首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同应力路径下某高速公路路基黏性土湿化变形试验研究   总被引:2,自引:0,他引:2  
张秀成  王义重  傅旭东 《岩土力学》2010,31(6):1791-1796
针对某高速公路黏性填土路基浸水湿化的情况,进行了大量室内试验研究。为了研究土在实际应力路径下的湿化变形规律,分别在常规三轴应力路径、常规三轴K0固结应力路径、K0固结+常规三轴压缩应力路径以及使用真三轴仪的平面应变下K0固结 + 平面应变剪切应力路径和平面应变等应力比路径下进行了黏性土的湿化试验。通过对试验数据的分析,得到了湿化附加轴向应变与湿化时应力水平的幂函数关系。通过总结研究不同应力路径下应力-应变曲线的规律,提出了不同应力路径下的应力-应变关系的公式。  相似文献   

2.
Behavior of unsaturated soils is influenced by many factors, and the influences of these factors are usually coupled together. Suction‐controlled triaxial (SCTX) tests are considered to allow researchers to investigate influences of individual variables on unsaturated soils under specified stress path with controls of stresses, pore water, and air pressures. In the past 50 years, SCTX testing method has been established as a standard approach to characterize constitutive behavior of unsaturated soils. Most important concepts for modern unsaturated soil mechanics were developed upon results from the SCTX tests. Among these, one of the most important contributions in the constitutive modeling of elasto‐plastic behavior for unsaturated soils is the Barcelona basic model (BBM) proposed by Alonso et al. in 1990. The BBM successfully explained many features of unsaturated soils and received extensive acceptance. However, the SCTX tests are designed based upon the divide‐and‐conquer approach in which an implicit assumption is used: soil behavior is stress‐path independent. However, it is well‐established that unsaturated soil behavior is elasto‐plastic and stress‐path dependent. It is found that the SCTX tests in fact cannot control the stress path of an unsaturated soil during loading. This incapability, in combination with complicated loading/collapse behavior of unsaturated soils, makes the SCTX tests for characterizing unsaturated soil questionable. This paper discusses the limitations of the SCTX tests in the characterization of unsaturated soils. A possible solution to the problem was proposed based on a newly developed modified state surface approach. The discussions are limited for isotropic conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Stress–dilatancy relations have played a crucial role in the understanding of the mechanical behaviour of soils and in the development of realistic constitutive models for their response. Recent investigations on the mechanical behaviour of materials with crushable grains have called into question the validity of classical relations such as those used in critical state soil mechanics. In this paper, a method to construct thermodynamically consistent (isotropic, three‐invariant) elasto‐plastic models based on a given stress–dilatancy relation is discussed. Extensions to cover the case of granular materials with crushable grains are also presented, based on the interpretation of some classical model parameters (e.g. the stress ratio at critical state) as internal variables that evolve according to suitable hardening laws. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of this paper is to extend the generalized plasticity state parameter‐based model presented in part 1 to reproduce the hydro‐mechanical behavior of unsaturated soils. The proposed model is based on two pairs of stress–strain variables and a suitable hardening law taking into account the bonding—debonding effect of suction and degree of saturation. A generalized state parameter for unsaturated state is proposed to reproduce soil behavior using a single set of material parameters. Generalized plasticity gives a suitable framework to reproduce not only monotonic stress path but also cyclic behavior. The hydraulic hysteresis during a drying—wetting cycle and the void ratio effect on the hydraulic behavior is introduced. Comparison between model simulations and a series of experimental data available, both cohesive and granular, are given to illustrate the accuracy of the enhanced generalized plasticity equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
利用室内试验研究土体蠕变特性时,因受试验条件限制较少开展土体的排水蠕变特性试验研究。对于先还原土体的先期固结条件,然后再开展土体的三轴排水蠕变特性试验的研究更少。为此,以淤泥土为研究对象,通过 固结三轴排水蠕变试验探讨了饱和淤泥土在轴向加载和侧向减载条件下的排水蠕变特性。由试验数据可知:排水条件下,两种应力路径的轴向蠕变规律基本一致,体积应变明显小于轴向应变,且随时间的延长呈现一定程度的剪缩与剪胀交替性。首次利用三单元力学模型推测出淤泥土的蠕变起始时间为施加偏应力荷载后的100~200 min之间。提出淤泥土蠕变系数的概念并总结其变化规律,得知淤泥土的蠕变系数与偏应力水平密切相关,即不论围压及加载方式如何,蠕变系数均随应力水平增大而增大,且基本呈直线关系,而与前期固结围压大小、蠕变荷载施加方式关系不大。最后提出了淤泥土蠕变本构模型建立的思路,即用南水双屈服面模型描述瞬时变形量和用蠕变经验公式描述蠕变变形量相结合的方式来建立蠕变本构模型。  相似文献   

