首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用GPS信噪比(signal-to-noise ratio,SNR)观测值监测土壤湿度的精度直接受多径干涉相位与土壤湿度间的关系模型影响。传统方法基于线性模型,通过增加样本数量、排除特例提高普适性,但未合理考虑坡度、植被及天气等因素。基于上述因素短期变化可忽略的假设,引入时间窗口,采用自相关分析确定窗口长度,利用窗口内样本动态线性回归构建预测和插值模型反演土壤湿度。实验结果表明,引入窗口后,预测、插值误差分别下降17.4%和54.6%,相关系数上升16.2%和32.9%。插值模型利用了待估时刻之后的观测量,精度更高;预测模型精度略低,但更适于实时应用。同时,残差极大值与土壤湿度的上升之间显著相关。预测残差较土壤湿度具有极大值更小、时刻略微提前的时域特征。  相似文献   

2.
文章在对邹城区域生态环境状况进行分析和判别的基础上,确定了邹城环境敏感性单因子及分级依据。利用SRTM3数据,提取了邹城区域高程分级和坡度数据;利用TM遥感影像,通过监督分类和和人机交互解译方法提取植被要素和土地利用/覆被数据。结合收集到的矿产资源、自然保护及风景区及采煤塌陷风险分布专题信息建立敏感性分析数据库,使用ARCGIS平台进行空间叠加分析,得到邹城区域环境敏感性分区图。发现邹城区域重度敏感区主要分布在坡度较大、易发生水土流失地区以及山地;中度敏感区主要包括地下水源地、贡献较大的水体、自然保护区和部分塌陷风险较大的区域;轻度敏感区多为天然及人工林地。对于不同敏感级别的地区应有针对性地采取保护性开发,并在土地利用中尽量避免对重度及中度敏感区的干预。最后指出了应用RS和GIS空间信息技术进行敏感性分区的作用和意义。  相似文献   

3.
Estimation of vegetation covered soil moisture with satellite images is still a challenging task. Several models are available for soil moisture retrieval in which water cloud model (WCM) is most common. But, it requires an estimation of accurate vegetation parameterization. Thus, there is a need to develop such an approach for soil moisture retrieval which minimize these limitations. Therefore, this paper deals with the soil moisture retrieval using fully polarimetric SAR data by fusing the information from different bands. Various polarimetric indices and observables were critically analysed, and found that the index; SPAN (total scattered power) gives better information of vegetation cover as compared to other indices/observables. Based on this, WCM model has been modified using SPAN as parameter and soil moisture content were retrieved.  相似文献   

4.
The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed “hotspots” of high erosion of up to 16 t ha−1 a−1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.  相似文献   

5.
An important research direction in advancing higher spatial resolution and better accuracy in soil moisture remote sensing is the integration of active and passive microwave observations. In an effort to address this objective, an airborne instrument, the passive/active L-band sensor (PALS), was flown over two watersheds as part of the cloud and land surface interaction campaign (CLASIC) conducted in Oklahoma in 2007. Eleven flights were conducted over each watershed during the field campaign. Extensive ground observations (soil moisture, soil temperature, and vegetation) were made concurrent with the PALS measurements. Extremely wet conditions were encountered. As expected from previous research, the radiometer-based retrievals were better than the radar retrievals. The standard error of estimates (SEEs) of the retrieved soil moisture using only the PALS radiometer data were 0.048 m3/m3 for Fort Cobb (FC) and 0.067 m3/m3 for the Little Washita (LW) watershed. These errors were higher than typically observed, which is likely the result of the unusually high soil moisture and standing water conditions. The radar-only-based retrieval SEEs were 0.092 m3/m3 for FC and 0.079 m3/ m3 for LW. Radar retrievals in the FC domain were particularly poor due to the high vegetation water content of the agricultural fields. These results indicate the potential for estimating soil moisture for low-vegetation water content domains from radar observations using a simple vegetation model. Results also showed the compatibility between passive and active microwave observations and the potential for combining the two approaches.  相似文献   

