首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method is proposed to interpret magnetic anomalies due to a thin dike, a sphere, and a fault like structure, where depth, horizontal location, effective magnetization intensity and effective magnetization inclination of a buried structure are simultaneously obtained. The proposed method is based on Fair function minimization and also on stochastic optimization modeling. This new technique was firstly tested on a theoretical synthetic data randomly generated by a chosen statistical distribution from a known model with different random noises components. This mathematical simulation shows a very close agreement between the assumed and the estimated parameters. The applicability and validity of this method are thereafter applied to magnetic anomaly data taken from United States, Australia, India, and Brazil. The agreement between the results obtained by the new method and those obtained by other interpretative methods is good and comparable. Moreover, the depth obtained by such a method is found to be in high accordance with that obtained from drilling information.  相似文献   

2.
A geophysical interpretative method is proposed to depth, amplitude coefficient and geometrical shape factor determination of a buried structure from an observed gravity anomaly related to a cylinder or a sphere-like structure.The method is based on nonlinearly constrained mathematical modelling and also on stochastic optimization approaches. The proposed interpretative method first has been tested on theoretical synthetic models with different random errors at a certain depth, where a very close agreement has been observed between assumed and evaluated parameters. Subsequent field data have been considered for which the interpreted results by other methods are available for comparison. The agreement between the obtained results by the proposed technique and by other geophysical methods is good. A statistical analysis has been also carried out to demonstrate the accuracy and the precision of the suggested interpretative method.  相似文献   

3.
A new and simple method based on a nonlinearly mathematical optimization concept has been proposed in this research to interpret magnetic anomalies due to vertical faults and thin dikes. This proposed interpretative method consists of three main steps. The first step is to formulate nonlinearly constrained optimization problems to describe the geophysical problems related to the studied structures. The second step is to suggest an interior penalty function in order to convert these nonlinearly constrained optimization problems into nonlinearly unconstrained optimization ones. The third step is to solve the converted nonlinearly unconstrained optimization problems by using the famous Hooke and Jeevess algorithm in order to estimate the geophysical parameters of the studied structures such as: depth, amplitude coefficient, and index parameter. The Hooke and Jeevess algorithm is purposely chosen for being robust and also its application to magnetic data converges rapidly towards the optimal estimation of parameters. This method was first tested on theoretical models with different random noise, where a very close agreement was obtained between the assumed and evaluated parameters. The validity of this new method was also tested on practical field examples taken from Australia, India, United States, and Brazil, where available magnetic data existed and was previously analyzed by different interpretative methods. The agreement between the results obtained by our developed method and those obtained by the other geophysical methods is good. The advantages of this newly proposed method, compared with the other published interpretative methods, also have been discussed and demonstrated.  相似文献   

4.
A new best estimate methodology is proposed and oriented towards the determination of parameters related to a magnetic field anomaly produced by a simple geometric-shaped model or body such as a thin dike and horizontal cylinder. This approach is mainly based on solving a system of algebraic linear equations for estimating the three model parameters, e.g., the depth to the top (center) of the body (z), the index parameter or the effective magnetization angle (θ) and the amplitude coefficient or the effective magnetization intensity (k). The utility and validity of this method is demonstrated by analyzing two synthetic magnetic anomalies, using simulated data generated from a known model with different random errors components and a known statistical distribution. This approach was also examined and applied to two real field magnetic anomalies from the United States and Brazil. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable. Moreover, the depth obtained by such an approach is found to be in high accordance with that obtained from drilling information. The advantages of such a proposed method over other existing interpretative techniques are clarified, where it can be generalized to be automatically applicable for interpreting other geological structures described by mathematical formulations.  相似文献   

5.
An interpretative method based on a nonlinearly mathematical optimization concept has been developed in this paper, in order to interpret self-potential anomalies (SP) due to horizontal cylinder, vertical cylinder, sphere and sheet-like structures. This interpretative method comprises three main steps. The first step is to formulate mathematically a nonlinearly constrained minimization problem (NCMP) to describe the geophysical problem related to the studied structure. The second one is to suggest an interior penalty function in order to convert the nonlinearly constrained minimization problem (NCMP) into a nonlinearly unconstrained minimization one (NUMP). The third step is to solve the converted nonlinearly unconstrained minimization problem (NUMP) by the well-known Hooke and Jeeves direct search algorithm in order to estimate the geophysical parameters of the studied structure, i.e., depth, polarization angle, electric dipole moment (magnitude of polarization) and geometric shape factor. The Hooke and Jeeves direct search algorithm is purposely chosen for being robust and its application to SP data allows a rapid convergence towards the optimal estimate of parameters. This interpretative method was first tested on theoretical synthetic models with different random noise, where a very close agreement was obtained between assumed and evaluated parameters.The validity of the proposed interpretative method is also tested on practical field examples taken from Turkey, India and Germany, where available SP data existed and was previously analyzed by different interpretative methods. The agreement between the results obtained by the developed method and those obtained by other published methods is good.Acknowledgment Authors would like to thank Dr. I. Othman Director General of the Atomic Energy Commission of Syria for his interest and continuous encouragement to achieve this work. Special thanks to the reviewers for their constructive suggestions aimed at enhancing the quality of this paper.  相似文献   

