首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
In this paper,a simulation study is made on the sea breeze process over southwestern Bohai Gulf byuse of the Pielke mesoscale meteorological model.The simulated results show that when a south wind of 8m/s blows over the top of the model,a strong wind zone of 15—25 km wide with a maximum speed more than14 m/s,which is close and nearly parallel to the south shore,will appear at 160 m above the sea surface.When a strong sea breeze penetrates inland,there often appears a thermal internal boundary layer(TIBL)near shore.The inversion above the TIBL can damp the vertical dispersion of atmospheric pollution.Besides,it is also found that,for a three-dimensional sea/land breeze circulation,if the divergence centre inthe return flow departs vertically far from the correspondent convergence centre in the sea breeze,a centre ofstrong descending movement will be formed at the middle and upper levels of the return flow.The resultsin this paper is also applicable to the Laizhou Bay.  相似文献   

2.
Tower measurements for the sea breeze front in the surface layer were carried out over the Kochi plain about 2 km inland from Tosa Bay in Shikoku, Japan during the period from August 1986 to October 1987. The study shows that the penetration time of the sea breeze has an annual variation, which is around 0830 JST in summer and 12 JST in winter, and that the width of the sea breeze front depends on the ratio of the sea breeze speed and the opposing flow speed. Moreover, the frontal width also shows a seasonal variation.The characteristics of the vertical winds (w) found just before and just after the passage of the sea breeze front lead to remarkable downdrafts and updrafts, respectively, with relatively large vertical velocities. Such behaviour ofw is shown to be consistent with the flow relative to the head of the front as reviewed by Simpson (1987), influencing the magnitude of the turbulence scale and the turbulent energy dissipation near the ground surface.  相似文献   

3.
The sea-land breeze circulation (SLBC) occurs regularly at coastal locations and influences the local weather and climate significantly. In this study, based on the observed surface wind in 9 conventional meteorological stations of Hainan Island, the frequency of sea-land breeze (SLB) is studied to depict the diurnal and seasonal variations. The statistics indicated that there is a monthly average of 12.2 SLB days and an occurrence frequency of about 40%, with the maximum frequency (49%) in summer and the minimum frequency (29%) in autumn. SLB frequencies (41%) are comparable in winter and spring. A higher frequency of SLB is present in the southern and central mountains due to the enhancement effect of the mountain-valley breeze. Due to the synoptic wind the number of SLB days in the northern hilly area is less than in other areas. Moreover, the WRF model, adopted to simulate the SLBC over the island for all seasons, performs reasonably well reproducing the phenomenon, evolution and mechanism of SLBC. Chiefly affected by the difference of temperature between sea and land, the SLBC varies in coverage and intensity with the seasons and reaches the greatest intensity in summer. The typical depth is about 2.5 km for sea breeze circulation and about 1.5 km for land breeze circulation. A strong convergence zone with severe ascending motion appears on the line parallel to the major axis of the island, penetrating 60 to 100 km inland. This type of weak sea breeze convergence zone in winter is north-south oriented. The features of SLBC in spring are similar both to that in summer with southerly wind and to that in winter with easterly wind. The coverage and intensity of SLBC in autumn is the weakest and confined to the southwest edge of the central mountainous area. The land breeze is inherently very weak and easily affected by the topography and weather. The coverage and intensity of the land breeze convergence line is significantly less than those of the sea breeze. The orographic forcing of the cen  相似文献   

4.
Climate Variability and Urbanization in Athens   总被引:2,自引:0,他引:2  
Summary  The effects of urbanization on the Athens National Observatory (NOA) long records are investigated, in the present study, examining the mean monthly maximum and minimum air temperature for the period 1925–1996, for NOA and the corresponding time series for Aliartos (ALI), a rural station located 70 km NW of Athens. The existing small urbanization effect in NOA before the second world war period increased after the war and up to about 1990, when the effect became stationary. The urbanization effect in NOA referred mainly to maximum temperature and to the warmer seasons of the year. It is attributed to the extensive building of Athens after the war around NOA site and up to the sea which increases the temperature of the sea breeze. The effect is also attributed to the rapid increase of the population and the number of motor vehicles mainly after 1970. Moreover the decreasing trend of precipitation during the period 1970–1990 may have contributed to the increase of maximum air temperature. The urbanization effect on maximum temperatures of NOA amounts about 2 °C in spring, summer and less in fall, while no urbanization effect is clear in winter. Received March 25, 1998 Revised October 7, 1998  相似文献   

