首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Agatova  A. I.  Lapina  N. M.  Torgunova  N. I.  Kirpichev  K. B. 《Water Resources》2001,28(4):428-437
The concentrations and the elemental and biochemical composition of dissolved and particulate organic matter (OM) characteristic of southern and Arctic seas are presented. The rate of OM transformation in the production–decomposition cycle and that of the phosphate cycle are estimated from the activity of the redox enzymes of the electron-transport system and that of phosphatase. Carbohydrates and protein are shown to be the main biochemical components in the water of all the seas under study in dissolved and particulate OM, respectively. The contribution of carbohydrates to particulate OM under the conditions of intense primary production is demonstrated to be comparable to that of protein. High concentrations of lipids are shown to be characteristic of the coastal ecosystems in the middle Caspian Sea and northwestern shelf of the Black Sea because of severe pollution in these areas. It is noted that at higher trophic levels, the ecosystem of the Caspian Sea intensely assimilates allochthonous OM, and that the Black Sea ecosystem transfers considerable amounts of OM to the hydrogen sulfide zone.  相似文献   

2.
The vertical sediment profiles (10 cm) of the margins of three shallow subtropical lakes (Rio Grande, Brazil) with different trophic states and surrounding areas were evaluated to identify the effects of the allochthonous input on the methane concentration in the sediment. Sediment cores were collected to quantify the organic matter content (OM) and total carbon (TC), total nitrogen (TN), total phosphorous (TP) and methane (CH4) concentrations.The three lakes were distinguished according to the trophic status and classified as oligotrophic, dystrophic and eutrophic. The natural characteristics of the dystrophic and eutrophic lakes have been changed due to the allochthonous input of leaves and twigs (Eucalyptus sp.) and the excreta of birds, respectively. In the eutrophic lake, the allochthonous input contributed to high autochthonous production. The highest values of OM, TC, TN and TP were found in the superficial sediments of the dystrophic and eutrophic lakes. The accumulation of allochthonous organic matter in the littoral zone promoted changes in the vertical sediment profiles and contributed to increases in the CH4 concentrations in the sediment.  相似文献   

3.
Seawater and sediment were collected on a monthly basis from a shallow (10.5 m depth) coastal site in the Ligurian Sea (NW Mediterranean) from November 1993 to December 1994 to determine the main environmental forces that influenced the biogeochemical processes and to study the relationships between the availability and lability of the organic matter (OM) and hydrolytic enzymatic activity. The current direction throughout the sampling year was influenced by the climatic conditions, which showed significant correlations with north atlantic oscillation (NAO) index values. The current generally flowed northwards in spring. This could cause significantly lower transparency values than in the summer, when an eastward current probably reduced the allochthonous input of material from the main local watercourse and contributed to turning the conditions from mesotrophic to oligotrophic. Spring and summer were separated by transitional periods more than by the canonical autumn and winter seasons. These transitions were characterised by a reduction in salinity values and by resuspension caused by water column mixing and a current flowing towards the southwest. The significant inverse correlations of the chlorophyll-a and protein concentrations, bacterial abundance and proteolysis of the bottom seawater and transparency showed the direct influence of resuspension on the organic matter dynamics. Moreover, OM trophic quality influenced the bacterial parameters and the enzymatic activities. The glycolytic β glucosidase and chitinase activities and their bacterial cell-specific hydrolytic rates were higher when substrates such as hydrolysable proteins were available, while they decreased when refractory compounds were abundant. The low leucine aminopeptidase: β glucosidase ratio values observed in the water column were presumably related to the potential ease with which microbes obtained protein-derived materials and energy, the protein hydrolysable fraction being estimated at ca. 90%. The significant correlations of protein with the chlorophyll-a concentrations suggested an autotrophic-derived origin, although the higher chlorophyll-a values corresponded to lower hydrolysable protein concentrations and an increase in the autotrophic biomass at the surface was correlated with a reduction in the proteolytic affinity for substrates, suggesting that a recent origin did not necessarily mean higher trophic availability.  相似文献   

