首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Sliding isolators with curved surface are effective base isolation systems incorporating isolation, energy dissipation and restoring mechanism in one unit. However, practical utility of these systems, such as friction pendulum system (FPS) has limitations due to constant isolator period and restoring force characteristics. A new isolator called the variable frequency pendulum isolator (VFPI) that overcomes these limitations while retaining all the advantages has been described in this paper. VFPI has oscillation frequency decreasing with sliding displacement, and the restoring force has an upper bound so that the force transmitted to the structure is limited. The mathematical formulations for the response of a SDOF structure and energy balance are also described. Parametric studies have been carried out to critically examine the behaviour of structures isolated with VFPI, FPS and PF system. From these investigations, it is concluded that the VFPI combines the advantages of both FPS and PF system, without their undesirable properties. The VFPI performance is also found to be stable during low‐intensity excitations, and fail‐safe during high‐intensity excitations. VFPI is found to exhibit robust performance for a wide range of structure, isolator and ground motion characteristics clearly demonstrating its advantages. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The paper analyzes the influence of friction pendulum system (FPS) isolator properties on the seismic performance of base‐isolated building frames. The behavior of these systems is analyzed by employing a two‐degree‐of‐freedom model accounting for the superstructure flexibility, whereas the FPS isolator behavior is described by adopting a widespread model that considers the variation of the friction coefficient with the velocity. The uncertainty in the seismic input is taken into account by considering a set of natural records with different characteristics scaled to increasing intensity levels. The variation of the statistics of the response parameters relevant to the seismic performance is investigated through the nondimensionalization of the motion equation and an extensive parametric study carried out for different isolator and system properties. The proposed approach allows to explore a wide range of situations while limiting the required nonlinear response history analyses. Two case studies consisting of base‐isolated building frames described as shear‐type systems are finally investigated in order to demonstrate the capabilities of the proposed simplified model in unveiling the essential characteristics of the performance of buildings isolated with FPS bearings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This study aims at evaluating the optimal properties of friction pendulum bearings to be employed for the seismic protection of elastic isolated structural systems under earthquake excitations with different characteristics in terms of frequency content. A two-degree-of-freedom model is considered to describe the isolated system behavior while accounting for the superstructure flexibility and a non-dimensional formulation of the governing equations of motion is employed to relate the characteristic parameters describing the isolator and structure properties to the response parameters of interest for the performance assessment. Seismic excitations are modeled as time-modulated filtered Gaussian white noise random processes of different intensity within the power spectral density method. The filter parameters control the frequency content of the random excitations and are calibrated to describe stiff, medium and soft soil conditions, respectively. Finally, multi-variate regression expressions are obtained for the optimum values of the friction coefficient that minimize the superstructure displacements relative to the base mass as a function of the structural system properties, of the seismic input intensity and of the soil condition.  相似文献   

4.
This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire system, including a superstructure, seismic isolator, and numerous soil layers overlying a half-space, were obtained. The formulations obtained in this study simply in terms of well-known frequencies and mechanical impedance ratios can explicitly interpret the dynamic behavior of a base-isolated structure interacting with multiple soil layers overlying a half-space. The key factors influencing the performance of the isolation system are the damping ratio of the isolator and the ratio of the natural frequency of the fixed-base structure to that of the isolated structure by assuming that the superstructure moves as a rigid body. This study reveals that higher damping in the base isolator is unfavorable to higher mode responses that usually dominate the responses of the superstructure and that the damping mechanism plays an important role in transmitting energy in addition to absorbing energy. It is also concluded that it is possible to design a soft soil layer as an isolation system for isolating vibration energy.  相似文献   

