首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Data processing in a spaceborne synthetic aperture radar (SAR) imaging the ocean surface is affected by earth rotation, orbit eccentricity, and wave motion. Without compensation these sources will cause the images to shift in range and in-track positions and also cause defocusing. Ionospheric granularities may degrade image quality. Calculations of the magnitudes of these effects are presented.  相似文献   

2.
A number of models which would explain ocean wave imagery taken with a synthetic aperture imaging radar are analyzed analytically and numerically. Actual radar imagery is used to support some conclusions. The models considered correspond to three sources of radar backscatter cross section modulation: tilt modulation, roughness variation, and the wave orbital velocity. The effect of the temporal changes of the surface structure, parametric interactions, and the resulting distortions are discussed.  相似文献   

3.
本文针对海洋地球物理勘探数据处理当中偏移成像剖面中深层层位模糊,像场能量较弱的问题,从起伏海底在反射地震数据采集当中某个时刻发生变化着手,分析讨论了当海底发生微小变化以及海底发生稍大变化时模型差异对波场记录以及偏移成像剖面的影响,通过分析对比原始速度模型以及变化后速度模型同一点位上采集的波场记录以及波场记录在变化前后模型上的偏移成像剖面可以得出:不管数据采集是沿着测线方向进行还是逆着测线方向进行,对于起伏海底发生微小变化的速度模型,海底的微小变化对波场记录以及偏移剖面的影响很小;对于起伏海底发生较大变化的速度模型,海底的变化对波场记录以及偏移剖面的影响非常大。  相似文献   

4.
This study reports the occurrence of anhydrite in hydrothermally altered pillow basalt (12°50.55′N, 103°57.62′W, water depth 2 480 m), which may have been produced in the basalt during seawater-basalt interaction in the laboratory. The existence of anhydrite in the altered basalt indicates extensive hightemperature hydrothermal alteration at the surface of seafloor pillow basalt. Microprobe analysis shows significant chemical zoning in the hydrothermally altered pillow basalt, in which Ca, Si and Al contents decrease and P, Fe, Mn, Cr and S contents increase from fresh basalt to altered basalt. The negative correlation between Rb-Sr and Li-Sr, and negative correlation between Li-Ca and Rb-Ca in the high-temperature vent fluids show that these fluids underwent anhydrite precipitation before fluid jetting due to mixing with seawater in the sub-seafloor. Based on these observations, we show that not all Ca in the anhydrite comes from basalt in the reaction zone, and that the basalts on the seafloor or in the upflow zone may also provide Ca for anhydrite.  相似文献   

5.
东太平洋海盆海山玄武岩特征   总被引:1,自引:0,他引:1  
东太平洋海山玄武岩属于大洋岛屿拉斑玄武岩,主要由橄榄拉斑玄武岩、石英拉斑玄武岩和橄榄玄武岩组成,具有拉斑玄武岩系列和过渡玄武岩系列。岩石具有基质为拉斑玄武结构或间隐结构的斑状结构和气孔构造,斑晶主要由拉长石和普通辉石组成,基质除拉长石和玻璃质外,还有少量普通辉石和磁铁矿等,岩石化学成分中Al2O3、Na2O、K2O含量偏高。玄武岩中稀土元素分配型式基本相同,曲线较平坦,稀土分馏不明显,具Ce、Eu负异常,反映岩石具有共同的成因,属晚白垩世以来的产物  相似文献   

6.
本文提出了一种地震折射液的虚拟射线理论,根据该理论,只要已知地表层的速度,即可直接由折射波信息提取地震参数,从而可实现折射界面的反演。 文中通过实际介质模型的计算机实验结果,验证了该理论的正确性。  相似文献   

7.
This study presents the modelling of 2-D and 3-D wide-angle seismic data acquired on the complex, volcanic passive margin of the Vøring Plateau, off Norway. Three wide-angle seismic profiles were shot and recorded simultaneously by 21 Ocean Bottom Seismometers, yielding a comprehensive 3-D data set, in addition to the three in-line profiles. Coincident multi-channel seismic profiles are used to better constrain the modelling, but the Mesozoic and deeper structures are poorly imaged due to the presence of flood basalts and sills. Velocity modelling reveals an unexpectedly large 30 km basement high hidden below the flood basalt. When interpreted as a 2-D structure, this basement high produces a modelled gravity anomaly in disagreement with the observed gravity. However, both the gravity and the seismic data suggest that the structure varies in all three directions. The modelling of the entire 3-D set of travel times leads to a coherent velocity structure that confirms the basement high; it also shows that the abrupt transition to the slower Cretaceous basin coincides in position and orientation with the fault system forming the Rån Ridge. The positive gravity anomaly over the Rån Ridge originates from the focussed and coincident elevation of the high velocity lower crust and pre-Cretaceous basement. Although the Moho is not constrained by the seismic data, the gravity modelled from the 3-D velocity model shows a better fit along the profiles. This study illustrates the interest of a 3-D acquisition of wide-angle seismic over complex structures and the benefit of the subsequent integrated interpretation of the seismic and gravity data.  相似文献   