6.
砂土应力路径本构模型的试验验证   总被引:15,自引:4,他引:11  
路德春  罗汀  姚仰平 《岩土力学》2005,26(5):717-722
建立了砂土应力路径本构模型,揭示了应力路径影响砂土应力-应变关系的本质,在平均应力p变化不大的条件下主要是剪应力比的影响。当使用该模型计算应力-应变关系时,将应力路径线性化,分别计算等平均应力p路径和等应力比 路径上的应变。利用试验对模型所引用的关系式 进行验证,试验结果和 的理论值较为吻合,证明了模型引用关系式 的合理性。并利用模型对复杂路径下砂土的应力-应变关系进行预测,对模型预测与试验结果进行比较,结果表明模型可以合理地考虑复杂应力路径对砂土应力-应变关系的影响。  相似文献   

7.
基坑开挖过程中不同部位的土体会因不同的卸荷力学行为而表现出动态的破坏特性。为研究基坑土体开挖过程中复杂的卸荷应力路径,利用TSZ-1S应力控制式三轴仪分别对湖相沉积的泥炭质土进行固结不排水及K0固结下的加、卸荷试验,并按侧向、轴向、轴侧向同时卸荷等不同卸荷条件制定试验方案,模拟基坑开挖过程中不同部位土体卸荷路径下的应力-应变曲线、卸荷剪切破坏时的强度及初始切线模量等的变化规律。试验结果表明:土体的应力-应变特性与应力路径密切相关,各路径下应力-应变曲线都近似呈双曲线型;卸荷剪切破坏时强度明显低于加荷破坏。对不同卸荷路径下初始切线模量(Ei)的研究发现,Ei受侧向卸荷影响较大,卸荷后Ei有所提高,轴向卸荷对其影响较小。对各应力-应变曲线进行归一化处理,构建了考虑不同归一化因子的归一化方程,以该方程为基础对不同应力路径下的泥炭质土进行归一化处理,并对结果进行了验证,效果良好。本研究可为泥炭质土场地上基坑在不同卸荷路径下的变形参数和本构关系的研究提供参考。  相似文献   

8.
周爱兆  卢廷浩 《岩土力学》2012,33(Z1):44-48
等应力增量比路径单剪试验条件下,部分土体与结构接触面表现出明显的应变软化和剪胀特性。基于广义位势理论,将土与结构的接触面问题看作应力空间上的二维问题,势函数取法向应力和切向应力,用塑性状态方程取代传统的屈服面,建立等应力增量比路径条件下的土与结构接触面应力-应变软化模型。采用指数函数,拟合单向压缩试验中法向应力与法向应变的关系,采用复合指数函数,拟合应力比与切向应变的关系,采用另一复合指数函数,拟合法向剪胀分量与切向应变的关系。通过对拟合函数进行微分,确定模型中待定系数的求解方法。结合试验结果对模型进行验证,模型拟合效果良好,具有一定的合理性。  相似文献   

