首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Vegetation phenology is a sensitive indicator that reflects the vegetation–atmosphere interactions and vegetation processes under global atmospheric changes. Fast-developing remote sensing technologies that monitor the land surface at high spatial and temporal resolutions have been widely used in vegetation phenology retrieval and analysis at a large scale. While researchers have developed many phenology retrieving methods based on remote sensing data, the relationships and differences among the phenology retrieving methods are unclear, and there is a lack of evaluation and comparison with the field phenology recoding data. In this study, we evaluated and compared eight phenology retrieving methods using Moderate Resolution Imaging Spectroradiometer (MODIS) and the USA National Phenology Network data from across North America. The studied phenology retrieving methods included six commonly used rule-based methods (i.e., amplitude threshold, the first-order derivative, the second-order derivative, the third-order derivative, the relative change curvature, and the curvature change rate) and two newly developed machine learning methods (i.e., neural network and random forest). At the large scale, the start of the season (SOS) values, derived by all methods, had similar spatial distributions; however, the retrieved values had large uncertainties in each pixel, and the end of the season (EOS) inverted values were largely different among methods. At the site scale, the SOS and EOS values extracted by the rule-based methods all had significant positive correlations with the field phenology observations. Among the rule-based methods, the amplitude threshold method performed the best. The machine learning methods outperformed the rule-based methods in terms of retrieving the SOS when assessed using the field observations. Our study highlighted that there were large differences among the methods in retrieving the vegetation phenology from satellite data and that researchers must be cautious in selecting an appropriate method for analyzing the satellite-retrieved phenology. Our results also demonstrated the importance of field phenology observations and the usefulness of the machine learning methods in understanding the satellite-based land surface phenology. These findings provide a valuable reference for the future development of global and regional phenology products.  相似文献   

2.
Monitoring phenological change in agricultural land improves our understanding of the adaptation of crops to a warmer climate. Winter wheat–maize and winter wheat–cotton double-cropping are practised in most agricultural areas in the North China Plain. A curve-fitting method is presented to derive winter wheat phenology from SPOT-VEGETATION S10 normalized difference vegetation index (NDVI) data products. The method uses a double-Gaussian model to extract two phenological metrics, the start of season (SOS) and the time of maximum NDVI (MAXT). The results are compared with phenological records at local agrometeorological stations. The SOS and MAXT have close agreement with in situ observations of the jointing date and milk-in-kernel date respectively. The phenological metrics detected show spatial variations that are consistent with known phenological characteristics. This study indicates that time-series analysis with satellite data could be an effective tool for monitoring the phenology of crops and its spatial distribution in a large agricultural region.  相似文献   

3.
Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation.In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series.  相似文献   

4.
The spectral reflectance of most plant species is quite similar, and thus the feasibility of identifying most plant species based on single date multispectral data is very low. Seasonal phenological patterns of plant species may enable to face the challenge of using remote sensing for mapping plant species at the individual level. We used a consumer-grade digital camera with near infra-red capabilities in order to extract and quantify vegetation phenological information in four East Mediterranean sites. After illumination corrections and other noise reduction steps, the phenological patterns of 1839 individuals representing 12 common species were analyzed, including evergreen trees, winter deciduous trees, semi-deciduous summer shrubs and annual herbaceous patches. Five vegetation indices were used to describe the phenology: relative green and red (green\red chromatic coordinate), excess green (ExG), normalized difference vegetation index (NDVI) and green-red vegetation index (GRVI). We found significant differences between the phenology of the various species, and defined the main phenological groups using agglomerative hierarchical clustering. Differences between species and sites regarding the start of season (SOS), maximum of season (MOS) and end of season (EOS) were displayed in detail, using ExG values, as this index was found to have the lowest percentage of outliers. An additional visible band spectral index (relative red) was found as useful for characterizing seasonal phenology, and had the lowest correlation with the other four vegetation indices, which are more sensitive to greenness. We used a linear mixed model in order to evaluate the influences of various factors on the phenology, and found that unlike the significant effect of species and individuals on SOS, MOS and EOS, the sites' location did not have a direct significant effect on the timing of phenological events. In conclusion, the relative advantage of the proposed methodology is the exploitation of representative temporal information that is collected with accessible and simple devices, for the subsequent determination of optimal temporal acquisition of images by overhead sensors, for vegetation mapping over larger areas.  相似文献   