4.
Amino acid composition (quality) and abundance (quantity) of organic matter (OM) in an intermittent Mediterranean stream were followed during transitions from wet to dry and dry to wet conditions. Amino acids were analyzed in benthic material (epilithic biofilms, sand sediments, leaf material) as well as in the flowing water (dissolved organic matter, DOM). A principal component analysis and the estimation of the amino acid degradation index (DI) elucidated differences in amino acid composition and quality among the wet–drought–wet cycle. Amino acid content and composition were dependent on the source of OM as well as on its diagenetic state. The highest-quality OM (high DI and high N content) occurred on epilithic biofilms and the most degraded and lowest-quality OM occurred in sandy sediments. Differences between the pre- and post-drought periods were evident in DOM quality; autochthonous-derived material was predominant during the pre-drought (wet period preceding drying), while allochthonous inputs dominated during the post-drought period (wet period following drying). In contrast, benthic OM compartments were more stable, but benthic OM quality decreased continuously throughout the drought period. This study revealed that wet–drought–wet cycles resulted in subtle changes in benthic OM quality, and degradation of DOM was related to flow intermittency.  相似文献   

5.
A relationship between indirect chemical indices of organic matter content of surface waters and light absorption in the visible and ultraviolet ranges is discussed. The allochthonous and autochthonous types of organic matter are found to essentially differ in the rate of light absorption. Techniques are proposed for the calculation of the concentrations of allochthonous and autochthonous organic matter by the integral rate of light consumption in the visible region and the bichromate oxidability of water, as well as by three indirect indices: chemical oxygen demand, permanganate oxidability, and water color index. The mean concentrations of allochthonous and autochthonous organic matter in large lakes (Ladoga, Onega, and Baikal) and in rivers and smaller water bodies in Karelia (>300 water objects) are analyzed. Allochthonous organic matter was found to predominate in most surface waters of Karelia (>80%), while allochthonous organic matter predominates only in lakes with a small specific catchment area (supposedly, <5) and in highly eutrophic lakes.  相似文献   

6.
Three populations of Diplodon chilensis (Hiridae, Bivalvia) from North Patagonia (Lacar lake, Argentina) have been studied to determine how organic matter (OM) influence their growth, density, morphometric and metabolic parameters in two pristine sites (Yuco and Nonthué) and in a growing touristic locality (San Martín de los Andes Bay, site SMA) affected by urban discharges. In Nonthué (chemical and biological oxygen demand ratio COD/BOD ratio of 4.7), a dense neighboring forest provides higher quantities of vegetal detritus compared to Yuco, while in SMA the OM input increase is related to anthropogenic impact, mainly sewage discharges, which is more biodegradable (COD/BOD ratio of 1.7). Our results show that population's size distribution and growth rates are affected positively by increased OM, independently of its natural or anthropogenic origin. The modal shell length interval for SMA and Nonthué is two-fold higher (70 mm), in agreement to the growth rate increase (k = 0.079), compared to Yuco (35 mm, k = 0.045). The morphometric relationships between size–size and size–mass show a higher slope for SMA and Nonthué, which underline allometric differences between these two populations and the Yuco's one. The lower population densities in both sites (SMA 33 ind./m2 and Nonthué 76 ind./m2) compare to Yuco (176 ind./m2) and the absence of individuals younger than 7 and 5 years old, respectively, in SMA and Nonthué could be related to the higher allochthonous OM content in the sediments and total suspended solids in water. Increased OM due to urban pollution in SMA bivalves leads to higher oxidative damage to lipids, which is not counterbalanced by the higher detoxification enzyme glutathione-S-transferase activity. Hence, we can conclude that pollution would explain the drastic reduction in population density, probably related to a high impair in the juvenile's survival/recruitment, the higher observed mortality and the lower population longevity. When increased OM is supply by the forest, like in Nonthué, this has less negative effect on population density and no effect on longevity at all. However, a negative effect of oxygen depletion due to increased OM (either anthropogenic or natural) on juvenile survival cannot be discarded, but further studies should be carried out to support this idea.  相似文献   