6.
罗时雨  童玲  陈彦 《遥感学报》2017,21(6):907-916
山区土壤含水量对山区植被生长监测、滑坡预测等工作具有重要意义,因此针对山地低矮植被区域,提出了全极化SAR图像的土壤含水量估计方法。为解决山地区域SAR图像几何形变和极化旋转问题,根据入射角、坡度、坡向信息定义了可测区域与不可测区域,并对可测区域后向散射系数进行校正。其次以密西根模型为基础,发展了低矮植被的散射模型。在假定植被和土壤特征不变的情况下,基于此散射模型并结合校正数据建立了山区土壤含水量反演方法。结果表明,模型反演的土壤含水量和实验点实测值基本一致,两个实验点反演值分别为14%和15%,实测值为11.45%和15.80%,能够满足一般应用的需求。  相似文献   

7.
Penman–Monteith (PM) theory has been successfully applied to calculate land surface evapotranspiration (ET) for regional and global scales. However, soil surface resistance, related to soil moisture, is always difficult to determine over a large region, especially in arid or semiarid areas. In this study, we developed an ET estimation algorithm by incorporating soil moisture control, a soil moisture index (SMI) derived from the surface temperature and vegetation index space. We denoted this ET algorithm as the PM-SMI. The PM-SMI algorithm was compared with several other algorithms that calculated soil evaporation using relative humidity, and validated with Bowen ratio measurements at seven sites in the Southern Great Plain (SGP) that were covered by grassland and cropland with low vegetation cover, as well as at three eddy covariance sites from AmeriFlux covered by forest with high vegetation cover. The results show that in comparison with the other methods examined, the PM-SMI algorithm significantly improved the daily ET estimates at SGP sites with a root mean square error (RMSE) of 0.91 mm/d, bias of 0.33 mm/d, and R2 of 0.77. For three forest sites, the PM-SMI ET estimates are closer to the ET measurements during the non-growing season when compared with the other three algorithms. At all the 10 validation sites, the PM-SMI algorithm performed the best. PM-SMI 8-day ET estimates were also compared with MODIS 8-day ET products (MOD16A2), and the latter showed negligible bias at SGP sites. In contrast, most of the PM-SMI 8-day ET estimates are around the 1:1 line.  相似文献   

8.
The fractional vegetation cover (FVC), crop residue cover (CRC), and bare soil (BS) are three important parameters in vegetation–soil ecosystems, and their correct and timely estimation can improve crop monitoring and environmental monitoring. The triangular space method uses one CRC index and one vegetation index to create a triangular space in which the three vertices represent pure vegetation, crop residue, and bare soil. Subsequently, the CRC, FVC, and BS of mixed remote sensing pixels can be distinguished by their spatial locations in the triangular space. However, soil moisture and crop-residue moisture (SM-CRM) significantly reduce the performance of broadband remote sensing CRC indices and can thus decrease the accuracy of the remote estimation and mapping of CRC, FVC, and BS. This study evaluated the use of broadband remote sensing, the triangular space method, and the random forest (RF) technique to estimate and map the FVC, CRC, and BS of cropland in which SM-CRM changes dramatically. A spectral dataset was obtained using: (1) from a field-based experiment with a field spectrometer; and (2) from a laboratory-based simulation that included four distinct soil types, three types of crop residue (winter-wheat, maize, and rice), one crop (winter wheat), and varying SM-CRM. We trained an RF model [designated the broadband crop-residue index from random forest (CRRF)] that can magnify spectral features of crop residue and soil by using the broadband remote sensing angle indices as input, and uses a moisture-resistant hyperspectral index as the target. The effects of moisture on crop residue and soil were minimized by using the broadband CRRF. Then, the CRRF-NDVI triangular space method was used to estimate and map CRC, FVC, and BS. Our method was validated by using both laboratory- and field-based experiments and Sentinel-2 broadband remote-sensing images. Our results indicate that the CRRF-NDVI triangular space method can reduce the effect of moisture on the broadband remote-sensing of CRC, and may also help to obtain laboratory and field CRC, FVC, and BS. Thus, the proposed method has great potential for application to croplands in which the SM-CRM content changes dramatically.  相似文献   

9.
基于梯度结构相似度的矿区土壤湿度空间分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于中国蒙、陕、晋、三省区的神东矿区2000-2015年成像光谱仪数据,双抛物线型归一化植被指数(normalized difference vegetation index,NDVI)和地表辐射温度(land surface temperature,Ts)(记为NDVI-Ts)特征空间的温度植被干旱指数法计量地表土壤湿度,采用梯度结构相似度法定量分析研究区土壤湿度的时空分布特征。结果表明:神东矿区土壤湿度变化具有明显时空分布异质性,空间上,矿区土壤湿度表现出从西北部向东南部逐渐增加的规律,干旱区域由2000年的96.03%下降到2015年的59.59%;矿区60.05%的区域的土壤湿度发生了突变,其中49.87%区域地表植被覆盖得到明显改善,土壤湿度得到明显提高;35.18%的区域的土壤湿度发生了变化,其中28.13%区域地表植被覆盖有所改善,土壤湿度有所增加;仅有4.77%的区域的土壤湿度没有发生改变。进一步分析表明,地表土壤湿度的时空分布特征受区域地貌类型和下垫面覆盖影响较大。  相似文献   