5.
Climate oscillation modes can shape weather across the globe due to atmospheric teleconnections. We built on the findings of a recent study to assess whether the impacts of teleconnections are detectable and significant in the early season dynamics of highland pastures across five rayons in Kyrgyzstan. Specifically, since land surface phenology (LSP) has already shown to be influenced by snow cover seasonality and terrain, we investigated here how much more explanatory and predictive power information about climatic oscillation modes might add to explain variation in LSP. We focused on seasonal values of five climate oscillation indices that influence vegetation dynamics in Central Asia. We characterized the phenology in highland pastures with metrics derived from LSP modeling using Landsat NDVI time series together with MODIS land surface temperature (LST) data: Peak Height (PH), the maximum modeled NDVI and Thermal Time to Peak (TTP), the quantity of accumulated growing degree-days based on LST required to reach PH. Next, we calculated two metrics of snow cover seasonality from MODIS snow cover composites: last date of snow (LDoS), and the number of snow covered dates (SCD). For terrain features, we derived elevation, slope, and TRASP index as linearization of aspect. First, we used Spearman’s rank correlation to assess the geographical differentiation of land surface phenology metrics responses to environmental variables. PH showed weak correlations with TTP (positive in western but negative in eastern rayons), and moderate relationships with LDoS and SCD only in one northeastern rayon. Slope was weakly related to PH, while TRASP showed a consistent moderate negative correlation with PH. A significant but weak negative correlation was found between PH and SCAND JJA, and a significant weak positive correlation with MEI MAM. TTP showed consistently strong negative relationships with LDoS, SCD, and elevation. Very weak positive correlations with TTP were found for EAWR DJF, AMO DJF, and MEI DJF in western rayons only. Second, we used Partial Least Squares regression to investigate the role of oscillation modes altogether. PLS modelling of TTP showed that thermal time accumulation could be explained mostly by elevation and snow cover metrics, leading to reduced models explaining 55 to 70% of observed variation in TTP. Variable selection indicated that NAO JJA, AMO JJA and SCAND MAM had significant relationships with TTP, but their input of predictive power was neglible. PLS models were able to explain up to 29% of variability in PH. SCAND JJA and MEI MAM were shown to be significant predictors, but adding them into models did not influence modeling performance. We concluded the impacts of climate oscillation anomalies were not detectable or significant in mountain pastures using LSP metrics at fine spatial resolution. Rather, at a 30 m resolution, the indirect effects of seasonal climatic oscillations are overridden by terrain influences (mostly elevation) and snow cover timing. Whether climate oscillation mode indices can provide some new and useful information about growing season conditions remains a provocative question, particularly in light of the multiple environmental challenges facing the agropastoralism livelihood in montane Central Asia.  相似文献   

6.
Land surface phenology has been widely retrieved although no consensus exists on the optimal satellite dataset and the method to extract phenology metrics. This study is the first comprehensive comparison of vegetation variables and methods to retrieve land surface phenology for 1999–2017 time series of Copernicus Global Land products derived from SPOT-VEGETATION and PROBA-V data. We investigated the sensitivity of phenology to (I) the input vegetation variable: normalized difference vegetation index (NDVI), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fraction of vegetation cover (FCOVER); (II) the smoothing and gap filling method for deriving seasonal trajectories; and (III) the method to extract phenological metrics: thresholds based on a percentile of the annual amplitude of the vegetation variable, autoregressive moving averages, logistic function fitting, and first derivative methods. We validated the derived satellite phenological metrics (start of the season (SoS) and end of the season (EoS)) using available ground observations of Betula pendula, B. alleghaniensis, Acer rubrum, Fagus grandifolia, and Quercus rubra in Europe (Pan-European PEP725 network) and the USA (National Phenology Network, USA-NPN). The threshold-based method applied to the smoothed and gap-filled LAI V2 time series agreed best with the ground phenology, with root mean square errors of ˜10 d and ˜25 d for the timing of SoS and EoS respectively. This research is expected to contribute for the operational retrieval of land surface phenology within the Copernicus Global Land Service.  相似文献   