5.
Seismic response of a one-storey structure with sliding support to bidirectional (i.e. two horizontal components) earthquake ground motion is investigated. Frictional forces, which are mobilized at the sliding support, are assumed to have ideal Coulomb-friction characteristics. Coupling effects due to circular interaction between the frictional forces are incorporated in the governing equations of motion. Effects of bidirectional interaction of frictional forces on the response are investigated by comparing the response to two-component excitation with the corresponding response produced by the application of single-component excitations in each direction independently. It is observed that the response of the sliding structure is influenced significantly by the bidirectional interaction of frictional forces. Further, it is shown that the design sliding displacement may be underestimated if the bidirectional interaction of frictional forces is neglected and the sliding structures are designed merely on the basis of single-component excitation.  相似文献   

6.
This study develops a straightforward approximate method to estimate inelastic displacement ratio, C1 for base‐isolated structures subjected to near‐fault and far‐fault ground motions. Taking into account the inelastic behavior of isolator and superstructure, a 2 degrees of freedom model is employed. A total of 90 earthquake ground motions are selected and classified into different clusters according to the frequency content features of records represented by the peak ground acceleration to peak ground velocity ratio, Ap/Vp. A parametric study is conducted, and effective factors in C1 (i.e., fundamental vibration period of the superstructure, Ts; postyield stiffness ratio of the superstructure, αs; strength reduction ratio, R; vibration period of the isolator, Tb; strength of the isolator, Q; ratio of superstructure mass to total mass of the system, γm) are recognized. The results indicate that the practical range of C1 values could be expected for base‐isolated structures. Subsequently, effective parameters are included in simple predictive equations. Finally, the accuracy of the proposed approximate equations is evaluated and verified through error measurement, and comparisons are made in the analyses.  相似文献   

7.
Simplified methods of analysis described in codes and specifications for seismically isolated structures are always used either directly in special cases or for checking the results of nonlinear response history analysis (RHA). In this study, the maximum isolator displacements and base shears determined by nonlinear RHA are compared with those determined by the equivalent lateral force (ELF) procedure in order to assess the accuracy of the simplified method in the case of earthquakes with near field characteristics. Features of this study are that the ground motions used in analysis are selected and scaled using contemporary concepts and that the ground excitation is considered bi-directional. It is shown that the simplified method provides acceptably accurate predictions of shear isolator displacements and shear forces for a range of isolator properties and ground motions representative of stiff and soft soil conditions.  相似文献   

8.
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.  相似文献   

9.
In this paper, the effects of pulse period associated with near‐field ground motions on the seismic demands of soil–MDOF structure systems are investigated by using mathematical pulse models. Three non‐dimensional parameters are employed as the crucial parameters, which govern the responses of soil–structure systems: (1) non‐dimensional frequency as the structure‐to‐soil stiffness ratio; (2) aspect ratio of the superstructure; and (3) structural target ductility ratio. The soil beneath the superstructure is simulated on the basis of the Cone model concept. The superstructure is modeled as a nonlinear shear building. Interstory drift ratio is selected as the main engineering demand parameter for soil–structure systems. It is demonstrated that the contribution of higher modes to the response of soil–structure system depends on the pulse‐to‐interacting system period ratio instead of pulse‐to‐fixed‐base structure period ratio. Furthermore, results of the MDOF superstructures demonstrate that increasing structural target ductility ratio results in the first‐mode domination for both fixed‐base structure and soil–structure system. Additionally, increasing non‐dimensional frequency and aspect ratio of the superstructure respectively decrease and increase the structural responses. Moreover, comparison of the equivalent soil–SDOF structure system and the soil–MDOF structure system elucidates that higher‐mode effects are more significant, when soil–structure interaction is taken into account. In general, the effects of fling step and forward directivity pulses on activating higher modes of the superstructure are more sever in soil–structure systems, and in addition, the influences of forward directivity pulses are more considerable than fling step ones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The inelastic response of one-storey systems with one axis of asymmetry subjected to bi-directional base motion is studied in this paper. The effect of the system parameters on response is also evaluated: uncoupled torsional-to-lateral frequency ratio, stiffness eccentricity, and yield strength of the lateral resisting elements. The ensemble of earthquake records used consists of 15 two-component strong ground motions. The response to uni-directional excitation is considered first to examine the influence of the system parameters and to serve as a basis to examine the results of the bi-directional case, which are presented in terms of average spectra for bi- over uni-directional lateral-deformation ratios. It is shown that the effect of inelastic behaviour is, on the average, noteworthy for stiff structures, in turn, the same structures are the most affected by the action of bi-directional ground motions. The effect of the relative intensity of the two orthogonal ground motion components is also studied. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Peak ground acceleration (PGA), frequency content and time duration are three fundamental parameters of seismic loading. This study focuses on the seismic load frequency and its effect on the underground structures. Eight accelerograms regarding different occurred earthquakes that are scaled to an identical PGA and variation of ground motion parameters with ratio of peak ground velocity (PGV) to PGA, as a parameter related to the load frequency, are considered. Then, concrete lining response of a circular tunnel under various seismic conditions is evaluated analytically. In the next, seismic response of underground structure is assessed numerically using two different time histories. Finally, effects of incident load frequency and frequency ratio on the dynamic damping of geotechnical materials are discussed. Result of analyses show that specific energy of seismic loading with identical PGA is related to the seismic load frequency. Furthermore, incident load frequency and natural frequency of a system have influence on the wave attenuation and dynamic damping of the system.  相似文献   