10.
The present study has generated spatial databases on the vegetation type with plant biodiversity, forest fragmentation and disturbance regimes in Tamilnadu parts of Eastern Ghats (EG), India. These databases have been analysed geospatially with landscape ecology approach. The study also includes ground inventory of plant species based on Remote Sensing (RS) data stratification. The vegetation type map was generated from the visual interpretation of two season IRS LISS III data. The spatial landscape analysis of the remotely sensed interpreted images was carried out using customized software, SPLAM. This is first such study in Tamilnadu Eastern Ghats that provides a comprehensive spatial database on vegetation types, disturbance regime and plant species diversity. The study has shown that the dry deciduous and thorn forests have shown better resistance to disturbance compared to the most disturbed evergreen and semievergreen forests. The study outputs are being utilized by forest department and biodiversity boards for conservation action planning and compliance to Convention on Biological Diversity (CBD).  相似文献   

11.
基于GIS的福州市生态环境遥感综合评价模型   总被引:13,自引:1,他引:13  
在ENVI软件的支持下,利用TM卫星遥感数据提取福州市生态环境评价因子;利用1 10万地形数据,在GIS环境下生成高程和坡度(由等高线生成)栅格数据,并通过ERDAS转换成ENVI可读的数据格式,经过投影转换,使之与提取的环境因子进行复合,生成综合影像;通过线性回归方法确定植被、水分、热容量、土壤及地形等因子的权重,建立福州市生态环境遥感评价模型,并利用该模型对福州市的生态环境进行评价。  相似文献   

12.
Accurate estimation of ecosystem carbon fluxes is crucial for understanding the feedbacks between the terrestrial biosphere and the atmosphere and for making climate-policy decisions. A statistical model is developed to estimate the gross primary production (GPP) of coniferous forests of northeastern USA using remotely sensed (RS) radiation (land surface temperature and near-infra red albedo) and ecosystem variables (enhanced vegetation index and global vegetation moisture index) acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. This GPP model (called R-GPP-Coni), based only on remotely sensed data, was first calibrated with GPP estimates derived from the eddy covariance flux tower of the Howland forest main tower site and then successfully transferred and validated at three other coniferous sites: the Howland forest west tower site, Duke pine forest and North Carolina loblolly pine site, which demonstrate its transferability to other coniferous ecoregions of northeastern USA. The proposed model captured the seasonal dynamics of the observed 8-day GPP successfully by explaining 84–94% of the observed variations with a root mean squared error (RMSE) ranging from 1.10 to 1.64 g C/m2/day over the 4 study sites and outperformed the primary RS-based GPP algorithm of MODIS.  相似文献   