6.
A new interpretative approach is proposed to interpret residual gravity anomaly profiles in order to determine the depth, the amplitude coefficient and the geometric shape factor of simple spherical and cylindrical buried structures. This new approach is based on both Fair function minimization and on stochastic optimization modeling. The validity of this interpretative approach is demonstrated through studying and analyzing two synthetic gravity anomalies, using simulated data generated from a known model with different random noises components and a known statistical distribution. Being theoretically proven, this new approach has been applied on three real field gravity anomalies from Sweden, Senegal and the United States. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable.  相似文献   

7.
数据空间磁异常模量三维反演   总被引:4,自引:3,他引:1       下载免费PDF全文
强剩磁的存在通常导致了总磁化强度方向未知,进而影响了磁异常的反演和解释.磁异常模量是一种受磁化方向影响小的转换量,可以在强剩磁条件下通过反演三维磁化强度大小分布来推测场源分布状态.我们提出了一种数据空间磁异常模量反演算法来减少剩磁的影响.与标准的模型空间L2范数正则化反演方法相比,我们的方法有两个优点:一是无需搜索正则化参数(需要反复求解非线性反演问题),因而可以减少计算时间;二是反演结果更加聚焦,深度分辨率更高,我们对此进行了原因分析.通过模型和实测数据测试证明了该算法的有效性和更好的反演效果.  相似文献   

8.
磁异常的反演是地球物理勘探的重要手段,三维磁化率反演是磁异常定量解释中的一种重要方法.由于剩磁的存在使得磁化方向与地磁场方向产生偏差,从而影响了磁异常反演与解释的精度.本文基于磁异常模量反演和磁化强度矢量反演方法得到了一种新的磁化强度矢量反演方法.与以往的磁化强度矢量反演方法相比,该方法以磁异常模量反演得到的磁化率模型为约束,采用Lp范数正则化方法求解,提高了磁化强度矢量反演的精度和效率.本文通过模拟试验的反演计算,验证了这种磁化强度矢量反演方法的有效性.最后,将本文方法应用于新疆东天山卡拉塔格地区航磁数据的解释,获得了地下空间不同磁性差异的磁性体的空间分布特征,为进一步分析研究区隐伏矿床提供了重要信息.  相似文献   

9.
交叉梯度联合反演方法通过对多种地球物理模型实现结构耦合,在岩石物性关系不确定的情况下,既能提高反演结果的可靠性,又能减少反演的多解性,还能减少不同方法解释结果之间的矛盾.当不同的模型观测数据覆盖范围不一致时,交叉梯度联合反演通常需要取出重叠区域数据进行联合反演,并且建模时还要扩展一些模型范围.本文首先提出并实现了部分区域约束下的交叉梯度多重地球物理数据联合反演算法;接着进行了算法的模型试算;最后,我们将该反演算法用于本溪—集安深部地质调查重磁电综合地质地球物理解释中.结果表明:该算法不但能在重叠区域内很好地恢复结构相似的模型,而且在非重叠区域与重叠区域的边界处仍然可以得到平滑变化的模型;在本溪—集安10号剖面所获得的结构上相似的电阻率、密度及磁化率模型较好地反映了该区的深部地质结构,对于确定深部地质体的性质提供了有力的证据.  相似文献   

10.
We have developed an automatic method to determine the depth of a buried sphere from numerical second horizontal derivative anomalies obtained from total field magnetic data. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of the center of the source in the plane of the measurement points with a free parameter (graticule spacing). The problem of depth determination has been transformed into the problem of finding a solution of a nonlinear equation of f(z) = 0. Procedures are also formulated to determine the magnetic moment and the effective angle of magnetization. The method is applied to synthetic examples with and without random errors and tested on a field example from Senegal. In all cases, the depth solutions are in good agreement with the actual ones.  相似文献   