7.
The spatial-temporal variations in the amount and biochemical composition of organic matter and the rates of its transformations in the ecosystems of the Russian part of the Sea of Azov are analyzed. Maximum OM concentrations are typical for Taganrog Bay. A characteristic feature of the Sea of Azov is a large proportion of particulate organic matter, which in summer in Taganrog Bay exceeded 35%. It is shown that not only the concentration of organic matter changes from season to season, but also its elementary (Corg, Norg, and Porg) and biochemical composition (proteins, carbohydrates, and lipids). The major biochemical compound of dissolved organic matter is shown to be carbohydrates (13–28%), and that of particulate matter is protein (44–51%). The hydrolytic (phosphatase and protease) and oxidation-reduction enzymes of electron-transport system demonstrate a high activity in summer. The estimated short turnover times of phosphates and protein suggest the rapid and complete utilization of organic matter in the Sea of Azov.  相似文献   

8.
The nutrient basis of Lake Azabach'e is studied. The distribution of pH and the concentrations of O2, Pmin, Fe, N–NH+ 4, N–NO 3, Si, and organic forms of N and P are considered. The chemical basis of biological production of Lake Azabach'e is assessed. It is found that the amount of Si is excessive everywhere and that phytoplankton production is limited by phosphate and mineral nitrogen deficiency in virtually equal degrees.  相似文献   

9.
Suspended particulate organic matter (POM) in headwater streams is an important source of food and energy to stream food webs. In order to determine the effects of watershed land use on the sources and characteristics of POM, we compared the lipid composition of POM (fatty acid, aliphatic alcohol and sterol) from streams influenced by different types of watershed land use. Eight first-order streams discharging to the York River Estuary (Virginia, USA) were sampled during baseflow conditions bi-monthly from February to November 2009, including streams draining forest-dominated, pasture-dominated, cropland-dominated, and urban land-dominated watersheds. Allochthonous vs. autochthonous lipids showed that POM in most of these streams was dominated by allochthonous sources (59.5 ± 14.2 vs. 39.6 ± 14.5 % for aliphatic alcohols and 52.9 ± 11.5 vs. 34.1 ± 10.3 % for sterols). The relative abundance of allochthonous vs. autochthonous lipid inputs to POM varied as a function of land use type. POM in streams draining forest-dominated watersheds contained a higher proportion of allochthonous lipids and a lower proportion of autochthonous lipids than the streams influenced by human land use. The contribution of bacterial fatty acids differed significantly among sampling times (P = 0.003), but not among land use types (P = 0.547). Stepwise linear regression model selected nitrate and temperature as the best predictors of variation in bacterial inputs to POM. Proxies used to assess the nutritional value of POM potentially available to stream consumers included C:N ratios, and the concentrations of total long-chain polyunsaturated fatty acids, eicosapentaenoic acid, arachidonic acid, and cholesterol. None of these nutritional proxies differed among sampling months (P ≥ 0.171), but the proxies showed that the nutritional value of POM in forest streams was lower than in urban streams. Collectively, these findings suggest that human land use in upstream watersheds alters the source composition and nutritional value of stream POM, which not only impacts food quality for stream biota, but also potentially changes the characteristics of OM reaching downstream ecosystems.  相似文献   

10.
Using multidiscipline methodologies, the differences in preservation and enrichment mechanisms of organic matter (OM) in muddy sediment and mudstone are investigated. In clay fractions, concentra- tions of TOC and chloroform bitumen “A” are significantly higher than those in coarser fractions. This indicates that clay minerals (CM) play an important role in enriching OM. The content of chloroform bitumen “A” increases obviously in the clay fraction, which reveals that dissolvable OM is the main composition of coalesce with clay minerals. Furthermore, TG and DTA data show that OM enrichment mechanisms and preservation forms have multiplicity. Several exothermic peaks in the DTA curves demonstrate that muddy sediment and mudstone contain a number of bioclasts and amorphous OM besides dissolvable OM. Through analyzing with XRD and DTA after mudstone samples were pretreated, the conclusions can be arrived at. Firstly, CM interlayer space of XRD curves and exothermic peaks of DTA curves both change as temperature increases. Secondly, the changes of CM interlayer space and exothermic peaks are concordant and stable around 350℃. All these are the features that OM enters CM interlayers to form stable organo-clay complexes. Therefore, the combination format of OM with CM is not only surface adsorption, partial OM enters CM interlayers to form stable organo-clay complexes. Finally, through the research on OM preservation forms and enrichment mechanisms in muddy sedi- ment and mudstone, the hydrocarbon-generation processes and the global carbon cycle and budget can be explained.  相似文献   