5.
This paper uses the cloud resolving Active Tracer High-resolution Atmospheric Model coupled to the interactive surface model Hybrid in order to investigate the diurnal development of a lake-breeze system at the Nam Co Lake on the Tibetan Plateau. Simulations with several background wind speeds are conducted, and the interaction of the lake breeze with topography and background wind in triggering moist and deep convection is studied. The model is able to adequately simulate the systems most important dynamical features such as turbulent surface fluxes and the development of a lake breeze for the different wind conditions. We identify two different mechanisms for convection triggering that are dependent on the direction of the background wind: triggering over topography, when the background wind and the lake breeze have the same flow direction, and triggering due to convergence between the lake-breeze front and the background wind. Our research also suggests that precipitation measurements at the centre of the basins on the Tibetan Plateau are not representative for the basin as a whole as precipitation is expected to occur mainly in the vicinity of the topography.  相似文献   

6.
Summary The CIRSAN/LBA field campaign was conducted close to two major rivers of the Amazon Basin, the Tapajós and the Amazon. The observations indicate that during weak trade wind episodes the Tapajós River breeze actually induces a westerly flow at the eastern margin with an associated line of shallow cumulus. The atmospheric circulation induced by the river has been interpreted with the help of a high resolution numerical simulation. A single cell forms during late morning over the Tapajós River and evolves into the afternoon with ascending motion in the eastern margin and a descending branch in the western margin suppressing cloud formation. During the night, convergence is seen along the centre of the River Tapajós. The implications of the particular geometry of the river with respect to the trade winds for the generalization of the surface measurements of turbulent fluxes of heat, moisture and CO2 in the Tapajós eastern margin of the Amazon Basin as a whole are discussed.  相似文献   

7.
Observational results of the structure of the sea breeze over the urban and suburban areas of Tokyo for four summer days are presented.On two of these days, the inland penetration of the sea breeze front could be clearly traced. In one case, the sea breeze was first observed along the shores of Tokyo Bay around 0900 JST, and propagated in three hours through the Tokyo City area, the width of which is about 20 km. It then advanced inland at a rate of 16 km h–1. Prior to the arrival of the sea breeze at the suburban site, the mixing height had remained at about 600 m for four hours. With the arrival of the sea breeze front, accompanied by an abrupt change in wind speed and direction, the mixing height increased sharply to 1700 m. It is suggested that this behavior and the structure of the front are intensified due to the urban effect, or the difference in the thermal characteristics between the urban and rural areas.On the days without a sea breeze front, the land breeze system during the early morning was less intense, allowing the sea breeze to develop simultaneously with the inland valley wind and easily form a large-scale local wind system during the morning hours. In both cases, the vertical motion accompanying the local wind system works as a feedback mechanism to control the local winds by modifying the thermal and pressure fields.  相似文献   

8.
奥帆赛是奥运会唯一以自然风为动力的竞赛项目,而北京奥运会期间的8月,青岛的风速是一年中最小的,因风速过小致使帆船竞赛地法进行的情况时有发生。鉴于青岛的弱风与海陆风的发展状况关系密切,文中分析8、9月青岛奥帆赛和残奥帆赛期间竞赛海域海陆风的发展条件,并用高分辨率数值模式对相关个例进行了模拟试验研究。结果发现,地面背景气流、边界层中上部径向气流和周围地形、海陆分布等边界层特征,都对竞赛海域海陆风的发展产生影响。其中晴天时,地面西风、弱的北风和东风、均压场环境以及边界层中上部弱的北风条件等,都是竞赛海域海风发展的有利条件;而地面南风(无论大小)、强的北风以及边界层中上部较强的南风和很强的北风等,则是海风发展的不利条件。此外,当地面为东北风时,位于竞赛海域上游的崂山对地面风速有阻挡减弱的作用,从而有利于海风的发展;地面为南风时,崂山和浮山等地形强迫气流在竞赛海域附近向左右分为两支,胶州湾和崂山湾侧向海风(东南风)急流发展又加大了这种分流作用,导致竞赛海域常减小为弱风,使比赛无法进行。以上结论在2008年奥帆赛和残奥帆赛气象保障预报服务中得到运用。  相似文献   