8.
In this paper, a time-domain numerical model is established for computing the action of internal solitary wave on marine structures and structure motion responses. For a cylindrical structure, its side and bottom are discretized by pole and surface elements, respectively. The drag and inertial forces in the perpendicular direction of the structure are computed by the Morison equation from the pole elements, and the Froude–Krylov force in the axial direction of the structure due to internal wave motion is computed by integration of the dynamic pressure over the surface elements. The catenary theory is used to analyze the reaction force due to mooring lines, and the motion equation of the marine structure is solved by the fourth-order Runge–Kutta method in the time domain. The model is used to calculate the interaction of the internal solitary wave with a Spar platform with mooring system, and the surface wave action with the platform has also been computed by a frequency-domain boundary element method for comparison. Through the comparison based on a practical internal wave and surface wave states, it can be concluded that the internal wave force on the structure is only 9% of the one due to surface waves. However, the motion response due to the internal wave is much greater than the one due to the surface waves. It shows that the low-frequency effect of internal solitary waves is a great threat to the safety of marine structures.  相似文献   

9.
An approach to the retrieval of sea wave spatial spectra based on satellite optical imagery in linear and nonlinear approximations is described. Physical mechanisms of the formation of disturbed sea surface brightness fields recorded by remote sensing equipment are analyzed. Wave spectra retrieval methods using brightness field formation models that consider linear and nonlinear dependencies on sea surface slopes are suggested. A method for the construction of operators that retrieve the spatial spectra of surface wave slopes and elevations from aerospace imagery and take into account nonlinear modulations of disturbed sea surface brightness fields is developed. This method is based on the numerical simulation of sea surface images and the construction of a retrieving operator with respect to a set of parameters determined by aerospace imaging conditions. Examples of the use of the developed methods are given.  相似文献   

10.
合成孔径雷达图像中海洋内波的特征检测   总被引:1,自引:0,他引:1  
海洋内波在合成孔径雷达(SAR)图像中具有特定纹理分布,因此可以根据海洋内波SAR图像的纹理分布特性,进行内波海面特征检测。利用功率谱对具有不同纹理特征的SAR图像进行分析,并对特征进行分类统计得出内波的功率谱特征。在海洋内波区域,利用多孔小波变换及多尺度融合提取海洋内波特征,在此基础上对波-流散射系数进行提取。提出了"内波特征的功率谱特征-多孔小波综合检测算法",为海洋内波参数反演奠定了基础。  相似文献   

11.
Employing a synthetic aperature radar (SAR) imaging model based on fundamental models of nonlinear hydrodynamics, electromagnetic scattering from a two-scale surface, and SAR imaging of a time-variant scene, the optimal (minimum mean-square error) estimates of the parameters of a sinusoidal, long gravity wave, and the short gravity wave ensemble are found in an efficient recursive form and their performance evaluated, generally by numerical simulation, in a one-dimensional stationary version. An application is made to Seasat-SAR complex imagery.  相似文献   

12.
As the Mesozoic sediments contribute most of the oil and gas reserves of the world, we present an integrated interpretation approach using magnetotellurics (MT) and surface geochemical prospecting studies to demarcate hydrocarbon prospective Gondwana (Mesozoic) formations underneath the Deccan flood basalts of Late Cretaceous age across Narmada-Tapti rift (between Bhusawal and Barwah) in Central India. The MT interpretation shows deep (∼5 km) basement structure between southern and central part of the MT profile however, it gradually becomes shallower to either ends of the profile with a predominant basement depth reduction in the northern end compared to the southern end. The geophysical results suggest thick (2-3.5 km) Mesozoic sediments in the area characterized by deep basement structure. The geochemical analysis of the near surface soil samples indicate higher concentrations of light gaseous hydrocarbons constituents over the area marked with thick sub-basalt Mesozoic formations. Analyses of the geochemical data imply that these hydrocarbons are genetically related, generated from a thermogenic source and these samples fall in the oil-producing zone. The temperature-depth estimations in the region supports favorable temperature conditions (80-120 °C) for oil generation at basement depths.  相似文献   