11.
A quantitative interpretation method of self-potential field anomalies has been proposed. The method is designed and implemented for the estimation of center depth, electric dipole moment or magnitude of polarization, polarization angle, and geometric shape factor of a buried body from SP field data, related to simple geometric structures such as cylinders, spheres and sheet-like bodies. The proposed method is based on Fair function minimization and also on stochastic optimization modeling. This new technique was first tested on theoretical synthetic data randomly generated by a chosen statistical distribution from a known model with different random noise components. Such mathematical simulation shows a very close agreement between assumed and estimated model parameters. Being theoretically proven, it has been applied and tested on self-potential field data taken from the United States, Germany, India and Turkey. The agreement between results obtained by the suggested method and those obtained by other previous methods is good and comparable. Moreover, the depth obtained by this method is found to be in high accordance with that obtained from drilling information.  相似文献   

12.
三维反演是磁测数据定量解释的重要方法,在金属矿勘探中扮演着重要的角色.但是在实际矿区的应用中,传统的磁总场异常反演方法依然存在两个问题:一是地面磁异常反演的深度分辨率较低,深部场源体的成像效果差;二是金属矿中可能包含强剩磁,反演结果可能是完全错误的.尽管前人对上述两个问题分别进行了广泛的研究,但尚未尝试同时解决这两个问题.本文在前人研究的基础上,提出了一种井地磁异常模量联合反演方法,该方法需要的控制参数少,无需加入额外的地质信息,且可用于多场源复杂磁异常的反演,具有较强的适用性.本文方法首先将地面和井中磁异常转化为模量数据,然后利用基于核函数或距离的加权函数将井地模量数据结合起来,使得该方法适用于联合反演.我们利用井地多种异常参量进行反演的模型试验表明,在强剩磁存在时,本文方法的效果优于其他方法,在减少剩磁影响的同时,也改善了深部成像效果,具有良好的应用前景.  相似文献   

13.
The Roman fort from Sfârleanca is one of the most representative archaeological sites dating from the Roman period (2nd century A.D.) in Northern Muntenia. The existing natural and anthropic features of the environment required the application of geophysical methods in order to outline the spatial pattern of the buried remains, to define the geometry of the anthropogenic settlements and to obtain detailed information about different archaeological materials without digging. During the survey, two different geophysical methods have been employed: total magnetic field measurements and electrical resistance mapping using Twin-probe array. The instrument consists of GSM19W Overhauser magnetometers with GPS, in base-rover system, and a twin-probe array LGM 4-Point light hp. The measurements were used to draw primary maps of the physical parameters (total magnetic field strength/intensity, electrical resistance), and also processed maps (filtering, derivative). The magnetic results obtained by interpreting the anomalies yielded information about the limits of the fort, about the internal organization of the military structure (its axial road, partially its secondary road, the localization and the shape of its constructions) and at the bath and heating installation. A previously unknown element is the possible water supply pipe made of ceramic material highlighted by the mathematical modelling of the data obtained by the magnetic investigations. Electrical resistance results provide complementary information to the magnetic survey concerning the limits of the baths and the remains of the fort structure. This paper brings to light geophysical investigations into this Roman fort and baths, extending the picture produced by previous archaeological excavations that only dealt with a small part of the site. It indicates the importance of using geophysical methods in preliminary archaeological research and the advantages of combining total magnetic field measurements and electrical resistance mapping when investigating an archaeological site characterized by a number of environmental difficulties.  相似文献   

14.
We present results of paleomagnetic and sedimentological studies carried out on three cores Lmor1, Lmo98-1, Lmor98-2 from bottom sediments of Lake Moreno (south-western Argentina), and integrate them with data from our previous studies. Measurements of directions (declination D and inclination I) and mass specific intensity of natural remanent magnetization (NRM intensity), magnetic susceptibility (specific, χ and volumetric, κ), isothermal remanent magnetization (IRM), saturation of isothermal remanent magnetization (SIRM), and back field remanent coercivity (B0CR) were performed. The stability of the NRM was investigated using alternating-field demagnetization. The results show that these sediments meet the criteria required to construct a reliable paleomagnetic record. The cores were correlated very well based on magnetic parameters, such as χ and NRM intensity, as well as with lithological features. Tephra layers were identified from the lithological profiles and magnetic susceptibility logs. We obtained the D and I logs of the characteristic remanent magnetization for the cores as a function of shortened depth. The data from the three cores were combined to form a composite record using the Fisher method. A comparison between stacked inclination and declination records of Lake Moreno and those obtained in previous works on Lake Escondido and Lake El Trébol shows good agreement. This agreement made it possible to transform the stacked curves into time series spanning the interval 12–20 kyr. The results obtained improved our knowledge of SV and the behaviour of the geomagnetic field and also allowed us to determine the range of past inclination variations from −70° to −45° for the southern hemisphere, where data are scarce.  相似文献   