7.
There are increasing societal and plant industry demands for more accurate, objective and near real-time crop production information to meet both economic and food security concerns. The advent of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite platform has augmented the capability of satellite-based applications to monitor large agricultural areas at acceptable pixel scale, cost and accuracy. Fitting parametric profiles to growing season vegetation index time series reduces the volume of data and provides simple quantitative parameters that relates to crop phenology (sowing date, flowering). In this study, we modelled various Gaussian profiles to time sequential MODIS enhanced vegetation index (EVI) images over winter crops in Queensland, Australia. Three simple Gaussian models were evaluated in their effectiveness to identify and classify various winter crop types and coverage at both pixel and regional scales across Queensland's main agricultural areas. Equal to or greater than 93% classification accuracies were obtained in determining crop acreage estimates at pixel scale for each of the Gaussian modelled approaches. Significant high to moderate correlations (log-linear transformation) were also obtained for determining total winter crop (R2 = 0.93) areas as well as specific crop acreage for wheat (R2 = 0.86) and barley (R2 = 0.83). Conversely, it was much more difficult to predict chickpea acreage (R2  0.26), mainly due to very large uncertainties in survey data. The quantitative approach utilised here further had additional benefits of characterising crop phenology in terms of length of growing season and providing regression diagnostics of how well the fitted profiles matched the EVI time series. The Gaussian curve models utilised here are novel in application and therefore will enhance the use and adoption of remote sensing technologies in targeted agricultural application. With innate simplicity and accuracies comparable to other more convoluted multi-temporal approaches it is a good candidate in determining total and specific crop acreage estimates in future national and global food security frameworks.  相似文献   

8.
This paper presents a new approach to estimate spatial Sun-Induced Fluorescence (SIF) using the empirical relationship between simulated Canopy Chlorophyll Concentration (CCC) and simulated SIF. PROSAIL model [PROpriétésSPECTrales (PROSPECT) and Scattering by Arbitrarily Inclined Leaves (SAIL) models] was used to simulate CCC. CCC maps were generated through an Automated Radiative Transfer Model Operator (ARTMO) using the PROSAIL model and Sentinel-2 Multi-Spectral Imager (MSI) imagery. The Soil Canopy Observation, Photochemistry, and Energy fluxes (SCOPE) model was used to simulate SIF emitted at 740 nm (SIF740), at 760 nm (SIF760), and top of canopy (SIFTOC) (640-850 nm). The SCOPE model, configured with the specification of the Sentinel-2 sensor, simulates SIF within the spectrum range of 640-850 nm. A non-linear logarithmic relationship (R2>0.9, p < 0.05) was observed between simulated SIF and simulated CCC. Simulated CCC was linearly related to observed CCC with R2 0.88, 0.92 and 0.89 and RMSE = 0.04, 0.17 and 0.09 gm/m2 at p < 0.05 for summer, post-monsoon and early winter respectively. Whereas, the simulated CCC did not capture the full range of CCC variability for the post-monsoon season. Simulated SIF (SIF760) was well correlated with SIF from Orbiting Carbon Observatory-2 (OCO-2) satellite with R2 0.68, 0.73 and 0.73 (RMSE = <1 W/m2/sr/μm, p < 0.05) for the month of summer (April), pre-monsoon (May) and early winter season (November) respectively. Temporal SIFTOC effectively captured the seasonal variability associated with the phenology of deciduous tree species. Among various Sentinel-2 MSI derived VIs, Red Edge NDVI (RENDVI) exhibited maximum sensitivity with SIF (highest monthly average R2> 0.6, p < 0.05). The spatial SIF would serve as an useful link between airborne /satellite derived SIF and in-situ fluorescence measurements to understand multiscale SIF variability of terrestrial vegetation.  相似文献   