13.
The assessment and quantification of spatio-temporal soil characteristics and moisture patterns are important parameters in the monitoring and modeling of soil landscapes. Remote-sensing techniques can be applied to characterize and quantify soil moisture patterns, but only when dealing with bare soil. For soils with vegetation, it is only possible to quantify soil-moisture characteristics through indirect vegetation indicators, i.e. the “vitality” of plants. The “vitality” of vegetation is a sum of many indicators, whereby different stress factors can induce similar changes to the biochemical and physiological characteristics of plants. Analysis of the cause and effect of soil-moisture properties, patterns and stress factors can therefore only be carried out using an experimental approach that specifically separates the causes. The study describes an experimental approach and the results from using an imaging hyperspectral sensor AISA-EAGLE (400–970 nm) and a non-imaging spectral sensor ASD (400–2,500 nm) under controlled and comparable conditions in a laboratory to study the spectral response compared to biochemical and biophysical vegetation parameters (“vitality”) as a function of soil moisture characteristics over the entire blooming period of Ash trees. At the same time that measurements were taken from the hyperspectral sensors, the following vegetation variables were also recorded: leaf area index (LAI), chlorophyll meter value — SPAD-205, vegetation height, C/N content and leaf water content as indicators of the “vitality” and the state of the vegetation. The spectrum of each hyperspectral image was used to calculate a range of vegetation indices (VI’s) with relationships for soil moisture characteristics and stress factors. The relationship between vegetation indices and plant “vitality” indicators was analysed using a Generalized Additive Model (GAM). The results show that leaf water content is the most appropriate vegetation indicator for assessing the “vitality” of vegetation. With the Water Index (WI) it was possible to differentiate between the moisture treatments of the control, moisture drought stress and the moisture flooding treatment over the entire growing season of the plants (R 2?=?0.94). There is a correlation between the “vitality” vegetation parameters (LAI, C/N content and vegetation height) and the indicators NDVI, WI, PRI and Vog2. In our study with Ash trees the vegetation parameter chlorophyll was found not to be a suitable indicator for detecting the “vitality” of plants using the spectral indicators. There is a possibility that the sensitivity of the indicators selected was too low compared to changes in the chlorophyll content of Ash trees. Adding the co-variable ‘time’ strengthens the correlation, whereas incorporating time and moisture treatment only improves the model very slightly. This shows that changes to the biochemical and biophysical characteristics caused by phenology, overlay a differentiation of the moisture treatments.  相似文献   

14.
Ground-reflected global positioning system signals measured by a geodetic-quality GPS system can be used to infer temporal changes in near-surface soil moisture for the area surrounding the antenna. This technique, known as GPS-interferometric reflectometry, analyzes changes in the interference pattern of the direct and reflected signals, which are recorded in signal-to-noise ratio (SNR) data, as interferograms. Temporal fluctuations in the phase of the interferogram are indicative of changes in near-surface volumetric soil moisture content. However, SNR phase is also highly sensitive to changes in overlying vegetation, and thus, the effects of seasonal vegetation changes on the ground-reflected signal must be considered. Here a method is described for determining whether SNR data are significantly corrupted by vegetation and for correcting these effects. Absolute soil moisture content must be determined for each site using ancillary data for the residual moisture content. Accounting for vegetation effects significantly improves the agreement between GPS-derived soil moisture and in situ measurements.  相似文献   

15.
The amount and distribution of vegetation and ground cover are important factors that influence resource transfer (e.g. runoff, sediment) in patterned semi-arid landscapes. Identifying and describing these features in detail is an essential part of measuring and understanding ecohydrological processes at hillslope scales that can then be applied at broader scales. The aim of this study was to develop a comprehensive methodology to map ground cover using high resolution Quickbird imagery in woody and non-woody (pasture) vegetation. The specific goals were to: (1) investigate the use of several techniques of image fusion, namely principal components analysis (PCA), Brovey transform, modified intensity-hue-saturation (MIHS) and wavelet transform to increase the spatial detail of multispectral Quickbird data; (2) evaluate the performance of the red and near-infra-red bands (NIR), the difference vegetation index (DVI), and the normalised difference vegetation index (NDVI) in estimating ground cover, and (3) map and assess spatial and temporal changes in ground cover at hillslope scale using the most appropriate method or combination of methods. Estimates of ground cover from the imagery were compared with a subset of observed ground cover estimates to determine map accuracy. The MIHS algorithm produced images that best preserved spectral and spatial integrity, while the red band fused with the panchromatic band produced the most accurate ground cover maps. The patch size of the ground cover beneath canopies was similar to canopy size, and percent ground cover (mainly litter) increased with canopy size. Ground cover was mapped with relative accuracies of 84% in the woody vegetation and 86% in the pasture. From 2008 to 2009, ground cover increased from 55% to 65% in the woody vegetation and from 40% to 45% in the pasture. These ground cover maps can be used to explore the spatial ecohydrological interactions between areas of different ground cover at hillslope scale with application to management at broader scales.  相似文献   

16.
To date, triple collocation (TC) analysis is one of the most important methods for the global-scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method. Different notations that are used to formulate the TC problem are shown to be mathematically identical. While many studies have investigated issues related to possible violations of the underlying assumptions, only few TC modifications have been proposed to mitigate the impact of these violations. Moreover, assumptions, which are often understood as a limitation that is unique to TC analysis are shown to be common also to other conventional performance metrics. Noteworthy advances in TC analysis have been made in the way error estimates are being presented by moving from the investigation of absolute error variance estimates to the investigation of signal-to-noise ratio (SNR) metrics. Here we review existing error presentations and propose the combined investigation of the SNR (expressed in logarithmic units), the unscaled error variances, and the soil moisture sensitivities of the data sets as an optimal strategy for the evaluation of remotely-sensed soil moisture data sets.  相似文献   