14.
近断层地震动中长周期、短持时和高能量的加速度脉冲将对高层摩擦摆基础隔震结构的减震性能产生不利影响,考虑土-结构相互作用(SSI效应)后的隔震结构将产生动力耦合效应,可能进一步放大隔震结构地震响应。为此,通过一幢框架-核心筒高层摩擦摆基础隔震结构的非线性地震响应分析,考察近断层脉冲型地震动作用下框架-核心筒摩擦摆基础隔震结构的层间位移角、楼层加速度和隔震层变形等响应规律,揭示隔震体系的损伤机理。基于集总参数SR (sway-rocking)模型,分析不同场地类别与不同地震动类型对隔震体系动力响应影响规律。结果表明:高层摩擦摆基础隔震结构在近断层脉冲型地震动作用下的减震效果相比普通地震动减震效果变差,楼层剪力、层间位移角和隔震层变形等超越普通地震动作用下的1.5倍;对于Ⅲ和Ⅳ类场地类别,考虑SSI效应使隔震结构的地震响应进一步放大,弹塑性层间位移角随着土质变软增大尤为明显。  相似文献   

15.
在Simulink环境下对桩-土-结构相互作用系统进行了仿真计算分析,并利用反应谱理论研究了SSI效应对上部结构动力响应的影响.采用集中参数模型考虑桩-土对上部结构的影响,上部结构简化为单质点模型,给出了桩-土-结构系统的状态方程,根据模型状态方程在Simulink环境下建立系统的仿真模型,得到了不同场地条件下SSI效应对上部结构加速度谱与位移谱的影响规律.计算结果表明:位移谱基本保持着“刚性假定<Ⅰ类场地<Ⅱ类场地<Ⅲ、Ⅳ类场地”的规律;加速度谱受场地影响的规律不太明显,但在场地较软、桩基刚度较大时,加速度比刚性假定下的要小,而在其他情况下,加速度则比刚性假定下的要大.  相似文献   

16.
层间隔震偏心结构双向地震耦合响应研究   总被引:1,自引:1,他引:0       下载免费PDF全文
建立双向地震作用下层间隔震双向偏心结构侧扭耦联分析模型;考虑上部结构及下部结构的弹塑性模型,隔震支座采用双向耦合非线性Bouc-wen模型模拟;分析偏心参数对层间隔震双向偏心结构的影响规律;评价双向地震作用下我国抗震规范给出的扭转影响系数静力预测值的准确性。结果表明,双向地震作用下设置中间柔性隔震层可以减小上\,下部结构扭转的耦连效应;下部结构存在双向偏心会对隔震层和下部结构扭转反应带来不利影响;LRB耦合效应对层间隔震地震响应影响较小;当下部结构偏心率较大时现行规范计算扭转系数偏于不安全。  相似文献   