11.
To investigate the sources of particulate organic matter (POM) and the impact of Three Gorges Dam (TGD), two large lakes and erosion processes on determining the composition and flux of POM in low water discharge periods along the middle and lower Changjiang, suspended particulate samples were collected along the middle and lower reaches of the Changjiang (Yangtze River) in January 2008. Organic geochemistry of bulk sediment (particulate organic carbon, organic carbon to nitrogen molar ratio (C/N), stable carbon isotope (δ13C) and grain size) and biomarker of bulk sediment (lignin phenols) were measured to trace the sources of POM. The range of C/N ratios (6.4–8.9), δ13C (?24.3‰ – ?26.2‰) and lignin phenols concentration Λ8 (0.45 mg/100 mg OC‐2.00 mg/100 mg OC) of POM suggested that POM originated from the mixture of soil, plant tissue and autochthonous organic matter (OM) during the dry season. POM from lakes contained a higher portion of terrestrial OM than the mainstream, which was related to sand mining and hydropower erosion processes. A three end‐member model based on δ13C and Λ8 was performed. The results indicated that soil contributed approximately 50% of OM to the POM, which is the dominant OM source in most stations. POM composition was affected by total suspended matter (TSM) and grain size composition, and the direct OM input from two lakes and channel erosion induced OM. The lower TSM concentration in January 2008 was mainly caused by seasonal variations; the impact from the TGD in the dry season was relatively small. A box model indicated that more than 90% of the terrestrial OM transported by the Changjiang in January 2008 was from the middle and lower drainage basins. Channel erosion induced OM, and contributions from Poyang Lake were the major terrestrial OM sources in the dry season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Spectroscopic techniques and extracellular enzyme activity measurements were combined with assessments of bacterial secondary production (BSP) to elucidate flood-pulse-linked differences in carbon (C) sources and related microbial processes in a river-floodplain system near Vienna (Austria). Surface connection with the main channel significantly influenced the quantity and quality of dissolved organic matter (DOM) in floodplain backwaters. The highest values of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were observed during the peak of the flood, when DOC increased from 1.36 to 4.37 mg l?1 and CDOM from 2.94 to 14.32 m?1. The flood introduced DOC which consisted of more allochthonously-derived, aromatic compounds. Bacterial enzymatic activity, as a proxy to track the response to changes in DOM, indicated elevated utilization of imported allochthonous material. Based on the enzyme measurements, new parameters were calculated: metabolic effort and enzymatic indices (EEA 1 and EEA 2). During connection, bacterial glucosidase and protease activity were dominant, whereas during disconnected phases a switch to lignin degradation (phenol oxidase) occurred. The enzymatic activity analysis revealed that flooding mobilized reactive DOM, which then supported bacterial metabolism. No significant differences in overall BSP between the two phases were detected, indicating that heterogeneous sources of C sufficiently support BSP. The study demonstrates that floods are important for delivering DOM, which, despite its allochthonous origin, is reactive and can be effectively utilized by aquatic bacteria in this river-floodplain systems. The presence of active floodplains, characterized by hydrological connectivity with the main channel, creates the opportunity to process allochthonous DOC. This has potential consequences for carbon flux, enhancing C sequestration and mineralization processes in this river-floodplain system.  相似文献   