9.
The characteristics of the sea breeze in the Attica region of Greece, in which Athens is located, have been studied for occasions of weak synoptic-scale pressure gradient. The analysis is based on synoptic observations from six meteorological stations, three on the coast and three inland. The three inland stations and one of the coastal stations lie almost in a straight line at different distances from the coast. For each meteorological station, the basic characteristics of the sea breeze were determined, i.e.,
  1. The mean number of sea-breeze days for each calendar month.
  2. The monthly mean wind speed for each synoptic hour.
  3. The times of onset and cessation of the sea breeze.
  4. The monthly vector mean wind, and its constancy ‘Constancy’ is defined as 100{itV{inr}/V{ins}}, where {itV{inr}} is the magnitude of the vector mean wind, and {itV{ins}} is the scalar mean wind speed. See Brooks and Carruthers (1953). (In this paper, the factor 100 is not used.) for each synoptic hour.
  5. For days on which there was a sea breeze at Helliniko (the coastal reference station), the percentage number of days on which there was also a sea breeze at the given station.
An attempt was also made to determine further characteristics, such as the inland penetration of the sea breeze, its depth, the spatial and temporal variation of wind speed and direction, and the existence of the return flow. Finally, the properties of the land breeze are briefly outlined.  相似文献   

10.
利用葫芦岛观测站1980—2009年观测资料,分析了葫芦岛沿岸海陆风风速的季节特征和日变化规律,以及海陆风环流对沿岸环境的影响。结论如下:1)葫芦岛站点在冬季出现海陆风日数最多,其他依次为秋季、夏季和春季。陆风风速从春季到冬季呈现递减趋势;海风在春季最大,其次为秋季的,冬季的最小。总体上,海陆风日中海风要强于陆风。2)对海陆风风速椭圆拟合结果表明,海陆风在10:32由陆风转化为海风,海风在16:32达到最大,在21:42由海风转化为陆风,陆风在04:32达到最大。3)由于海风的存在,沿岸地带在春夏两季日最高气温在12时出现,秋冬季的在13时出现。4)能见度日变化在四季中表现一致,早晨能见度转好的时刻比最低气温出现时刻滞后约2 h,在海风维持较长时间后空气绝对湿度增加导致能见度开始转差。5)冬季静止型海陆风日比例最高,再循环型海陆风日在秋季出现最多,而夏季通风型海陆风日出现最多。  相似文献   

11.
Summary A numerical mesoscale model (COAMPS) is used to study some of the features associated with the evolution of the kinematic, thermodynamic, and physical structure of the Alabama sea and bay breeze circulations and convections in weak shear environments based on five cases from Medlin and Croft (1998). The general and expected features and evolution of sea and bay breeze circulations are captured by the model simulations, including horizontal and vertical wind shifts, thermal contrast between land and water surface, vertical stability over water and land, return currents and moisture increase. The relationship of the circulations to specific synoptic flow regimes and local physiographic features was investigated. The sea breeze triggered convective cells are confirmed to have a preferred location according to the flow regime and local conditions. This result can assist the forecasters in understanding the anticipated convective cell initiation and development on a given day as related to sea and bay breeze cells as well as improve the short-term forecast accuracy of the location of thunderstorm initiation based on routine observations and subsequent convective activity. If local NWS office model a selective subset of cases then they can better visualize and forecast those cases operationally.  相似文献   

12.
We report on observed nocturnal profiles, in which an inversion layer is located at the core of a low-level jet, bounded between two well-mixed layers. High-resolution vertical profiles were collected during a field campaign in a small plain in the Israeli desert (Negev), distant 100 km from the eastern shore of the Mediterranean Sea. During the evening hours, the synoptic flow, superposed on the late sea breeze, forms a low-level jet characterized by a maximum wind speed of 12 m s −1 at an altitude of 150 m above the ground. The strong wind shear at the jet maximum generates downward heat fluxes that act against the nocturnal ground cooling. As a result, the typical ground-based nocturnal inversion is “elevated” towards the jet centre, hence a typical early morning thermal profile is observed a few hours after sunset. Since the jet is advected into the region, its formation does not depend on the presence of a surface nocturnal inversion layer to decouple the jet from surface friction. On the contrary, here the advected low-level jet acts to hinder the formation of such an inversion. These unusual temperature and wind profiles are expected to affect near-ground dispersion processes.  相似文献   