13.
Although typically interpreted as 2D surfaces, faults are 3D narrow zones of highly and heterogeneously strained rocks, with petrophysical properties differing from the host rock. Here we present a synthetic workflow to evaluate the potential of seismic data for imaging fault structure and properties. The workflow consists of discrete element modeling (DEM) of faulting, empirical relations to modify initial acoustic properties based on volumetric strain, and a ray-based algorithm simulating prestack depth migration (PSDM). We illustrate the application of the workflow in 2D to a 100 m displacement normal fault in a kilometer size sandstone-shale sequence at 1.5 km depth. To explore the effect of particle size on fault evolution, we ran two DEM simulations with particle assemblages of similar bulk mechanical behavior but different particle size, one with coarse (1–3 m particle radii) and the other with fine (0.5–1.5 m particle radii) particles. Both simulations produce realistic but different fault geometries and strain fields, with the finer particle size model displaying narrower fault zones and fault linkage at later stages. Seismic images of these models are highly influenced by illumination direction and wave frequency. Specular illumination highlights flat reflectors outside the fault zone, but fault related diffractions are still observable. Footwall directed illumination produces low amplitude images. Hanging wall directed illumination images the shale layers within the main fault segment and the lateral extent of fault related deformation. Resolution and the accuracy of the reflectors are proportional to wave frequency. Wave frequencies of 20 Hz or more are necessary to image the different fault structure of the coarse and fine models. At 30–40 Hz, there is a direct correlation between seismic amplitude variations and the input acoustic properties after faulting. At these high frequencies, seismic amplitude variations predict both the extent of faulting and the changes in rock properties in the fault zone.  相似文献   

14.
李力  高贺朋 《海洋工程》2018,36(5):74-82
针对深海玄武岩岩芯样品在高围压下难以破碎获得的问题,理论分析了金刚石与岩石的相互作用。采用单轴与三轴压缩实验,获得了模拟深海玄武岩的力学参数;基于颗粒流理论,建立了深海玄武岩线性平行黏结颗粒流数值模型,数值模拟高围压下金刚石颗粒破碎玄武岩的过程,获得了金刚石与玄武岩相互作用的动态力学响应规律,初步阐明金刚石破碎玄武岩机理。研究表明,玄武岩颗粒间黏接破坏主要为拉伸失效,玄武岩与金刚石接触力体现为周期应力,玄武岩产生间歇式裂隙扩散。理论分析与仿真结果基本吻合,表明建模与仿真的正确性,为深海便携式取芯钻机设计提供了理论基础与技术依据。  相似文献   

15.
基于Sentinel-3载荷OLCI和SRAL数据的内波同步探测研究   总被引:1,自引:1,他引:0  
The ocean and land color instrument(OLCI) and synthetic aperture radar altimeter(SRAL) installed aboard the Sentinel-3 satellite have been in orbit for operational uses. In this study, data collected from Sentinel-3 are used to investigate internal waves in the South China Sea. An internal wave is detected using an OLCI image with a resolution of 300 m, and an analysis was performed with a quasi-synchronous moderate-resolution imaging spectroradiometer(MODIS) image. The opposite characteristics of OLCI and MODIS images of the same internal wave are explained by the critical angle in brightness reversals. The unique observational geometry of the OLCI image and its influence on observations of internal waves are discussed. The distribution of σ0 and sea surface height anomalies(SSHAs) induced by internal waves are studied using SRAL records. The σ0 records of SRAL occasionally show less sensitivity to the modulation of internal waves, which may be attributed to the observational geometry, while SSHAs show obvious variations. The synchronous pairing of OLCI images and SRAL records are analyzed to extract the three-dimensional sea surface signatures induced by internal waves. The analysis demonstrates that the profile of SSHAs in the surface shows an opposite phase to the profiles of internal waves in the ocean. The opposite phase relationship, observed in the remote sensing view, is also confirmed with a laboratory experiment.  相似文献   

