐filled cracks or fractures and one non‐filled horizontal set. This case is referred to as JFV. Case 2 is analogous to a double fracture reservoir with one horizontal set of fluid‐filled fractures or cracks and one non‐filled vertical set. This is referred to as DFH. Case 3 is analogous to a double fracture reservoir with two vertical sets of fractures or cracks, with only one fluid‐filled. Case 3 is referred to as DFV. A pulse transmission method was performed on all three modelled cases along the three principal axes. A directional variation in the compressional‐ and shear‐wave velocities, as well as distinct shear‐wave splitting, was observed. The elastic constants for each case were determined and differences between them were noted and compared with the controlled results of both layered (transverse isotropy, TI) and vertically fractured (azimuthally anisotropic models, VF) media. The differences in elastic moduli and velocities indicate the potential of recognizing the different fracture orientations and suggest an approach to designing a method of drilling to further enhance oil recovery and reservoir exploitation.  相似文献   

4.
Gas‐Oil Gravity Drainage is to be enhanced by steam injection in a highly fractured, low permeability carbonate field in Oman. Following a successful pilot, field‐wide steam injection is being implemented, first of this type in the world. A dedicated monitoring program has been designed to track changes in the reservoir. Various observations are to be acquired, including, surface deformation, temperature measurements, microseismic, well logs, pressure and saturation measurements to monitor the reservoir. Because significant changes in the reservoir density are expected, time‐lapse gravimetry is also being considered. In this paper we investigate the feasibility of gravimetric monitoring of the thermally enhanced gravity drainage process at the carbonate field in Oman. For this purpose, forward gravity modelling is performed. Based on field groundwater measurements, the estimates of the hydrological signal are considered and it is investigated under what conditions the groundwater influences can be minimized. Using regularized inversion of synthetic gravity data, we analyse the achievable accuracy of heat‐front position estimates. In case of large groundwater variations at the field, the gravity observations can be significantly affected and, consequently, the accuracy of heat‐front monitoring can be deteriorated. We show that, by applying gravity corrections based on local observations of groundwater, the hydrological influences can to a large extent be reduced and the accuracy of estimates can be improved. We conclude that gravimetric monitoring of the heat‐front evolution has a great potential.  相似文献   

5.
沁水盆地南部煤层气储层压裂过程数值模拟研究   总被引:4,自引:1,他引:3       下载免费PDF全文
储层改造是煤层气井提高产能的重要措施,水力压裂是煤层气储层改造的重要方法.为研究煤层气储层压裂过程及其天然裂缝对煤储层压裂时破裂压力的影响,本文以山西沁水盆地南部高煤级煤矿区为研究区,运用有限元数值模拟方法,计算不同地应力条件下、裂缝处于不同位置时煤储层的破裂压力.结果表明:(1)不同类型地应力场对破裂压力的影响不同.对于均匀应力场,破裂压力随着围压的增大而增大,其增幅约为围压的两倍;对于非均匀应力场,当一个水平主应力不变时,破裂压力会随着水平主应力差的增加而减少;(2)如果地应力条件不变,煤储层破裂压力随着天然裂缝与最大水平主应力方向夹角的增加而增加,水平主应力差越大煤储层破裂压力增幅也越大;(3)在有天然裂隙的地层中进行压裂,当天然裂缝的方位不同时压裂裂缝既可能是沿着天然裂缝扩展的裂缝,也可能是压裂过程中产生的新裂缝,因此天然裂缝的方位对破裂压力具有一定的影响.  相似文献   

6.
Hydrocarbon production and fluid injection affect the level of subsurface stress and physical properties of the subsurface, and can cause reservoir‐related issues, such as compaction and subsidence. Monitoring of oil and gas reservoirs is therefore crucial. Time‐lapse seismic is used to monitor reservoirs and provide evidence of saturation and pressure changes within the reservoir. However, relative to background velocities and reflector depths, the time‐lapse changes in velocity and geomechanical properties are typically small between consecutive surveys. These changes can be measured by using apparent displacement between migrated images obtained from recorded data of multiple time‐lapse surveys. Apparent displacement measurements by using the classical cross‐correlation method are poorly resolved. Here, we propose the use of a phase‐correlation method, which has been developed in satellite imaging for sub‐pixel registration of the images, to overcome the limitations of cross‐correlation. Phase correlation provides both vertical and horizontal displacements with a much better resolution. After testing the method on synthetic data, we apply it to a real dataset from the Norne oil field and show that the phase‐correlation method can indeed provide better resolution.  相似文献   