9.
Phenology is a sensitive and critical feature of vegetation and is a good indicator for climate change studies. The global inventory modelling and mapping studies (GIMMS) normalized difference vegetation index (NDVI) has been the most widely used data source for monitoring of the vegetation dynamics over large geographical areas in the past two decades. With the release of the third version of the NDVI (GIMMS NDVI3g) recently, it is important to compare the NDVI3g data with those of the previous version (NDVIg) to link existing studies with future applications of the NDVI3g in monitoring vegetation phenology. In this study, the three most popular satellite start of vegetation growing season (SOS) extraction methods were used, and the differences between SOSg and SOS3g arising from the methods were explored. The amplitude and the peak values of the NDVI3g are higher than those of the NDVIg curve, which indicated that the SOS derived from the NDVIg (SOSg) was significantly later than that derived from the NDVI3g (SOS3g) based on all the methods, for the whole northern hemisphere. In addition, SOSg and SOS3g both showed an advancing trend during 1982–2006, but that trend was more significant with SOSg than with SOS3g in the results from all three methods. In summary, the difference between SOSg and SOS3g (in the multi-year mean SOS, SOS change slope and the turning point in the time series) varied among the methods and was partly related to latitude. For the multi-year mean SOS, the difference increased with latitude intervals in the low latitudes (0–30°N) and decreased in the mid- and high-latitude intervals. The GIMMS NDVI3g data-sets seemed more sensitive than the GIMMS NDVIg in detecting information about the ground, and the SOS3g data were better correlated both with the in situ observations and the SOS derived from the Moderate Resolution Imaging Spectroradiometer NDVI. For the northern hemisphere, previous satellite measures (SOS derived from GIMMS NDVIg) may have overestimated the advancing trend of the SOS by an average of 0.032 d yr–1.  相似文献   

10.
黑河流域遥感物候产品验证与分析   总被引:2,自引:0,他引:2  
植被物候遥感产品对全球变化响应、农业生产管理、生态学的应用等多领域研究具有重要意义。但现有植被物候遥感产品还有较多问题,主要包括一方面使用不同参数的时间序列数据以及不同提取算法导致的产品结果差异较大,另一方面在地面验证中地面观测数据与遥感反演数据的物理含义不一致导致的验证方法的系统性误差。本文以黑河流域为研究区,对比验证基于EVI(Enhanced Vegetation Index)时间序列数据提取的MLCD(MODIS global land cover dynamics product)植被遥感物候产品和基于LAI(Leaf Area Index)时间序列数据提取的UMPM(product by universal multi-life-cycle phenology monitoring method)植被遥感物候产品的有效性及精度等。同时,通过验证分析进一步评估基于EVI和LAI时间序列提取的物候特征的差异及特点,探讨由于地面观测植被物候与遥感提取植被物候的物理意义的不一致问题导致的直接验证结果偏差。结果表明:UMPM产品有效性整体高于MLCD产品,但在以草地和灌木为主的稀疏植被区,由于LAI取值精度的原因,UMPM产品存在较多缺失数据,且时空稳定性较低;基于玉米地面观测数据表明,EVI对植被开始生长的信号比LAI更加敏感,更适合提取生长起点,但植被指数易饱和,峰值起点普遍提前,基于LAI提取的峰值起点更加合理。由于地面观测的物候期在后期更加关注果实生长,遥感观测仅关注叶片的生长,遥感定义的峰值终点和生长终点与玉米的乳熟期和成熟期差异较大。  相似文献   

11.
ABSTRACT

The temporal resolution of vegetation indices (VIs) determines the details of seasonal variation in vegetation dynamics observed by remote sensing, but little has been known about how the temporal resolution of VIs affects the retrieval of land surface phenology (LSP) of grasslands. This study evaluated the impact of temporal resolution of MODIS NDVI, EVI, and per-pixel green chromatic coordinate (GCCpp) on the quality and accuracy of the estimated LSP metrics of prairie grasslands. The near-surface PheonoCam phenology data for grasslands centered over Lethbridge PhenoCam grassland site were used as the validation datasets due to the lack of in situ observations for grasslands in the Prairie Ecozone. MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data from 2001 to 2017 were used to compute the time series of daily reference and to simulate 2–32 day MODIS VIs. The daily reference and simulated multi-day time series were fitted with the double logistic model, and the LSP metrics were then retrieved from the modeled daily time series separately. Comparison within satellite-based estimates showed no significant difference in the phenological metrics derived from daily reference and multi-day VIs resampled at a time step less than 18 days. Moreover, a significant decline in the ability of multi-day VIs to predict detailed temporal dynamics of daily reference VIs was revealed as the temporal resolution increased. Besides, there were a variety of trends for the onset of phenological transitions as the temporal resolution of VIs changed from 1 to 32 days. Comparison with PhenoCam phenology data presented small and insignificant differences in the mean bias error (MBE) and the mean absolute error (MAE) of grassland phenological metrics derived from daily, 8-, 10-, 14-, and 16-day MODIS VIs. Overall, this study suggested that the MODIS VIs resampled at a time step less than 18 days are favorable for the detection of grassland phenological transitions and detailed seasonal dynamics in the Prairie Ecozone.  相似文献   