13.
Structural changes induced by thermal maturation of dispersed organic matter (OM) in the Shimanto accretionary complex, southwest Japan, were investigated using micro‐Fourier‐transform infrared spectroscopy and micro‐Raman spectroscopy. Natural dispersed OM exhibits systematic structural changes inferred from D1‐ and G‐band FWHM values, Raman band separation (RBS), and intensity ratios of the D1‐ and G‐bands (ID1/IG ratio) from diagenetic zone to anchizone (IC values: 0.75–0.30). Infrared spectra indicate a loss of aliphatic CH x, aromatic CH x, and oxygen‐containing structures as temperature increases. These changes are consistent with discontinuities in thermal structures bounded by out‐of‐sequence thrusts. Kinetic pyrolysis experiments indicate that the ID1/IG ratio of synthesized OM has a power law relationship with heat treatment time. Kinetic models of temperature dependence were fitted using the ID1/IG ratio, and an effective activation energy of 106 ±17 kJ/mol was estimated using an Arrhenius equation. The activation energies estimated by power law rate and Avrami models have a least‐square correlation coefficient of 0.93, indicating the temperature dependence of carbonization. The estimated effective activation energy is consistent with that of coal, lignin, cellulose, and hemicellulose during thermal degradation. On the other hand, RBS, and D1‐ and G‐band FWHM values of OM display more complex changes with increasing heating temperature and time, and it is difficult to constrain rate parameters during pyrolysis experiments. Our data indicate that the ID1/IG ratio is controlled by a simple thermally activated process, whereas RBS and D1‐ and G‐band FWHM values can be affected by lithostatic pressure, fluid activity, hydrogen index, and host lithology, as well as temperature. Structural evolution of dispersed OM in mudstones differs between natural and anhydrous closed experimental systems. Natural carbonization based on micro‐Raman spectroscopy should be applied for a limited indicator of thermal maturation, especially for dispersed OM in diagenetic zone.  相似文献   

14.
三峡库区消落带土壤有机质和全氮含量分布特征   总被引:13,自引:3,他引:10  
郭劲松  黄轩民  张彬  方芳  付川 《湖泊科学》2012,24(2):213-219
在三峡库区消落带落干期间(2010年4月),对库区巫山-重庆主城区段消落带土壤有机质(OM)和全氮(TN)含量分布及与土壤理化性质的相关性进行了调查研究.结果表明该区域消落带土壤OM和TN含量均较低,分别为10.70±4.03和0.84±0.39 mg/g,且服从正态分布.消落带土壤碳氮比(C/N)较低,推测消落带土壤无机氮在淹水期间存在向上覆水体释放的可能性.在与其它关于土壤OM和TN含量研究的比较中,研究区域内土壤OM和TN含量处于偏低的水平;而在与对照带样品的比较分析中发现,消落带样品的OM和TN含量变异系数均偏低,因此消落带干湿交替可减小不同区域消落带之间土壤OM和TN含量差异.相关性分析表明,消落带土壤pH、ORP、TN与OM之间呈显著正相关,可见研究范围内消落带土壤氮形态可能主要以有机氮的形式存在于有机质中,而C/N与TN呈负相关,与OM相关性不显著,表明C/N的大小主要取决于TN含量.  相似文献   

15.
Exploring the chemical characterization of dissolved organic matter (DOM) is important for understanding the fate of laterally transported organic matter in watersheds. We hypothesized that differences in water-extractable organic matter (WEOM) in soils of varying land uses and rainfall events may significantly affect the quality and the quantity of stream DOM. To test our hypotheses, characteristics of rainfall-runoff DOM and WEOM of source materials (topsoil from different land uses and gullies, as well as typical vegetation) were investigated at two adjacent catchments in the Loess Plateau of China, using ultraviolet–visible absorbance and excitation emission matrix fluorescence with parallel factor analysis (PARAFAC). Results indicated that land-use types may significantly affect the chemical composition of soil WEOM, including its aromaticity, molecular weight, and degree of humification. The PARAFAC analysis demonstrated that the soils and stream water were dominated by terrestrial/allochthonous humic-like substances and microbial transformable humic-like fluorophores. Shifts in the fluorescence properties of stream DOM suggested a pronounced change in the relative proportion of allochthonous versus autochthonous material under different rainfall patterns and land uses. For example, high proportions of forestland could provide more allochthonous DOM input. This study highlights the relevance of soils and hydrological dynamics on the composition and fluxes of DOM issuing from watersheds. The composition of DOM in soils was influenced by land-use type. Precipitation patterns influenced the proportion of terrestrial versus microbial origins of DOM in surface runoff. Contributions of allochthonous, terrestrially derived DOM inputs were highest from forested landscapes.  相似文献   