7.
Outcrop studies reveal a common occurrence of tabular zones of significantly‐increased fracture intensity affecting otherwise well‐lithified rocks. These zones, called fracture corridors, can have a profound effect on multi‐phase fluid flow in the subsurface. Using standard geo‐modelling tools, it is possible to generate 3D realizations of reservoirs that contain distributions of such fracture corridors that are consistent with observations, including the vertical frequency in pseudo‐wells inserted into the model at random locations. These models can generate the inputs to flow simulation. The approach adopted here is to run the flow simulations in a single‐porosity representation where the flow effects of fractures are upscaled into equivalent cell‐based properties, preserving a clear spatial relationship between the input geology and the resulting cellular model. The simulated reservoir performance outcomes are very similar to those seen in real oilfields: extreme variability between wells, early water breakthrough, disappointing recoveries and patchy saturation distributions. Thus, a model based on fracture corridors can provide an explanation for the observed flow performance of a suitable field. However, the use of seismics to identify fracture corridors is not an easy task. New work is needed to predict the seismic responses of fracture corridor systems to be able to judge whether it is likely that we can robustly detect and characterize these flow‐significant features adequately.  相似文献   

8.
储层古应力场的数值模拟   总被引:8,自引:1,他引:7       下载免费PDF全文
根据古构造变形采用反演与正演相结合的方法,研究储层古构造应力场。开展以下研究:(1)用板模型趋势法反演与储层古构造变形面对应的驱动力和场内应力;(2)建立一个组合单元模型,用(1)中反演的远场应力作为边界条件,计算储层古构造应力场;(3)用含断层滑动模型的三维实体单元和(1)中给出的边界条件,计算储层古构造应力场;(4)对 3 种模型的应用及其检验  相似文献   

9.
Sensitivity of time-lapse seismic to reservoir stress path   总被引:1,自引:1,他引:1  
The change in reservoir pore pressure due to the production of hydrocarbons leads to anisotropic changes in the stress field acting on the reservoir. Reservoir stress path is defined as the ratio of the change in effective horizontal stress to the change in effective vertical stress from the initial reservoir conditions, and strongly influences the depletion‐induced compaction behaviour of the reservoir. Seismic velocities in sandstones vary with stress due to the presence of stress‐sensitive regions within the rock, such as grain boundaries, microcracks, fractures, etc. Since the response of any microcracks and grain boundaries to a change in stress depends on their orientation relative to the principal stress axes, elastic‐wave velocities are sensitive to reservoir stress path. The vertical P‐ and S‐wave velocities, the small‐offset P‐ and SV‐wave normal‐moveout (NMO) velocities, and the P‐wave amplitude‐versus‐offset (AVO) are sensitive to different combinations of vertical and horizontal stress. The relationships between these quantities and the change in stress can be calibrated using a repeat seismic, sonic log, checkshot or vertical seismic profile (VSP) at the location of a well at which the change in reservoir pressure has been measured. Alternatively, the variation of velocity with azimuth and distance from the borehole, obtained by dipole radial profiling, can be used. Having calibrated these relationships, the theory allows the reservoir stress path to be monitored using time‐lapse seismic by combining changes in the vertical P‐wave impedance, changes in the P‐wave NMO and AVO behaviour, and changes in the S‐wave impedance.  相似文献   

10.
In the central North Sea ‘Gannet‐A’ field, a 50 ft oil rim is overlain by a gas cap of variable thickness. Oil is produced from horizontal wells which initially produced dry oil, but as the field became more mature, a significant water cut was seen in several wells. A dedicated 4D seismic monitor survey was acquired in order to assess the remaining distribution of oil reserves. By forward modelling the synthetic seismic response to parameters such as contact movement and residual saturations (using 2D and 3D wedge models), and comparing the results with real seismic data, we are able to decipher the contact movements across the field. It is shown that, in one part of the field, the increased water cut is caused primarily by the vertical displacement of the entire oil rim into the initial gas cap. This oil‐rim displacement produces a very different 4D seismic response from the case of a static gas–oil contact and rising oil–water contact (normal production). As a result of these observations, we are able to optimize field production by both re‐perforation of existing wells and by drilling sidetracks into the displaced rim: a brown‐field development opportunity that might otherwise be missed.  相似文献   