12.
Geographically weighted regression (GWR) is an important local method to explore spatial non‐stationarity in data relationships. It has been repeatedly used to examine spatially varying relationships between epidemic diseases and predictors. Malaria, a serious parasitic disease around the world, shows spatial clustering in areas at risk. In this article, we used GWR to explore the local determinants of malaria incidences over a 7‐year period in northern China, a typical mid‐latitude, high‐risk malaria area. Normalized difference vegetation index (NDVI), land surface temperature (LST), temperature difference, elevation, water density index (WDI) and gross domestic product (GDP) were selected as predictors. Results showed that both positively and negatively local effects on malaria incidences appeared for all predictors except for WDI and GDP. The GWR model calibrations successfully depicted spatial variations in the effect sizes and levels of parameters, and also showed substantially improvements in terms of goodness of fits in contrast to the corresponding non‐spatial ordinary least squares (OLS) model fits. For example, the diagnostic information of the OLS fit for the 7‐year average case is R2 = 0.243 and AICc = 837.99, while significant improvement has been made by the GWR calibration with R2 = 0.800 and AICc = 618.54.  相似文献   

13.
Start-of-season data are more and more used to qualify the land surface phenology trends in relation with climate variability and, more rarely, with human land management. In this paper, we compared the phenology of rangeland vs cropped land in the Sahel belt of Africa, using the only currently available global phenology product (MODIS MCD12Q2 – Land Cover Dynamics Yearly), and an enhanced crop mask of Mali. The differences in terms of start-of-season (SOS) are spatially (north south gradient), and temporally (10 years, 2001–2009) analyzed in bioclimatic terms. Our results show that globally the MODIS MCD12Q2 SOS dates of croplands and rangelands differ, and that these differences depend on the bioclimatic zone. In Sahelian and Guinean regions, cropland vegetation begins to grow earlier than rangeland vegetation (8-day and 4-day advance, respectively). Between, in the Sudanian and Sudano-Sahelian parts of Mali, rangeland vegetation greens about one week earlier than croplands. These results are discussed in the context of the land surface heterogeneity at MODIS scale, and in the context of the natural vegetation ecology. These results could help interpreting phenological trends in climate change analysis.  相似文献   

14.
Rice crop occupies an important aspect of food security and also contributes to global warming via GHGs emission. Characterizing rice crop using spatial technologies holds the key for addressing issues of global warming and food security as different rice ecosystems respond differently to the changed climatic conditions. Remote sensing has become an important tool for assessing seasonal vegetation dynamics at regional and global scale. Bangladesh is one of the major rice growing countries in South Asia. In present study we have used remote sensing data along with GIS and ancillary map inputs in combination to derive seasonal rice maps, rice phenology and rice cultural types of Bangladesh. The SPOT VGT S10 NDVI data spanning Aus, Aman and Boro crop season (1st May 2008 to 30th April 2009) were used, first for generating the non-agriculture mask through ISODATA clustering and then to generate seasonal rice maps during second classification. The spectral rice profiles were modelled and phenological parameters were derived. NDVI growth profiles were modelled and crop calendar was derived. To segregate the rice cultural types of Bangladesh into IPCC rice categories, we used elevation, irrigated area, interpolated rainfall maps and flood map through logical modelling in GIS. The results indicated that the remote sensing derived rice area was 9.99 million ha as against the reported area of 11.28 million ha. The wet and dry seasons accounted for 64% and 36 % of the rice area, respectively. The flood prone, drought prone and deep water categories account for 7.5%, 5.56% and 2.03%, respectively. The novelty of current findings lies in the spatial outcome in form of seasonal and rice cultural type maps of Bangladesh which are helpful for variety of applications.  相似文献   