16.
赵紫凡  孙欢  苏雅玲 《湖泊科学》2019,31(4):1088-1098
湖泊生态系统作为自然界重要的碳库,光照强度的变化对于湖泊的碳循环过程可能产生重要的影响.以云南老君山高山湖泊天才湖周边土壤中的腐殖酸作为外源溶解性有机物(DOM)的代表物,通过腐殖酸模拟光降解实验,考察光照强度对外源DOM光降解过程的影响.研究结果表明:腐殖酸光吸收系数a440、465 nm和665 nm波长处吸光度比值E4/E6的下降幅度均为:对照组 < 20 W光照组 < 40 W光照组,a440、E4/E6和光谱斜率SR显著相关,表明紫外辐射使得腐殖酸溶液浓度降低、相对分子量下降,且光照强度越强,腐殖酸的光降解程度越大.通过EEM-PARAFAC模型识别出光降解过程中腐殖酸溶液中含有5种荧光组分:UV类腐殖质(C1)、UVA类腐殖质(C2)、类色氨酸(C3)、UVC类腐殖质(C4)和类络氨酸(C5).40 W光照组中4种荧光组分的降解程度与降解速率均大于20 W光照组,降解程度均为:C4 > C3 > C2 > C1,降解速率为C2 > C4 > C3 > C1,说明不同的荧光组分对光照强度的响应不同.该研究有助于阐明外源DOM的光降解途径与归趋.  相似文献   

17.
18.
The abundance of various groups of bacteria and the rate of microbiological processes of organic decay and methane cycle in the water and soils of the Gor'kovskoe Reservoir are determined, and the ecological characterization of its river reach is presented. The autochthonous and allochthonous impact on the bacterial community of the reservoir was found to be tolerable; however, some restricted areas were revealed, where the ecosystem is strongly affected by domestic and industrial wastewater, and where the abundance and activity of anaerobic methane-producing and sulfate-reducing soil bacteria increase.  相似文献   

19.
1860年以来博斯腾湖碳沉积过程演变   总被引:1,自引:1,他引:0  
选取博斯腾湖3个不同点位岩芯,在210Pb和137Cs年代序列基础上,利用沉积物中的各理化指标,分析了该湖碳沉积的时空变化特征,结合各指标的相关性、沉积速率、C/N、同位素特征等,探讨了该湖1860年以来碳沉积环境的变化过程,为干旱区湖泊碳埋藏研究提供了依据.结果表明:1860-1910年,沉积速率相对较小,受人类活动影响较小,磁化率、中值粒径、总无机碳(TIC)较为稳定,总有机碳(TOC)含量相对较低,此时该湖有较多陆源有机质的输入;1910-1950年,湖泊西部浅水域沉积速率明显高于东部深水区,西北湖区水域有大量外源物质的输入,而湖泊初级生产力较低,内源贡献相对较小;1950-1980年,全湖TOC、TIC含量均呈现升高的趋势,尤其是西北近黄水沟水域升高最快,湖泊内源贡献在增加,陆源组分的输入相对前一阶段要少;1980-2002年,沉积速率快速升高,尤其湖泊东部水域最为明显,TOC含量均呈现升高的趋势,湖泊西部水域初级生产力要高于东部深水区,湖面蒸发较强,气候比较温暖;2002年以来,全湖沉积速率相对较高,外源有机质贡献较小.过去150年博斯腾湖沉积物碳累积速率整体上呈现出升高的趋势,尤其是近50年来快速升高,东部湖区碳累积速率比西部湖区高.  相似文献   

20.
To investigate the stratification of hydrolytic enzyme activities and importance of subsurface layers in depolymerization of detritus biopolymers,nine hydrolytic enzyme activities involved in the cycling of carbon,phosphorus,nitrogen and sulphur were measured in various sediment layers and their extracts at Kylaniemi in Lake Saimaa in southern Finland and in Lake Ahvenjarvi in northern Finland. The results show that for each lake all nine hydrolytic enzyme activities were higher in all sediment layers than in comparable sediment extracts indicating that the major part of enzymes was bound to the sediment particles in all layers in both lakes.Carbohydratase,P-cellobiosidase,activities did not show any gradient with sediment depth at Kylaniemi in Lake Saimaa indicating that there was rapid turnover of carbohydrates in the entire sediment column.The activities of acetate esterase,butyrate esterase,phosphomonoesterase,aminopeptidase,N-acetyl glucosaminidase,sulphatase andβ-glucosidase in the deepest layers were 19-53%of those in the surface sediment indicating that depolymerization of biopolymers involved in the cycling of carbon,nitrogen,phosphorus and sulphur was substantial in subsurface sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号