11.
Time‐lapse seismics is the methodology of choice for remotely monitoring changes in oil/gas reservoir depletion, reservoir stimulation or CO2 sequestration, due to good sensitivity and resolving power at depths up to several kilometres. This method is now routinely applied offshore, however, the use of time‐lapse methodology onshore is relatively rare. The main reason for this is the relatively high cost of commercial seismic acquisition on land. A widespread belief of a relatively poor repeatability of land seismic data prevents rapid growth in the number of land time‐lapse surveys. Considering that CO2 sequestration on land is becoming a necessity, there is a great need to evaluate the feasibility of time‐lapse seismics for monitoring. Therefore, an understanding of the factors influencing repeatability of land seismics and evaluating limitations of the method is crucially important for its application in many CO2 sequestration projects. We analyse several repeated 2D and 3D surveys acquired within the Otway CO2 sequestration pilot project (operated by the Cooperative Research Centre for Greenhouse Technologies, CO2CRC) in Australia, in order to determine the principal limitations of land time‐lapse seismic repeatability and investigate the influence of the main factors affecting it. Our findings are that the intrinsic signal‐to‐noise ratio (S/N, signal to coherent and background noise levels) and the normalized‐root‐mean‐square (NRMS) difference are controlled by the source strength and source type. However, the post‐stack S/N ratio and corresponding NRMS residuals are controlled mainly by the data fold. For very high‐fold data, the source strength and source type are less critical.  相似文献   

12.
Steel well casings in or near a hydrocarbon reservoir can be used as source electrodes in time‐lapse monitoring using grounded line electromagnetic methods. A requisite component of carrying out such monitoring is the capability to numerically model the electromagnetic response of a set of source electrodes of finite length. We present a modelling algorithm using the finite‐element method for calculating the electromagnetic response of a three‐dimensional conductivity model excited using a vertical steel‐cased borehole as a source. The method is based on a combination of the method of moments and the Coulomb‐gauged primary–secondary potential formulation. Using the method of moments, we obtain the primary field in a half‐space due to an energized vertical steel casing by dividing the casing into a set of segments, each assumed to carry a piecewise constant alternating current density. The primary field is then substituted into the primary–secondary potential finite‐element formulation of the three‐dimensional problem to obtain the secondary field. To validate the algorithm, we compare our numerical results with: (i) the analytical solution for an infinite length casing in a whole space, excited by a line source, and (ii) a three‐layered Earth model without a casing. The agreement between the numerical and analytical solutions demonstrates the effectiveness of our algorithm. As an illustration, we also present the time‐lapse electromagnetic response of a synthetic model representing a gas reservoir undergoing water flooding.  相似文献   

13.
The injection of CO2 at the Ketzin pilot site commenced in June 2008 and was terminated in August 2013 after 67 kT had been injected into a saline formation at a depth of 630–650 m. As part of the site monitoring program, four 3D surface seismic surveys have been acquired to date, one baseline and three repeats, of which two were conducted during the injection period, and one during the post‐injection phase. The surveys have provided the most comprehensive images of the spreading CO2 plume within the reservoir layer. Both petrophysical experiments on core samples from the Ketzin reservoir and spectral decomposition of the 3D time‐lapse seismic data show that the reservoir pore pressure change due to CO2 injection has a rather minor impact on the seismic amplitudes. Therefore, the observed amplitude anomaly is interpreted to be mainly due to CO2 saturation. In this study, amplitude versus offset analysis has been applied to investigate the amplitude versus offset response from the top of the sandstone reservoir during the injection and post‐injection phases, and utilize it to obtain a more quantitative assessment of the CO2 gaseous saturation changes. Based on the amplitude versus offset modelling, a prominent decrease in the intercept values imaged at the top of the reservoir around the injection well is indeed associated solely with the CO2 saturation increase. Any change in the gradient values, which would, in case it was positive, be the only signature induced by the reservoir pressure variations, has not been observed. The amplitude versus offset intercept change is, therefore, entirely ascribed to CO2 saturation and used for its quantitative assessment. The estimated CO2 saturation values around the injection area in the range of 40%–60% are similar to those obtained earlier from pulsed neutron‐gamma logging. The highest values of 80% are found in the second seismic repeat in close vicinity to the injection and observation wells.  相似文献   