15.
The virtual certainty of the anticipated climate change will continue to raise many questions about its aggregated impact of environmental changes on our regional food security in imminent future. Crop responses to these changes are certain, but its exact characteristics are hardly understood at regional scale due to complex overlapping effects of climate change and anthropogenic manipulation of agro-ecosystem. This study derived phenology of wheat in north India from satellite data and analyzed trends of phenology parameters over last three decades. The most striking change-point period in phenology trends were also derived. The phenology was derived from two sources: (1) STAR-Global vegetation Health Products-NDVI, and (2) GIMMS-NDVI. The results revealed significant earliness in start of growing season (SOS) in Punjab and Haryana while delay was found in Uttar Pradesh (UP). End of the wheat season almost always occurred early, to even those place where SOS was delayed. Length of growing season increased in most of Punjab and northern Haryana whereas its decrease dominated in UP. The early sowing practice of the farmers of the Punjab and Haryana may be one of the adaptation strategies to manage the terminal heat stress in reproductive stage of the crop in the region. The change-point occurred in late 1990s (1998–2000) in Punjab and Haryana, while in eastern UP it was in early 1990s (1990–1995). Despite the difference in temporal aggregation and spatial resolution, both the datasets yielded similar trends, confirming both the robustness of the results and applicability of the datasets over the region. The results demands further research for proper attribution of the effects into its causes and may help devising crop adaption practices to climatic stresses.  相似文献   

16.
Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.  相似文献   

17.
Temporal changes in the normalized difference vegetation index (NDVI) have been widely used in vegetation mapping due to the usefulness of NDVI data in distinguishing characteristic seasonal differences in the phenology of greenness of vegetation cover. Research has also shown that NDVI provides potential to derive meaningful metrics that describe ecosystem functions. In this paper, we have applied both unsupervised “k-means” classification and supervised minimum distance classification as derived from temporal changes in NDVI measured in 1997 along the North Eastern China Transect (NECT), and we have also utilized the same two classification methods together with NDVI-derived metrics, namely maximum NDVI, mean NDVI, NDVI amplitude, NDVI threshold, total length of growing season, fraction of growing season during greenup, rate of greenup, rate of senescence, integrated NDVI during the growing season, and integrated NDVI during greenup/integrated NDVI during senescence to map vegetation. The main objectives of this study are: (1) to test the relative performance of NDVI temporal profile metrics and NDVI-derived metrics for vegetation cover discrimination in NECT; (2) to test the relative performance of unsupervised (k-means) and supervised (minimum distance) methods for vegetation mapping; (3) to test the accuracy of the IGBP-DIS released land cover map for NECT; (4) to provide an up-to-date vegetation map for NECT. The results suggest that the classifications based on NDVI temporal profile metrics have higher accuracies than those based on any other metrics, such as NDVI-derived metrics, or all (NDVI temporal profile metrics + NDVI-derived metrics), or 15 metrics (NDVI temporal profile + Rate of greenup, Rate of senescence, and Integrated NDVI in greenup/integrated NDVI in senescence) for both methods. And among them, unsupervised k-means classification had the highest overall accuracy of 52% and Kappa coefficient of 0.2057. Both unsupervised (k-means) and supervised (minimum distance) methods achieved similar accuracies for the same metrics. The accuracy of IGBP-DIS released land cover map had an overall accuracy of 37% and a Kappa coefficient is 0.1441, and can improve to 46% by decomposing the crop/natural vegetation mosaic to cropland and other natural vegetation types. The results support using unsupervised k-means classification based on NDVI temporal profile metrics to provide an up-to-date vegetation cover classification. However, new effort is necessary in the future in order to improve the overall performance on this issue.  相似文献   