16.
《Oceanologica Acta》2002,25(2):87-99
During previous field experiments in the North Sea it was often assumed that the water column in such shallow coastal tidal waters is vertically well mixed and stratification was neglected when discussing the Normalized Radar Cross Section modulation caused by the sea floor. In this paper the influence of quasi resonant internal waves with the sea bed on the radar imaging mechanism of submarine sand waves itself is investigated. In situ data of the tidal current velocity and several water quality parameters such as sea surface temperature, fluorescence, and beam transmittance were measured in the Southern Bight of the North Sea in April 1991. Simulations of the total NRCS modulation caused by sand waves and internal waves as a function of the current gradient or strain rate induced by the internal wave current field at the sea surface have been carried out using the quasi-steady approximation and linear internal wave theory. As a first approximation the strain rate depending on stratification was calculated using the two-layer model. These simulations demonstrate that at least a density difference between the two layers of the order of Δρ ≈ 1 kg m–3 is necessary for a sinusoidal thermocline to effect the total NRCS modulation considerably. The NRCS modulation as a function of wind friction velocity has been calculated independently and is discussed with regard to the strain rate of the surface current field caused by the superimposed imaging mechanisms of sand waves and internal waves. It turned out that the existence of a surface roughness-wind stress feedback mechanism cannot be excluded.  相似文献   

17.
Orbital motion of azimuth waves imposes differential Doppler shifts on wave imagery as seen by a SAR. This paper shows that these Doppler shifts are a function only of the wave and sensor geometry, and are not a function of SAR parameters. The azimuth wave reflectivity so modulated is equivalent to a redistributed scatterer density which can be used as an input with the SAR modulation transfer function for general distributed scenes to derive the azimuth wave image. The static scatterer density is calculated for a variety of sea states. Wave accelerations are not of first-order importance. Scatterer fade (decorrelation) is of central importance, as it impacts the SAR transfer function that is effective in wave imaging.  相似文献   

18.
Using surface wave parameters and a high-resolution surface wind field derived from Synthetic Aperture Radar (SAR) image mode data, we have investigated the spatial modification of SAR spectra. We found a surface wind front, formed by sheltering effect of the Kii Mountains, separating high and low wind-speed regions in a sea area of an European Remote-Sensing Satellite (ERS) SAR image off the Kii Peninsula. A swell system propagating westward dominates in the whole sea area covered by the SAR image. The wavelength retrieved from the SAR spectra in the sheltered (non-sheltered) region is longer (shorter). Since the distributions of surface wave parameters and surface wind speed are so well correlated, it can be considered that the SAR spectra are modified differently by the sheltered/non-sheltered surface winds. In order to examine the phenomena observed on the SAR image we have estimated the wind-wave SAR spectrum using the SAR surface winds, a wind-wave spectrum model and a SAR wave imaging model. We assume that the SAR spectrum related to the swell is homogeneous in the area imaged by SAR, and that the SAR spectrum of the wind-wave components causes the observed SAR spectra modification. Differences between the observed SAR spectra and the estimated SAR spectra in the sheltered and non-sheltered regions agree well with each other. In the present case, it can be concluded that the observed SAR spectra can be regarded as a linear combination of the wind-wave SAR spectra and the swell SAR spectra.  相似文献   

19.
The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.  相似文献   

20.
The newly developed P-Cable 3D seismic system allows for high-resolution seismic imaging to characterize upper geosphere geological features focusing on geofluid expressions (gas chimneys), shallow gas and gas hydrate reservoirs. Seismic imaging of a geofluid system of an Arctic sediment drift at the Vestnesa Ridge, offshore western Svalbard, provides significantly improved details of internal chimney structures from the seafloor to ∼500 m bsf (below seafloor). The chimneys connect to pockmarks at the seafloor and indicate focused fluid flow through gas hydrated sediments. The pockmarks are not buried and align at the ridge-crest pointing to recent, topography-controlled fluid discharge. Chimneys are fuelled by sources beneath the base of gas hydrate stability zone (GHSZ) that is evident at ∼160–170 m bsf as indicated by a bottom-simulating reflector (BSR). Conduit centres that are not vertically straight but shift laterally by up to 200 m as well as discontinuous internal chimney reflections indicate heterogeneous hydraulic fracturing of the sediments. Episodically active, pressure-driven focused fluid flow could explain the hydro-fracturing processes that control the plumbing system and lead to extensive pockmark formation at crest of the Vestnesa Ridge. High-amplitude anomalies in the upper 50 m of the chimney structures suggest formations of near-surface gas hydrates and/or authigenic carbonate precipitation. Acoustic anomalies, expressed as high amplitudes and amplitude blanking, are irregularly distributed throughout the deeper parts of the chimneys and provide evidence for the variability of hydrate and/or carbonate formation in space and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号