14.
The possibility of using 4D seismic data for monitoring pressure depletion in the low‐porosity, tight gas‐bearing Rotliegende sandstones of the UK Southern Gas Basin is investigated. The focus here is on whether fractures in the upper part of the reservoir, known to enhance productivity, can also enhance the time‐lapse seismic response. The study uses laboratory data to evaluate core‐plug stress sensitivity, published data for the stress behaviour of the fractures, followed by petro‐elastic and 4D seismic modelling of both the fractured and unfractured formation. The magnitude of the resultant 4D signatures suggests that production‐induced changes in the unfractured sands are unlikely to be observed except perhaps with highly repeatable time‐lapse surveys. On the other hand, the presence of fractures could render production effects visible in dedicated 4D acquisition or prestack parallel processed data. If present however, the signature will be sporadic, as fractures in the area are known to exist in clusters. The 4D signature may be enhanced further by certain classes of vertical geological variability and also areas of high reservoir pressure. The strongest evidence of depletion is expected to be time‐shifts seen at the base of the Rotliegende reservoir.  相似文献   

15.
In the Norwegian North Sea, the Sleipner field produces gas with a high CO2 content. For environmental reasons, since 1996, more than 11 Mt of this carbon dioxide (CO2) have been injected in the Utsira Sand saline aquifer located above the hydrocarbon reservoir. A series of seven 3D seismic surveys were recorded to monitor the CO2 plume evolution. With this case study, time‐lapse seismics have been shown to be successful in mapping the spread of CO2 over the past decade and to ensure the integrity of the overburden. Stratigraphic inversion of seismic data is currently used in the petroleum industry for quantitative reservoir characterization and enhanced oil recovery. Now it may also be used to evaluate the expansion of a CO2 plume in an underground reservoir. The aim of this study is to estimate the P‐wave impedances via a Bayesian model‐based stratigraphic inversion. We have focused our study on the 1994 vintage before CO2 injection and the 2006 vintage carried out after a CO2 injection of 8.4 Mt. In spite of some difficulties due to the lack of time‐lapse well log data on the interest area, the full application of our inversion workflow allowed us to obtain, for the first time to our knowledge, 3D impedance cubes including the Utsira Sand. These results can be used to better characterize the spreading of CO2 in a reservoir. With the post‐stack inversion workflow applied to CO2 storage, we point out the importance of the a priori model and the issue to obtain coherent results between sequential inversions of different seismic vintages. The stacking velocity workflow that yields the migration model and the a priori model, specific to each vintage, can induce a slight inconsistency in the results.  相似文献   

16.
Finite-difference modelling of S-wave splitting in anisotropic media   总被引:4,自引:0,他引:4  
We have implemented a 3D finite‐difference scheme to simulate wave propagation in arbitrary anisotropic media. The anisotropic media up to orthorhombic symmetry were modelled using a standard staggered grid scheme and beyond (monoclinic and triclinic) using a rotated staggered grid scheme. The rationale of not using rotated staggered grid for all types of anisotropic media is that the rotated staggered grid schemes are more expensive than standard staggered grid schemes. For a 1D azimuthally anistropic medium, we show a comparison between the seismic data generated by our finite‐difference code and by the reflectivity algorithm; they are in excellent agreement. We conducted a study on zero‐offset shear‐wave splitting using the finite‐difference modelling algorithm using the rotated staggered grid scheme. Our S‐wave splitting study is mainly focused on fractured media. On the scale of seismic wavelenghts, small aligned fractures behave as an equivalent anisotropic medium. We computed the equivalent elastic properties of the fractures and the background in which the fractures were embedded, using low‐frequency equivalent media theories. Wave propagation was simulated for both rotationally invariant and corrugated fractures embedded in an isotropic background for one, or more than one, set of fluid‐filled and dry fractures. S‐wave splitting was studied for dipping fractures, two vertical non‐orthogonal fractures and corrugated fractures. Our modelling results confirm that S‐wave splitting can reveal the fracture infill in the case of dipping fractures. S‐wave splitting has the potential to reveal the angle between the two vertical fractures. We also notice that in the case of vertical corrugated fractures, S‐wave splitting is sensitive to the fracture infill.  相似文献   

17.
The response of calcium silicate unreinforced masonry construction to horizontal cyclic loading has recently become the focus of experimental and numerical research, given its extensive use in some areas of the world that are now exposed to induced earthquakes (eg, north of the Netherlands). To assess the seismic behaviour of such construction, a relatively wide range of modelling methodologies are available, amongst which the discrete elements approach, which takes into account the intrinsic heterogeneity of a brick‐mortar assembly, can probably be deemed as the most appropriate computational procedure. On the other hand, however, since discrete elements numerical methods are based on a discontinuum domain, often they are not able to model every stage of the structural response adequately, and because of the high computational burden required, the analysis scale should be chosen carefully. The applied element method is a relatively recent addition to the discrete elements family, with a high potential for overcoming the aforementioned limitations or difficulties. Initially conceived to model blast events and concrete structures, its use in the earthquake engineering field is, of late, increasing noticeably. In this paper, the use of the applied element method to model the in‐plane cyclic response of calcium silicate masonry walls is discussed and scrutinised, also through the comparison with experimental results of in‐plane cyclic shear‐compression tests on unreinforced masonry walls.  相似文献   