18.
The green cover of the earth exhibits various spatial gradients that represent gradual changes in space of vegetation density and/or in species composition. To date, land cover mapping methods differentiate at best, mapping units with different cover densities and/or species compositions, but typically fail to express such differences as gradients. Present interpretation techniques still make insufficient use of freely available spatial-temporal Earth Observation (EO) data that allow detection of existing land cover gradients. This study explores the use of hyper-temporal NDVI imagery to detect and delineate land cover gradients analyzing the temporal behavior of NDVI values. MODIS-Terra MVC-images (250 m, 16-day) of Crete, Greece, from February 2000 to July 2009 are used. The analysis approach uses an ISODATA unsupervised classification in combination with a Hierarchical Clustering Analysis (HCA). Clustering of class-specific temporal NDVI profiles through HCA resulted in the identification of gradients in landcover vegetation growth patterns. The detected gradients were arranged in a relational diagram, and mapped. Three groups of NDVI-classes were evaluated by correlating their class-specific annual average NDVI values with the field data (tree, shrub, grass, bare soil, stone, litter fraction covers). Multiple regression analysis showed that within each NDVI group, the fraction cover data were linearly related with the NDVI data, while NDVI groups were significantly different with respect to tree cover (adj. R2 = 0.96), shrub cover (adj. R2 = 0.83), grass cover (adj. R2 = 0.71), bare soil (adj. R2 = 0.88), stone cover (adj. R2 = 0.83) and litter cover (adj. R2 = 0.69) fractions. Similarly, the mean Sorenson dissimilarity values were found high and significant at confidence interval of 95% in all pairs of three NDVI groups. The study demonstrates that hyper-temporal NDVI imagery can successfully detect and map land cover gradients. The results may improve land cover assessment and aid in agricultural and ecological studies.  相似文献   

19.
The Arctic is experiencing disproportionate warming relative to the global average, and the Arctic ecosystems are as a result undergoing considerable changes. Continued monitoring of ecosystem productivity and phenology across temporal and spatial scales is a central part of assessing the magnitude of these changes. This study investigates the ability to use automatic digital camera images (DCIs) as proxy data for gross primary production (GPP) in a complex low Arctic wetland site. Vegetation greenness computed from DCIs was found to correlate significantly (R2 = 0.62, p < 0.001) with a normalized difference vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid functions for each plant community. GPP at light saturation modeled from eddy covariance (EC) flux measurements were found to correlate significantly with vegetation greenness for all plant communities in the studied year (i.e., 2010), and the highest correlation was found between modeled fen greenness and GPP (R2 = 0.85, p < 0.001). Finally, greenness computed within modeled EC footprints were used to evaluate the influence of individual plant communities on the flux measurements. The study concludes that digital cameras may be used as a cost-effective proxy for potential GPP in remote Arctic regions.  相似文献   

20.
Airborne laser scanning (ALS) is increasingly being used for the mapping of vegetation, although the focus so far has been on woody vegetation, and ALS data have only rarely been used for the classification of grassland vegetation. In this study, we classified the vegetation of an open alkali landscape, characterized by two Natura 2000 habitat types: Pannonic salt steppes and salt marshes and Pannonic loess steppic grasslands. We generated 18 variables from an ALS dataset collected in the growing (leaf-on) season. Elevation is a key factor determining the patterns of vegetation types in the landscape, and hence 3 additional variables were based on a digital terrain model (DTM) generated from an ALS dataset collected in the dormant (leaf-off) season. We classified the vegetation into 24 classes based on these 21 variables, at a pixel size of 1 m. Two groups of variables with and without the DTM-based variables were used in a Random Forest classifier, to estimate the influence of elevation, on the accuracy of the classification. The resulting classes at Level 4, based on associations, were aggregated at three levels — Level 3 (11 classes), Level 2 (8 classes) and Level 1 (5 classes) — based on species pool, site conditions and structure, and the accuracies were assessed. The classes were also aggregated based on Natura 2000 habitat types to assess the accuracy of the classification, and its usefulness for the monitoring of habitat quality. The vegetation could be classified into dry grasslands, wetlands, weeds, woody species and man-made features, at Level 1, with an accuracy of 0.79 (Cohen’s kappa coefficient, κ). The accuracies at Levels 2–4 and the classification based on the Natura 2000 habitat types were κ: 0.76, 0.61, 0.51 and 0.69, respectively. Levels 1 and 2 provide suitable information for nature conservationists and land managers, while Levels 3 and 4 are especially useful for ecologists, geologists and soil scientists as they provide high resolution data on species distribution, vegetation patterns, soil properties and on their correlations. Including the DTM-based variables increased the accuracy (κ) from 0.73 to 0.79 for Level 1. These findings show that the structural and spectral attributes of ALS echoes can be used for the classification of open landscapes, especially those where vegetation is influenced by elevation, such as coastal salt marshes, sand dunes, karst or alluvial areas; in these cases, ALS has a distinct advantage over other remotely sensed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号