9.
常剪应力路径下含气砂土的三轴试验   总被引:1,自引:0,他引:1  
孔亮  刘文卓  袁庆盟  董彤 《岩土力学》2019,40(9):3319-3326
天然气水合物完全分解时,产生的气体使得能源土孔隙压力急速增加,有效应力减小,进而引起土体液化破坏。此时深海能源土斜坡的应力状态与静力液化失稳过程可简化为含气土在常剪应力排水(或不排水)应力路径下的破坏问题。以此为背景,提出了制备含气砂土试样的改进充气管法,并开展了含气砂土的常剪应力路径三轴试验。22组试验结果表明:同一孔隙比的含气密砂在不同围压与常剪应力下具有相同的失稳线;含气砂土试样失稳时的应力比和体变均随初始相对密实度的增大而增大;含气密砂在常剪应力路径下饱和度对失稳特征影响的规律性在排水与不排水条件下均不明显,但在不排水条件下含气砂土的孔压(或体变)对变形的敏感性降低;含气密砂在常剪应力路径到达失稳点之后,排水条件下是瞬变的液化鼓胀破坏,不排水条件下是渐变的剪切破坏。  相似文献   

10.
A three‐phase soil model is proposed to simulate stress wave propagation in soil mass to blast loading. The soil is modelled as a three‐phase mass that includes the solid particles, water and air. It is considered as a structure that the solid particles form a skeleton and their voids are filled with water and air. The equation of state (EOS) of the soil is derived. The elastic–plastic theory is adopted to model the constitutive relation of the soil skeleton. The damage of the soil skeleton is also modelled. The Drucker–Prager strength model including the strain rate effect is used to describe the strength of the soil skeleton. The model is implemented into a hydrocode Autodyn. The recorded results obtained by explosion tests in soil are used to validate the proposed model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
天然沉积粉质黏土的应力路径试验研究   总被引:1,自引:0,他引:1  
殷杰  刘夫江  刘辰  刘春伟 《岩土力学》2013,34(12):3389-3392
天然沉积土在沉积过程中产生了结构性和各向异性,使其受力变形特性与重塑土存在明显的差异。实际工程中的天然土体往往在受荷过程中会经历不同的应力路径,因此,需要开展考虑结构性和各向异性影响的应力路径试验。通过研究不同应力路径下土体的力学特性,为建立复杂应力路径下的合理的本构模型提供试验依据。采用大直径PVC管取样器获取张家港地区地下2.5 m深的粉质黏土不扰动土样,通过GDS三轴仪对土样进行了K0固结不同排水应力路径试验。结果表明,应力路径对不扰动土样的体积变形和剪切变形均有显著影响,且球应力和偏应力对土的体应变和剪应变存在交叉影响。无论以体积变形为主还是剪切变形为主的应力路径下,应力-应变曲线都有明显的屈服性状。通过描绘试验所得各应力路径下的屈服点,获得张家港不扰动土样的屈服轨迹大致呈倾斜的椭圆形状,采用Wheeler模型的屈服面与试验屈服点的吻合程度要优于Nakano模型。  相似文献   

12.
地表移动土体受力规律及其对土体强度影响   总被引:1,自引:0,他引:1  
王立波  于广云 《岩土力学》2004,25(Z2):445-448
地表移动分为初始移动过程和土体固结过程,用有限元分析了厚松散土层初始移动过程中地表土体的孔隙水压和横向有效应力的变化规律、有效应力路径和横向有效应力随深度的变化;对比了初始移动结束时和土体固结后横向有效应力随沉降量和下沉影响半径的变化规律,基于横向有效应力和土体强度的关系分析了土体强度的变化.  相似文献   