18.
—Different techniques in Geophysics and Geology are used to derive the structure of the subsurface. They are based on different data sets, i.e., seismic and geological data, and a combination of these techniques should produce better earth models. The case study presented in this paper is based on data of the German Continental Reflection program (DEKORP) collected in the Münsterland basin and the Rhenish Massif located at the northern border of the Rhenohercynian fold and thrust belt of the Mid-European Variscides. In this study we present an attempt to integrate balanced profiles, i.e., structural geology, and reflection seismics. The integration is performed by synthetically modelling seismic waves according to the acquisition of the field data, where the velocity model is based on the balanced profile. The synthetic data are compared with the field observations. Differences between observed data and field data are either caused by velocity errors in the model or by errors in the balanced profile. Criteria are developed to interpret these differences in order to improve the joint model of geologists and geophysicists. The case study presented in this paper shows that the combination of balanced profiles and reflection seismics may lead to shortcuts in the determination of seismic velocities of the subsurface. These shortcuts can reduce processing times and processing costs of reflection seismic data.  相似文献   

19.
Compaction induced by pore‐pressure decrease inside a reservoir can be monitored by measuring traveltime shifts of reflection events on time‐lapse seismic data. Recently we introduced a perturbation‐based formalism to describe traveltime shifts caused by the 3D stress‐induced velocity field around a compacting reservoir. Application of this method to homogeneous background models showed that the offset variation of traveltime shifts is controlled primarily by the anisotropic velocity perturbations and can provide valuable information about the shear and deviatoric stresses. Here, we model and analyse traveltime shifts for compacting reservoirs whose elastic properties are different from those of the surrounding medium. For such models, the excess stress is influenced primarily by the contrast in the rigidity modulus μ across the reservoir boundaries. Synthetic examples demonstrate that a significant (25% or more) contrast in μ enhances the isotropic velocity perturbations outside the reservoir. Nevertheless, the influence of background heterogeneity is mostly confined to the reservoir and its immediate vicinity and the anisotropic velocity changes are still largely responsible for the offset dependence of traveltime shifts. If the reservoir is stiffer than the host rock, the background heterogeneity reduces anisotropic velocity perturbations inside the reservoir but increases them in the overburden. As a result, in this case, the magnitude of the offset variation of traveltime shifts is generally higher for reflections from interfaces above the reservoir. We also study compaction‐induced stress/strain and traveltime shifts for a stiff reservoir embedded in a softer layered model based on velocity profiles from the Valhall Field in the North Sea. Despite producing discontinuities in strain across medium interfaces, horizontal layering does not substantially alter the overall behaviour of traveltime shifts. The most pronounced offset variation of traveltime shifts is observed for overburden events recorded at common midpoints close to the reservoir edges. On the whole, prestack analysis of traveltime shifts should help better constrain compaction‐induced velocity perturbations in the presence of realistic background heterogeneity.  相似文献   

20.
Ghawar, the largest oilfield in the world, produces oil from the Upper Jurassic Arab‐D carbonate reservoir. The high rigidity of the limestone–dolomite reservoir rock matrix and the small contrast between the elastic properties of the pore fluids, i.e. oil and water, are responsible for the weak 4D seismic effect due to oil production. A feasibility study was recently completed to quantify the 4D seismic response of reservoir saturation changes as brine replaced oil. The study consisted of analysing reservoir rock physics, petro‐acoustic data and seismic modelling. A seismic model of flow simulation using fluid substitution concluded that time‐lapse surface seismic or conventional 4D seismic is unlikely to detect the floodfront within the repeatability of surface seismic measurements. Thus, an alternative approach to 4D seismic for reservoir fluid monitoring is proposed. Permanent seismic sensors could be installed in a borehole and on the surface for passive monitoring of microseismic activity from reservoir pore‐pressure perturbations. Reservoir production and injection operations create these pressure or stress perturbations. Reservoir heterogeneities affecting the fluid flow could be mapped by recording the distribution of epicentre locations of these microseisms or small earthquakes. The permanent borehole sensors could also record repeated offset vertical seismic profiling surveys using a surface source at a fixed location to ensure repeatability. The repeated vertical seismic profiling could image the change in reservoir properties with production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号