13.
Summary The aim of this study is the evaluation of the sea breeze speed on the basis of its energy. Energetics of the sea breeze can be studied by means of the available potential energy (APE). Part of this energy is transformed into the kinetic energy of the sea breeze. Some similarity exists between the large scale processes of the circulation and the small coastal air circulation due to the fact that both circulations are triggered by the same physics, i.e., solenoidal activity of the baroclinic atmosphere. To evaluate the sea breeze speed, APE was calculated by use of the Lorenz’s equation (1955), and which is possible if the coastal circulation is considered to be a closed system in a hydrostatic equilibrium. For calculations and verifications hourly sea-surface temperatures, near-ground air temperatures and wind speed measurements, as well as the radio-sounding measurements at 12 UTC were used at the Zadar station (ϕ = 44° 08′ N, λ = 15° 13′ E), which is situated in the central part of the eastern Adriatic coast. Two days with an undisturbed sea breeze circulation were extracted using the methods for minimizing other atmospheric influences. Calculated hourly near ground sea breeze speeds obtained in this way were higher than the measured ones. With the assumption that some of the APE is transformed into the kinetic energy it is possible to obtain characteristic speed of the developed sea breeze with small discrepancies to the near-ground measurements. If 6.6% of the mean daily near ground APE was taken to be transformed to the mean daily kinetic sea breeze energy on the 29th and 4.2% on the 30th September 2002, the best agreement was obtained with the mean daily measured near ground sea breeze speed. This range of values can be attributed to inability to extract precise values for the lapse-rate needed in the APE sea breeze calculations. Results show similarities to the general circulation of the atmosphere, since about 10% of the APE is transformed to the kinetic energy of the sea breeze. On the other hand calculated wind speed at the lower branch of the borderline coastal circulation was not dependent on the integral value of the APE over the land, but on its value at the near-ground level.  相似文献   

14.
采用WRF中尺度天气预报模式,针对海南岛多云天气条件下的一次典型海风个例,对局地海风环流结构进行数值模拟,分析海风环流的演变特征,并通过设计改变海南岛地形的敏感性试验,探究地形对海南岛局地海风环流结构以及云水分布的影响。结果表明:海岛西部陡峭的山区造成海风强迫抬升,偏南背景风使得海岛北部高空回流明显,海岛西部、北部的海风结构较为完整;地形高度越高,海岛南部山区的阻挡作用越强,西部地区的海风高空回流特征越显著,西部、西北部云水混合比的位置也越深入内陆;受南海季风的影响,与晴空天气相比,多云天气下海风强盛期全岛的最大风速稍大,海风在垂直方向上达到的高度更高;移平地形后,多云天气下全岛风速平均仅减少2~3 m·s^-1,而晴空天气下全岛风速则大大减弱,即多云天气下海风环流水平结构受地形的影响比晴空天气下弱。  相似文献   

15.
From 1973–1976, research was performed around the Sea of Galilee, aimed at examining the wind regime in the area and whether the area develops a land-sea breeze despite its particular topographical location.
    The main conclusions were:
  1. During the summer mornings a lake breeze develops, blowing towards the shores of the lake. It ceases at the peak of its development when a westerly wind, originating in the development of a breeze along the Israeli Mediterranean coast, plunges towards the lake.
  2. Late at night, a wind flow develops from the land towards the lake, which combines with the katabatic winds that blow along the steep slopes surrounding the Kinneret.
  3. The stations at the upper level, at a height of 400–500 m above the Kinneret, are not affected by the lake breeze during the day or by the land breeze at night.
  4. In winter, the Kinneret lake breeze is almost as developed as in summer, because the westerly winds, originating in the Mediterranean sea breeze which hardly develops in this season, do not plunge into the Kinneret.
  相似文献   

16.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

17.
Summary Climatological characteristics along the northern Croatian Adriatic coast have been examined for nine meteorological stations for the summertime sea/land breeze circulation. The stations considered are Pula-airport, Opatija, Rijeka, Senj, Malinska, Rijeka-airport, Mali Lošinj, Rab and Zadar. The hourly surface measurements at each station from June to September for the period 1991–2004 as well as the radiosoundings in Zadar (from 2002 to 2004) were used for the analysis. A dataset with the sea/land breeze days was formed according to the several criteria. The mean daily maxima of both air and sea surface temperatures were more influenced by the large scale disturbances toward north (e.g. in Rijeka or Opatija) compared to the values for e.g. Zadar. Furthermore, the influence of the large scale disturbances diminished toward the south concerning the sea–land temperature difference only at the stations placed at Rijeka Bay and Velebit channel. The strongest sea breeze was found at Pula-airport and the most frequent ones at Opatija and Zadar. At Senj the rarest, the weakest and the shortest sea breeze was observed. The climatological records of wind speed and air-sea temperature difference (ΔT) showed for Opatija, Malinska and Zadar that the maximum measured wind speed is around 4.5 °C confirming the nonlinear relationship between the sea breeze speeds and the ΔT during the day. At most stations, the clockwise rotation of the hodographs prevails which is typical for the Northern hemisphere due to Coriolis force, with the exception at Senj and Malinska. While the hodographs for Pula, Rijeka-airport and Mali Lošinj display a later onset of the prevailing sea breeze because of the interaction among several sea breeze circulations, the results for Opatija, Zadar and Senj show considerably distorted hodographs because of the nearby channeling of the air flow.  相似文献   