17.
The susceptibility of a catchment to flooding is affected by its soil moisture prior to an extreme rainfall event. While soil moisture is routinely observed by satellite instruments, results from previous work on the assimilation of remotely sensed soil moisture into hydrologic models have been mixed. This may have been due in part to the low spatial resolution of the observations used. In this study, the remote sensing aspects of a project attempting to improve flow predictions from a distributed hydrologic model by assimilating soil moisture measurements are described. Advanced Synthetic Aperture Radar (ASAR) Wide Swath data were used to measure soil moisture as, unlike low resolution microwave data, they have sufficient resolution to allow soil moisture variations due to local topography to be detected, which may help to take into account the spatial heterogeneity of hydrological processes. Surface soil moisture content (SSMC) was measured over the catchments of the Severn and Avon rivers in the South West UK. To reduce the influence of vegetation, measurements were made only over homogeneous pixels of improved grassland determined from a land cover map. Radar backscatter was corrected for terrain variations and normalized to a common incidence angle. SSMC was calculated using change detection.To search for evidence of a topographic signal, the mean SSMC from improved grassland pixels on low slopes near rivers was compared to that on higher slopes. When the mean SSMC on low slopes was 30–90%, the higher slopes were slightly drier than the low slopes. The effect was reversed for lower SSMC values. It was also more pronounced during a drying event. These findings contribute to the scant information in the literature on the use of high resolution SAR soil moisture measurement to improve hydrologic models.  相似文献   

18.
Abstract

This paper describes the first stage of an experiment aiming to evaluate the potential and limitations of MIVIS data for mapping the degradational state of soils in a sub‐scene of a southern Apennines study area (Italy). After radiometric rectification of the image data and the collection of a field/laboratory spectral library, linear spectral mixture modelling (SMA) was used to decompose image spectra into fractions of spectrally distinct mixing components. Spectral endmember selection was based upon a principal component analysis (PCA) applied to a set of soil spectra, collected from the spectral library. The resulting abundance estimates (fractions) trough SMA were then analysed to identify soil conditions and to obtain an improved measure of dry and green vegetation cover. A map of soil conditions and dry‐green vegetation abundance, based upon MIVIS data was then derived from normalised fractions of soil‐vegetation endmembers obtained from SMA.  相似文献   

19.
Abstract

Various inversion algorithms have been developed to obtain estimates of soil moisture and surface roughness parameters from multifrequency, multiangle, and multipolarization radar reflectances. Since the penetration depth for radar signals increases with wavelength, an inversion algorithm using widely separated frequencies does not yield comparable probing depths. Furthermore, existing algorithms assume a linear relationship between the radar backscatter coefficient (in dB) and soil parameters, such as the volumetric soil moisture, soil surface roughness and surface slope. This assumption is valid only over a narrow range of soil parameters, thereby restricting its operational use under realistic conditions. Our research specifically explored the use of inversion algorithms based on L‐Band radar reflectances at 1 GHz and 2 GHz frequencies in order to retain relatively consistent probing depths. In order to extend the range of applicability, a non‐linear exponential‐type relationship was developed between radar reflectance at a specified frequency, polarization and incidence angle combination, and soil parameters of interest, viz., soil moisture, surface roughness, and surface slope. An over‐constrained inversion algorithm using a six‐parameter combination was found to yield relatively accurate estimates of soil parameters over a wide range of soil conditions even in the presence of system error.  相似文献   

20.
Numerous efforts have been made to develop various indices using remote sensing data such as normalized difference vegetation index (NDVI), vegetation condition index (VCI) and temperature condition index (TCI) for mapping and monitoring of drought and assessment of vegetation health and productivity. NDVI, soil moisture, surface temperature and rainfall are valuable sources of information for the estimation and prediction of crop conditions. In the present paper, we have considered NDVI, soil moisture, surface temperature and rainfall data of Iowa state, US, for 19 years for crop yield assessment and prediction using piecewise linear regression method with breakpoint. Crop production environment consists of inherent sources of heterogeneity and their non-linear behavior. A non-linear Quasi-Newton multi-variate optimization method is utilized, which reasonably minimizes inconsistency and errors in yield prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号