17.
为了准确分析FPS隔震桥梁的纵向地震碰撞反应,针对一典型3跨FPS隔震简支梁桥,建立了考虑FPS双向耦合效应和梁缝处三维碰撞效应的非线性动力计算模型,分析双向地震作用下FPS隔震简支梁桥纵向地震碰撞反应;研究支座半径和摩擦系数对简支梁桥纵向地震碰撞反应的影响规律。研究结果表明:横向地震作用会增大简支梁邻梁间纵向地震碰撞次数和碰撞力,降低墩底纵向剪力;为减小地震碰撞反应,设计时可适当增大支座半径和支座摩擦系数。  相似文献   

18.
In the current code requirements for the design of base isolation systems for buildings located at near-fault sites, the design engineer is faced with very large design displacements for the isolators. To reduce these displacements, supplementary dampers are often prescribed. These dampers reduce displacements, but at the expense of significant increases in interstorey drifts and floor accelerations in the superstructure. An elementary analysis based on a simple model of an isolated structure is used to demonstrate this dilemma. The model is linear and is based on modal analysis, but includes the modal coupling terms caused by high levels of damping in the isolation system. The equations are solved by a method that avoids complex modal analysis. Estimates of the important response quantities are obtained by the response spectrum method. It is shown that as the damping in the isolation system increases, the contribution of the modal coupling terms due to isolator damping in response to the superstructure becomes the dominant term. The isolator displacement and structural base shear may be reduced, but the floor accelerations and interstorey drift are increased. The results show that the use of supplemental dampers in seismic isolation is a misplaced effort and alternative strategies to solve the problem are suggested. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
斜交桥梁由于其不规则的结构形式使其受力规律与规则桥梁相比具有特殊性和复杂性,在地震作用下梁体的平动与转动存在弯扭耦合效应,导致结构动力响应分析复杂。针对斜交桥梁的结构特点,建立包含桩土相互作用的三维有限元模型,在考虑水平双向地震作用下,采用反应谱法及时程分析法对京包高速公路某互通式斜交桥梁进行地震反应分析。结果表明:互通式简支斜交桥梁的地震响应受地震动输入方向的影响较大,在考虑碰撞效应后,碰撞涉及结构部位的地震位移显著增加,地震内力也出现较大差异,即说明在斜交桥梁抗震设计时有必要适当考虑地震动输入方向和梁端与墩台及相邻梁端的碰撞效应。  相似文献   

20.
For the public welfare and safety, buildings such as hospitals, industrial facilities, and technology centers need to remain functional at all times; even during and after major earthquakes. The values of these buildings themselves may be insignificant when compared to the cost of loss of operations and business continuity. Seismic isolation aims to protect both the integrity and the contents of a structure. Since the tolerable acceleration levels are relatively low for continued services of vibration-sensitive high-tech contents, a better understanding of acceleration response behaviors of seismically isolated buildings is necessary. In an effort to shed light to this issue, following are investigated via bi-directional time history analyses of seismically isolated benchmark buildings subject to historical earthquakes: (i) the distribution of peak floor accelerations of seismically isolated buildings subject to seismic excitations in order to find out which floors are likely to sustain the largest accelerations; (ii) the influence of equivalent linear modeling of isolation systems on the floor accelerations in order to find out the range of possible errors introduced by this type of modeling; (iii) the role of superstructure damping in reducing floor accelerations of seismically isolated buildings with flexible superstructures in order to find out whether increasing the superstructure damping helps reducing floor accelerations notably. Influences of isolation system characteristics and superstructure flexibility are both taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号