15.
The mathematical technique is developed for cluster analysis of the orientation structure of the vector geophysical fields. In order to solve the problem of revealing correlations between quasi-linear processes, the notion of the correlation with the nonrigid metric of distance is introduced for the vectors generated by the flows of discrete events with a high degree of sparseness in time. The method is tested on the data from monitoring the magnetic field in a seismically active region of Japan. It is found that the cluster portrait of the orientation structure of the magnetic field is substantially different during quiet and disturbed days. The influence of seismic vibrations of the ground on the results of magnetic measurements is established.  相似文献   

16.
关于用有限元法作磁法勘探正演计算的理论问题   总被引:2,自引:2,他引:2       下载免费PDF全文
本文提出用有限元法解磁法勘探的正问题,不再需要引入均匀磁化假定。 传统的正演计算方法是在均匀磁化的假定下建立的,它不能适应解释复杂磁异常的需要。近几年来,国外学者提出了用迭代方法作非均匀磁化条件下的正演计算,对形状比较简单的磁性体取得了较好的效果。但随着磁性体的形状变得比较复杂,计算所需时间很快增加,精度和稳定性也明显降低。以求能量函数极小的变分原理为依据,用有限元法作非均匀磁化条件下的正演计算,得到的磁位势函数满足磁性体内外的偏微分方程和全部界面条件(文中对此作了证明)。因此,这种方法可以研究各种复杂因素的影响,宜于计算非均匀磁化磁性体的有效磁化强度和磁异常。  相似文献   

17.
南海西北部是我国海洋油气的重要基地.为了研究该区前新生代尤其是中生代油气资源潜力,本文以岩石物性的差异为基础,建立地质界面与物性界面的联系,利用综合地球物理方法来分析目标物性界面的分布特征.在地震资料控制浅层沉积结构的约束下,根据重力资料,通过小波分析位场剥离等方法得到剩余场,由Parker界面反演法反演计算了研究区的重力基底,结合新生代沉积分布得出中生界分布特征并给出了中生代残留盆地的可能分布范围,为分析研究区中生代油气资源潜力提供参考.  相似文献   

18.
随着多种地球物理观测手段的应用和发展,不同观测手段采集的位场数据融合方法的研究越来越重要.根据观测维度、观测比例尺的不同,本文将重、磁力异常数据融合分维度(单维和多维)和尺度(单尺度和多尺度)进行讨论分析.针对多维多尺度重、磁位场数据观测位置、观测精度、数据基准的差异,采用空间域迭代法延拓、加权平均、回归分析等方法将不同观测手段获得的位场数据在同一标准下归算至同一平面或曲面,基于此提出了一套适用于多维多尺度重、磁位场数据融合方法;模型测试和实际资料处理结果显示,本文提出的融合方法在多维多尺度重、磁数据的融合中效果良好,计算误差小且符合位场数据的特点.本文所提出的多维多尺度重、磁位场数据融合方法适用于航空、地面和海洋观测的重、磁位场数据融合,具有良好的实用意义和推广价值.  相似文献   

19.
20.
Rapid developments in SQUID-based technology make it possible for geophysical exploration to direct measure, inverse and interpret magnetic gradient tensor data. This contribution introduces a novel three-dimensional hybrid regularization method for inversion of magnetic gradient tensor data, which is based on the minimum support functional and total variation functional. Compared to the existing stabilizers, for example, the minimum support stabilizer, the minimum gradient support stabilizer or the total variation stabilizer, our proposed hybrid stabilizer, in association with boundary penalization, improves the revision result greatly, including higher spatial and depth resolution, more clear boundaries, more highlighted images and more evident structure depiction. Moreover, suitable selection of model parameter λ will further improve the image quality of the recovered model. We verify our proposed hybrid method with various synthetic magnetic models. Experiment results prove that this method gives more accurate results, exhibiting advantages of less computational costs even when less prior information of magnetic sources are provided. Comparison of results with different types of magnetic data with and without remanence indicates that our inversion algorithm can obtain more detailed information on the source structure based on rational estimation of total magnetization direction. Finally, we present a case study for inverting SQUID-based magnetic tensor data acquired at Da Hinggan Mountains area, inner Mongolia, China. The result also certifies that the method is reliable and efficient for real cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号