18.
The inland and offshore propagation speeds of a sea breeze circulation cell are simulated using a three-dimensional hydrostatic model within a terrain-following coordinate system. The model includes a third-order semi-Lagrangian advection scheme, which compares well in a one-dimensional stand-alone test with the more complex Bott and Smolarkiewicz advection schemes. Two turbulence schemes are available: a local scheme by Louis (1979) and a modified non-local scheme based on Zhang and Anthes (1982). Both compare well with higher-order closure schemes using the Wangara data set for Day 33–34 (Clark et al., 1971).Two-dimensional cross-sections derived from airborne sea breeze measurements (Finkele et al. 1995) constitute the basis for comparison with two-dimensional numerical model results. The offshore sea breeze propagation speed is defined as the speed at which the seaward extent of the sea breeze grows offshore. On a study day, the offshore sea breeze propagation speed, from both measurements and model, is -3.4 m s-1. The measured inland propagation speed of the sea breeze decreased somewhat during the day. The model results show a fairly uniform inland propagation speed of 1.6 m s-1 which corresponds to the average measured value. The offshore sea breeze propagation speed is about twice the inland propagation speed for this particular case study, from both the model and measurements.The influence of the offshore geostrophic wind on the sea breeze evolution, offshore extent and inland penetration are investigated. For moderate offshore geostrophic winds (-5.0 m s-1), the offshore and inland propagation speeds are non-uniform. The offshore extent in moderate geostrophic wind conditions is similar to the offshore extent in light wind conditions (-2.5 m s-1). The inland extent is greater in light offshore geostrophic winds than in moderate ones. This suggests that the offshore extent of the sea breeze is less sensitive to the offshore geostrophic wind than its inland extent. However, these results hold only if it is possible to define an inland propagation speed. For stronger offshore geostrophic winds (-7.5 m s-1), the sea breeze is completely offshore and the inland propagation speed is ill-defined.  相似文献   

19.
大连金州地区海陆风特征分析   总被引:3,自引:1,他引:2       下载免费PDF全文
根据2005年大连金州气象站的常规风向风速资料对金州地区的海陆风特征进行了分析,并应用MM5v3模式模拟了海陆风发生时的风场变化,计算了海风和陆风延伸到内陆和海面的距离。结果表明:大连金州地区海陆风的发生主要受太阳辐射强度和海陆温差的影响,在春夏季晴朗天气条件下海陆风发生的频率较高、平均风速较大,而海陆风的延伸距离主要受风速影响。  相似文献   

20.
Summary This paper is concerned with sea/land-breeze systems over relatively flat tropical islands to the north of continental Australia. The purpose of this study is to contribute to the relatively small body of knowledge on tropical island sea/land-breeze systems in this region and to highlight their particular characteristics. The evolution and structure of coastal circulations over the Tiwi Islands, northern Australia are examined using observations made during the Maritime Continent Thunderstorm Experiment (MCTEX), November/December 1995. During the transition period between dry and wet (monsoon) seasons, strong diurnal surface heating dominates the local meteorology. Thermally modified pressure differences across the coastline are seen to control the timing, direction and intensity of local winds. The evolution and structure of the resulting circulations appear to be affected greatest by tropospheric stability and friction, while the Coriolis force, synoptic winds and topography are of much less importance in this case. Consequently, even small differences in surface properties seem to produce strong and well defined local wind circulations. The depth of the sea breeze averaged 1200 m, while the land breeze was considerably shallower (290 m). Return flows were evident in both circulations, although better defined in land breeze cases. Day to day variation in vertical structure was considerable and appeared to be controlled by stability in the lower troposphere. Spatial patterns of surface temperature, pressure and wind show formation of an island heat low by day and a cool high pressure centre at night, resulting in island scale convergence and divergence, respectively. Received February 27, 2000/Revised October 16, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号