13.
The ability of discrete element models to describe quantitatively (and not only qualitatively) the constitutive behaviour of a dense sand is assessed in this paper. Two kinds of 3D discrete models are considered. Both consider spheres as elementary particles. Nevertheless, the first model implements a contact law with rolling resistance whereas the second takes into account clumps made of two spheres. The discrete models are calibrated and validated from mechanical tests performed on a dense Hostun sand with a true triaxial apparatus. The calibration is carried out from axisymmetric drained compression tests, while the validation is discussed from monotonic and cyclic stress proportional loading paths and from a circular stress path in the deviatoric stress plane. The quality of the predictions of the discrete models are evaluated by comparison with the predictions given with advanced phenomenological constitutive relations, mainly an incrementally non-linear relation. Predictions given by the discrete models are remarkable, particularly when it is put in perspective with respect to the very few number of mechanical tests required for their calibration. However, these results and conclusions were reached in enabling conditions, and some limitations of such discrete models should be kept in mind.  相似文献   

14.
This paper presents a new plasticity model developed for the simulation of monotonic and cyclic loading of non‐cohesive soils and its implementation to the commercial finite‐difference code FLAC, using its User‐Defined‐Model (UDM) capability. The new model incorporates the framework of Critical State Soil Mechanics, while it relies upon bounding surface plasticity with a vanished elastic region to simulate the non‐linear soil response. Stress integration of constitutive relations is performed using a recently proposed explicit scheme with automatic error control and substepping, which so far has been employed in the literature only for constitutive models aiming at monotonic loading. The overall accuracy of this scheme is evaluated at element level by simulating cyclic loading along complex stress paths and by using iso‐error maps for paths involving change of the Lode angle. The performance of the new constitutive model and its stress integration scheme in complex boundary value problems involving earthquake‐induced liquefaction is evaluated, in terms of accuracy and computational cost, via a number of parametric analyses inspired by the successful simulation of the VELACS centrifuge Model Test No. 2 studying the lateral spreading response of a liquefied sand layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A new data‐mining approach is presented for modelling of the stress–strain and volume change behaviour of unsaturated soils considering temperature effects. The proposed approach is based on the evolutionary polynomial regression (EPR), which unlike some other data‐mining techniques, generates a transparent and structured representation of the behaviour of systems directly from raw experimental (or field) data. The proposed methodology can operate on large quantities of data in order to capture nonlinear and complex relationships between contributing variables. The developed models allow the user to gain a clear insight into the behaviour of the system. Unsaturated triaxial test data from the literature were used for development and verification of EPR models. The developed models were also used (in a coupled manner) to produce the entire stress path of triaxial tests. Comparison of the EPR model predictions with the experimental data revealed the robustness and capability of the proposed methodology in capturing and reproducing the constitutive thermomechanical behaviour of unsaturated soils. More importantly, the capability of the developed models in accurately generalizing the predictions to unseen data cases was illustrated. The results of a sensitivity analysis showed that the models developed from data are able to capture and represent the physical aspects of the unsaturated soil behaviour accurately. The merits and advantages of the proposed methodology are also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The dynamic response analysis combined with the generalized return-mapping algorithm is applied to the integration algorithms of viscoplastic constitutive relations including the effect of the shear band. The kinematic hardening model based on modified and extended soil model with isotropic strain-hardening–softening is employed. In this paper, the TESRA (temporary effect of strain rate and acceleration) model is employed for the nonlinear viscosity of sand. The constitutive equations of rate-dependent plasticity originally proposed by Duvaut–Lions are employed as the base of the solutions. Liquefaction of a buried pipe is analyzed by finite element method by employing the above mentioned constitutive relations and the calculated results are compared with experimental results. The dynamic response analysis is applied to the solutions of the problems. The kinematic hardening–softening viscoplastic constitutive relations for geomaterials are promising for the predictions of cumulative deformations and liquefaction of the buried pipe. A great deal of experimental results indicate that the stress is a unique function of irreversible strain and its rate.  相似文献   

17.
软土在不同应力路径下的力学特性分析   总被引:7,自引:0,他引:7  
曾玲玲  陈晓平 《岩土力学》2009,30(5):1264-1270
通过固结不排水剪应力路径试验对广州南沙典型软土在不同固结条件的力学特性进行了系统研究。分析了初始固结状态对软黏土应力路径依赖性的影响,比较了不同应力路径下土的应力-应变关系特征和孔隙水压力变化规律,探讨了孔压分布与土体变形特征的关系,认为侧向卸荷会造成剪应力增加、体应力减小,从而使土体产生剪胀趋势。研究结果还表明,不排水条件下的有效应力路径主要与土样初始固结状态有关,因而同一固结状态下的有效应力路径具有唯一性。另外,试验中的剪切控制方式对有效应力路径有明显影响,但对土体抗剪强度的影响可以忽略。  相似文献   

18.
冻土三轴冻胀应力-应变试验方法研究   总被引:3,自引:1,他引:2  
仇文革  孙兵 《冰川冻土》2010,32(1):116-120
提出了一种试验方法,研究土体或破碎岩体在不同含水率、不同温度、不同应力状态下冻结后产生的冻胀应变与冻胀力之间的关系,并针对寒区隧道提出了一种新型三轴冻胀应力-应变关系.试验设备采用应变控制式三轴仪及低温冷冻库,通过改变测力环的刚度来实现不同约束状态,进而得到土体或破碎岩体在不同约束状态下冻结后产生的冻胀应变及冻胀力,将这些特征点进行回归分析即可得到冻胀应力应变关系.根据上述试验方法,对饱和砂土进行三轴冻胀应力-应变试验.结果表明:冻胀应力应变关系呈对数曲线变化,且冻胀力随冻胀应变的对数呈线性变化;轴向约束越强,冻胀应变越小,冻胀力越大,且冻胀力随轴向约束强度的增大趋于某一极值;围压越大,冻胀力和冻胀应变越大.  相似文献   

19.
The axial stress–strain relations of embedded granular columns encapsulated with flexible reinforcement were evaluated using an analytical procedure based on the cavity expansion method. This proposed method has firstly been verified through an experimental triaxial test on a reinforced sand specimen. A normalized relation was established between the volumetric change and the axial strain of soil to enable the analysis of granular material behavior under a continuous increase in lateral pressure. The analytical results show that the reinforced granular columns embedded in clay behave differently from granular columns subjected only to a constant confining pressure. It is found that reinforcing a column with a sleeve at the top portion will be adequate to prevent the column from bulging and also improve its load carrying capacity. The optimum skirting length that a sleeve can deter a granular column from bulging depends on the characteristics of the in situ soil and the stiffness and yield strength of the sleeve.  相似文献   

20.
Shen  Yang  Du  Wenhan  Xu  Junhong  Rui  Xiaoxi  Liu  Hanlong 《Acta Geotechnica》2022,17(2):411-426

Plenty of geomechanics tests and theories have confirmed the existence of non-coaxiality while soil is subjected to principal stress rotation. This paper investigated the influence of one particular principal stress path, which is a ‘heart-shape’ stress path that is normally induced by high-speed train loading, on the non-coaxiality of reconstituted soft clay. Hollow cylinder apparatus was employed to carry out series of undrained dynamic tests. The goals of this study were to (1) reveal the essential factors of complex cyclic loading paths that influence non-coaxiality in clayey soil and (2) quantify the influence of the factors on variation in non-coaxiality under the high-speed training loading. To analyze the non-coaxiality under high-speed train loading, (a) the pure rotation stress path was utilized as comparison for underling the different influence that ‘heart-shape’ stress path has from other conventional cyclic stress paths. (b) Two variables, dynamic stress ratio and tension–compression amplitude ratio, were introduced in analyzing the evolution of the non-coaxial angle. (c) Based on the test results, equations for describing the revolution of non-coaxiality were proposed which can help to describe the variation in non-coaxial angle under complex loadings quantitatively and understand the influence of the major factors of the stress path intensively.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号